143 research outputs found

    Maximum Matchings in Geometric Intersection Graphs

    Get PDF
    Let G be an intersection graph of n geometric objects in the plane. We show that a maximum matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of the geometric objects and ω>2 is a constant such that n×n matrices can be multiplied in O(nω) time. The same result holds for any subgraph of G, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in O(nω/2) time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6log11n+Ψ12ωnω/2) time with high probability

    Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Edge Crossings

    Full text link
    We provide linear-time algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and single-source shortest paths. Our algorithms all run in linear time in the standard comparison-based computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization method that "zeroes in" on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor.Comment: Expanded version of a paper appearing at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA09

    Parametric and kinetic minimum spanning trees

    Get PDF
    We consider the parametric minimum spanning tree problem, in which we are given a graph with edge weights that are linear functions of a parameter, and wish to computethe sequence of minimum spanning trees generated as, varies. We also consider the kinetic minimum spanning tree problem, in which, represents time and the graph is subject in addition to changes such as edge insertions, deletions, and modifications of the weight functions as time progresses. We solve both problems in time O(n.pow2(2/3).log(4/3).n) per combinatorial change in the tree (or randomized O(n.pow2(2/3).log(n)) per change). Our time bounds reduce to O(n.pow2(1/2).log(3/2).n) per change (O(n.pow2(1/2).log(n)) randomized) for planar graphs or other minor-closed families of graphs, and O(n.pow2(1/4).log(3/2).n) per change (O(n.pow2(1/4).log(n) randomized) for planar graphs with weight changes but no insertions or deletions

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlogn)O(n \log n) time algorithm

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    The power of vertex sparsifiers in dynamic graph algorithms

    Get PDF
    We introduce a new algorithmic framework for designing dynamic graph algorithms in minor-free graphs, by exploiting the structure of such graphs and a tool called vertex sparsification, which is a way to compress large graphs into small ones that well preserve relevant properties among a subset of vertices and has previously mainly been used in the design of approximation algorithms. Using this framework, we obtain a Monte Carlo randomized fully dynamic algorithm for (1 + epsilon)-approximating the energy of electrical flows in n-vertex planar graphs with tilde{O}(r epsilon^{-2}) worst-case update time and tilde{O}((r + n / sqrt{r}) epsilon^{-2}) worst-case query time, for any r larger than some constant. For r=n^{2/3}, this gives tilde{O}(n^{2/3} epsilon^{-2}) update time and tilde{O}(n^{2/3} epsilon^{-2}) query time. We also extend this algorithm to work for minor-free graphs with similar approximation and running time guarantees. Furthermore, we illustrate our framework on the all-pairs max flow and shortest path problems by giving corresponding dynamic algorithms in minor-free graphs with both sublinear update and query times. To the best of our knowledge, our results are the first to systematically establish such a connection between dynamic graph algorithms and vertex sparsification. We also present both upper bound and lower bound for maintaining the energy of electrical flows in the incremental subgraph model, where updates consist of only vertex activations, which might be of independent interest
    corecore