2,489 research outputs found

    Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.</p> <p>Results</p> <p>We propose a new idea to construct an integrative profile for each residue in a protein by combining its hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets having roughly the same sizes are grouped in the order of accessible surface area change before and after complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the input vectors, our model is simpler, faster and more accurate than the existing methods.</p> <p>Conclusions</p> <p>The integrative profile by combining hydrophobic and evolutionary information contributes most to the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM classifiers improves the prediction performance.</p> <p>Availability</p> <p>Datasets and software are available at <url>http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm</url>.</p

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Predicting protein interface residues using easily accessible on-line resources

    Get PDF
    © The Author 2015. Published by Oxford University Press. It has beenmore than a decade since the completion of the Human Genome Project that provided us with a complete list of human proteins. The next obvious task is to figure out how various parts interact with each other. On that account, we re- view 10methods for protein interface prediction, which are freely available as web servers. In addition, we comparatively evaluate their performance on a common data set comprising different quality target structures. We find that using experi- mental structures and high-quality homology models, structure-basedmethods outperformthose using only protein se- quences, with global template-based approaches providing the best performance. Formoderate-qualitymodels, sequence- basedmethods often performbetter than those structure-based techniques that rely on fine atomic details. We note that post-processing protocols implemented in severalmethods quantitatively improve the results only for experimental struc- tures, suggesting that these procedures should be tuned up for computer-generatedmodels. Finally, we anticipate that advancedmeta-prediction protocols are likely to enhance interface residue prediction. Notwithstanding further improve- ments, easily accessible web servers already provide the scientific community with convenient resources for the identifica- tion of protein-protein interaction sites

    Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need.</p> <p>Results</p> <p>In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes.</p> <p>Conclusion</p> <p>Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots.</p

    A NEW METHODOLOGY FOR IDENTIFYING INTERFACE RESIDUES INVOLVED IN BINDING PROTEIN COMPLEXES

    Get PDF
    Genome-sequencing projects with advanced technologies have rapidly increased the amount of protein sequences, and demands for identifying protein interaction sites are significantly increased due to its impact on understanding cellular process, biochemical events and drug design studies. However, the capacity of current wet laboratory techniques is not enough to handle the exponentially growing protein sequence data; therefore, sequence based predictive methods identifying protein interaction sites have drawn increasing interest. In this article, a new predictive model which can be valuable as a first approach for guiding experimental methods investigating protein-protein interactions and localizing the specific interface residues is proposed. The proposed method extracts a wide range of features from protein sequences. Random forests framework is newly redesigned to effectively utilize these features and the problems of imbalanced data classification commonly encountered in binding site predictions. The method is evaluated with 2,829 interface residues and 24,616 non-interface residues extracted from 99 polypeptide chains in the Protein Data Bank. The experimental results show that the proposed method performs significantly better than two other conventional predictive methods and can reliably predict residues involved in protein interaction sites. As blind tests, the proposed method predicts interaction sites and constructs three protein complexes: the DnaK molecular chaperone system, 1YUW and 1DKG, which provide new insight into the sequence-function relationship. Finally, the robustness of the proposed method is assessed by evaluating the performances obtained from four different ensemble methods

    Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    Get PDF
    Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots

    Template-based structure modeling of protein-protein interactions

    Get PDF
    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the protein-protein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. © 2013

    Structure-based Prediction of Protein-protein Interaction Networks across Proteomes

    Get PDF
    Protein-protein interactions (PPIs) orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. Significant efforts have been devoted to expand the coverage of the proteome-wide interaction space at molecular level. A number of experimental techniques have been developed to discover PPIs, however these approaches have some limitations such as the high costs and long times of experiments, noisy data sets, and often high false positive rate and inter-study discrepancies. Given experimental limitations, computational methods are increasingly becoming important for detection and structural characterization of PPIs. In that regard, we have developed a novel pipeline for high-throughput PPI prediction based on all-to-all rigid body docking of protein structures. We focus on two questions, ‘how do proteins interact?’ and ‘which proteins interact?’. The method combines molecular modeling, structural bioinformatics, machine learning, and functional annotation data to answer these questions and it can be used for genome-wide molecular reconstruction of protein-protein interaction networks. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Further, we validated our method against a few human pathways. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms as well as to construct dimer structures and estimate the confidence of protein interactions experimentally identified with high-throughput techniques
    corecore