2,535 research outputs found

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Hybrid optimisation and machine learning models for wind and solar data prediction

    Get PDF
    The exponential growth in energy demand is leading to massive energy consumption from fossil resources causing a negative effects for the environment. It is essential to promote sustainable solutions based on renewable energies infrastructures such as microgrids integrated to the existing network or as stand alone solution. Moreover, the major focus of today is being able to integrate a higher percentages of renewable electricity into the energy mix. The variability of wind and solar energy requires knowing the relevant long-term patterns for developing better procedures and capabilities to facilitate integration to the network. Precise prediction is essential for an adequate use of these renewable sources. This article proposes machine learning approaches compared to an hybrid method, based on the combination of machine learning with optimisation approaches. The results show the improvement in the accuracy of the machine learning models results once the optimisation approach is used.info:eu-repo/semantics/publishedVersio

    Solar Power System Plaing & Design

    Get PDF
    Photovoltaic (PV) and concentrated solar power (CSP) systems for the conversion of solar energy into electricity are technologically robust, scalable, and geographically dispersed, and they possess enormous potential as sustainable energy sources. Systematic planning and design considering various factors and constraints are necessary for the successful deployment of PV and CSP systems. This book on solar power system planning and design includes 14 publications from esteemed research groups worldwide. The research and review papers in this Special Issue fall within the following broad categories: resource assessments, site evaluations, system design, performance assessments, and feasibility studies

    2-D convolutional deep neural network for the multivariate prediction of photovoltaic time series

    Get PDF
    Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that interdependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Comparison of Three Methods for a Weather Based Day-Ahead Load Forecasting

    Get PDF

    An evaluation of time series forecasting models on water consumption data: A case study of Greece

    Full text link
    In recent years, the increased urbanization and industrialization has led to a rising water demand and resources, thus increasing the gap between demand and supply. Proper water distribution and forecasting of water consumption are key factors in mitigating the imbalance of supply and demand by improving operations, planning and management of water resources. To this end, in this paper, several well-known forecasting algorithms are evaluated over time series, water consumption data from Greece, a country with diverse socio-economic and urbanization issues. The forecasting algorithms are evaluated on a real-world dataset provided by the Water Supply and Sewerage Company of Greece revealing key insights about each algorithm and its use

    A regional solar forecasting approach using generative adversarial networks with solar irradiance maps

    Get PDF
    The intermittent and stochastic nature of solar resource hinders the integration of solar energy into modern power system. Solar forecasting has become an important tool for better photovoltaic (PV) power integration, effective market design, and reliable grid operation. Nevertheless, most existing solar forecasting methods are dedicated to improving forecasting accuracy at site-level (e.g. for individual PV power plants) regardless of the impacts caused by the accumulated penetration of distributed PV systems. To tackle with this issue, this article proposes a novel generative approach for regional solar forecasting considering an entire geographical region of a flexible spatial scale. Specifically, we create solar irradiance maps (SIMs) for solar forecasting for the first time by using spatial Kriging interpolation with satellite-derived solar irradiance data. The sequential SIMs provide a comprehensive view of how solar intensity varies over time and are further used as the inputs for a multi-scale generative adversarial network (GAN) to predict the next-step SIMs. The generated SIM frames can be further transformed into PV power output through a irradiance-to-power model. A case study is conducted in a 24 × 24 km area of Brisbane to validate the proposed method by predicting of both solar irradiance and the output of behind-the-meter (BTM) PV systems at unobserved locations. The approach demonstrates comparable accuracy in terms of solar irradiance forecasting and better predictions in PV power generation compared to the conventional forecasting models with a highest average forecasting skill of 10.93±2.35% for all BTM PV systems. Thus, it can be potentially used to assist solar energy assessment and power system control in a highly-penetrated region
    • …
    corecore