

Parametric and Kinetic Minimum Spanning Trees

Pankaj K. Agarwal 1 David Eppstein 2 Leonidas J. Guibas 3 Monika R. Henzinger 4

Abstract

We consider the parametric minimum spanning tree
problem, in which we are given a graph with edge weights
that are linear functions of a parameter λ and wish to com-
pute the sequence of minimum spanning trees generated as λ
varies. We also consider the kinetic minimum spanning tree
problem, in which λ represents time and the graph is subject
in addition to changes such as edge insertions, deletions,
and modifications of the weight functions as time progresses.
We solve both problems in time O(n2/3 log4/3 n) per com-
binatorial change in the tree (or randomized O(n2/3 log n)
per change). Our time bounds reduce to O(n1/2 log3/2 n)
per change (O(n1/2 log n) randomized) for planar graphs or
other minor-closed families of graphs, and O(n1/4 log3/2 n)
per change (O(n1/4 log n) randomized) for planar graphs
with weight changes but no insertions or deletions.

1. Introduction

The parametric minimum spanning tree problem deals
with minimum spanning trees of weighted graphs, G =
(V, E), in which the weight of each edge is a linear function
of some parameter λ, instead of a real number. That is, the
weight of each edge e ∈ E , we(λ), is of the form xe− λye,
where xe, ye are real numbers. As λ varies, the weight of
each edge varies and therefore the weight of the minimum
spanning tree of G also varies. At certain discrete values of

1Center for Geometric Computing, Department of Computer Science,
Duke Univ., Durham, NC, 27708-0129; http://www.cs.duke.edu/∼pankaj/;
pankaj@cs.duke.edu. Work supported in part by Army Research Office
MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award,
and by a grant from the U.S.-Israeli Binational Science Foundation.

2Dept. of Information and Computer Science, Univ. of California,
Irvine, CA 92697-3425; http://www.ics.uci.edu/∼eppstein/; eppstein@ics.
uci.edu. Work supported in part by NSF grant CCR-9258355 and by match-
ing funds from Xerox Corp.

3Dept. of Computer Science, Stanford Univ., Stanford, CA, 94305;
http://graphics.stanford.edu/∼guibas/; guibas@cs.stanford.edu. Work
supported in part by Army Research Office MURI grant DAAH04-96-1-
0007 and NSF grant CCR-9623851

4Compaq Systems Research Center, 130 Lytton Ave., Palo Alto,
CA, 94301-1044; http://www.research.digital.com/SRC/personal/Monika
Henzinger/home.html; monika@pa.dec.com.

λ, the minimum spanning tree itself changes. The two cen-
tral questions related to this problem are: how many differ-
ent trees does G have as λ varies from−∞ to+∞, and how
can one compute this sequence of trees?

As Katoh [23, 24] has described, parametric minimum
spanning trees can be used to solve many other problems in
combinatorial optimization, in which one seeks to find a tree
T minimizing a function of the form f (X,Y) where f is
quasiconcave and X =∑e∈T xe and Y =∑e∈T ye. For ex-
ample, the problem of computing a spanning tree that mini-
mizes the ratio of cost to reliability can be expressed in the
above form by setting f (X,Y) = X exp(Y), where xe is the
cost of edge e, ye = − ln(1− pe), with pe the failure prob-
ability of edge e. The stochastic programming problem of
finding a tree with high probability of having low weight can
be expressed with the choice f (X,Y) = X +√Y, and the
problem of finding a tree with the minimum variance in edge
weight can be similarly expressed with f (X,Y) = X−Y2.
For each of these problems, any spanning tree of G gives rise
to a point (X,Y) in the plane. The quasiconcave nature of f
implies that the optimum tree is a vertex of the convex hull
of the set of all such points, and the trees giving rise to the
vertices of the convex hull are exactly those which are enu-
merated in the parametric minimum spanning tree problem
for G with edge weights xi − λyi . Thus, one can solve the
original static optimization problem by finding the best of
the trees listed by a parametric minimum spanning tree algo-
rithm. Note especially that in this type of application, there
is no need to output each tree explicitly; we can spend sub-
linear time per tree as long as we can determine fast the two
numbers X and Y for each tree.

Parametric optimization problems such as this are a spe-
cial case of a more general class of algorithms, kinetic algo-
rithms, recently proposed by Guibas et al. [3, 19]. A kinetic
problem focuses on exploiting the coherence implicit in the
continuous evolution of a system whose elements move or
change according to known laws, while allowing arbitrary
changes in these motion laws in an on-line fashion. A gen-
eral kinetic problem combines dynamic data structures (in
which sets of objects undergo single-object insertions and
deletions) with parametric optimization (in which static ob-
jects have continuously varying weights). In such a prob-
lem, one starts with a parametric problem in which the pa-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rameter λ represents time; as time progresses, objects may
be deleted or inserted, or their weight functions changed,
and the task is to maintain the optimal solution at each
value of time. Kinetic algorithms model well real-world
phenomena where objects move along trajectories that are
predictable in the short term, but subject to unpredictable
changes in the long term.

We distinguish two possible types of kinetic algorithms
for the minimum spanning tree problem:

• A structurally kinetic algorithm can handle arbitrary
insertions or deletions of parametrically weighted
edges. Edge weight function changes can be simulated
by deleting and re-inserting the edge.

• A functionally kinetic algorithm can only handle up-
dates that change the weight function of an existing
edge. Edge deletions and insertions can be simulated
by changing weights to or from some very large value;
however this simulation comes at the cost of increasing
the number of edges (and perhaps violating restrictions
such as that the graph remain planar).

In this paper, we provide efficient algorithms for both the
functionally kinetic and structurally kinetic minimum span-
ning tree problems. Since the parametric minimum span-
ning tree problem is a special case of either type of kinetic
problem, our algorithms also apply a fortiori in the paramet-
ric case.

Parametric and kinetic minimum spanning trees form an
interesting combination of graph theory and computational
geometry: the minimum spanning tree part of the problem
is purely graph-theoretic, while the weight functions can be
viewed as lines in a weight-time plane, lending the prob-
lem a geometric flavor. Our solution technique, too, com-
bines graph algorithms and computational geometry: we use
sparsification and clustering techniques common to many
dynamic graph algorithms, with convex hull data structures
representing sets of edges in each cluster. We also apply sev-
eral other techniques including parametric search (a tech-
nique of Megiddo [26] for turning decision algorithms into
optimization algorithms, commonly used in both parametric
optimization and computational geometry; see, e.g., [1]) and
a data structure for maintaining convex hulls of a point set
subject to insertions and undo operations.

1.1. Notation

Throughout, we assume that we have a weighted, con-
nected graph G = (V, E) with n vertices and m edges, in
which the weight of each edge e is a linear functionwe(λ) =
xe−λye. (For structurally kinetic problems, n and m denote
the number of vertices and edges at some particular point
in the course of the algorithm.) The graph may have mul-
tiple adjacencies. Let MSTG(λ) denote a minimum span-
ning tree of G for the weights we(λ); if we break ties in

favor of earlier-numbered edges, the MSTG(λ) is well de-
fined and piecewise constant. If the underlying graph is ob-
vious from the context, we will simply use MST(λ) to de-
note MSTG(λ). Let T = T (G) be the set of all minimum
spanning trees of G as the value of λ varies from −∞ to
+∞. Set k = k(G) = |T (G)|.

The goal of a parametric minimum spanning tree algo-
rithm is to compute the set T . We denote by P(n,m) the
maximum value of k(G), where the maximum is taken over
all (parametric) graphs with n vertices and m edges. Dey [7]
recently proved that P(n,m) = O(mn1/3); the best lower
bound known is P(n,m) = Ä(mα(n)) [9].

In a kinetic minimum spanning tree algorithm, the pa-
rameter λ represents time, and the goal is to maintain
MST(λ) dynamically as the graph undergoes changes ei-
ther to its structure or to its weight functions. We denote
by K (n,m) the maximum number of distinct trees formed
by a kinetic problem on a graph with n vertices subject to
m edge insertions, edge deletions, or weight change opera-
tions starting from an empty graph. A third parameter for
the number of edge weight changes is superfluous, since the
number of distinct trees in a graph with x > m changes is
easily seen to be 2((x/m)K (n,m)).) We do not use sep-
arate notations for the number of trees in functionally and
structurally kinetic problems, since the simulations between
each kind of kinetic algorithm causes these numbers to be
the same to within a constant factor.

If a sequence of structurally kinetic changes to a graph
were known in advance, then we could simulate the kinetic
problem by a parametric problem: simply replace each edge
e by a three-edge path e1e2e3, with the weight of e1 equal
to that of the kinetic edge, with e2 having a highly nega-
tively sloped weight function, and with e3 having a highly
positively sloped weight function, chosen so that the inter-
val in which e2 is the largest of the three weights is exactly
the lifetime of e. Then, in this modified graph, the minimum
spanning tree will consist of the two least weight edges in
each three-edge path, together with a third edge in a subset of
paths corresponding exactly to the minimum spanning tree
of the original graph. (Essentially the same three-edge-path
construction was used in the lower bound of [9].) For this
reason K (n,m) ≤ P(n+ 2m, 3m) = O(m4/3).

We will also consider the special cases of planar and
minor-closed graph families, for which the number of dis-
tinct trees may be smaller than in the case of general graphs.
For any minor-closed family F , we let PF (n) denote the
maximum number of distinct trees in a parametric problem
on an n-vertex graph, and KF (n) denote the maximum num-
ber of distinct trees in a structurally kinetic problem. Since
minor-closed graph families consist only of sparse graphs,
there is no need to include a second parameter m. The
method above of simulating edges by paths shows that the
maximum number of distinct trees in a functionally kinetic

problem is 2(PF (n)) whenever F is closed under replace-
ment of an edge by a series-parallel graph (in particular, this
is true for planar graphs); however it does not seem possible
to use this method to bound KF (n) by PF (n).

1.2. History and New Results

Study of minimum spanning trees has a long rich history
[18]. Currently, it is known how to compute the minimum
spanning tree in randomized linear expected time [22] or de-
terministically in time O(mα(m,n) logα(m,n)) [5]. Effi-
cient algorithms have been developed for maintaining the
minimum spanning tree of a graph as edges are inserted into
or deleted from the graph [11,15,20,21]. The parametric min-
imum spanning tree problem has also been previously stud-
ied, most recently by Fernández-Baca et al. [14]. In that pa-
per an algorithm was described that takes time O(mnlog n)
to list all trees. However this still remains far from Dey’s
bound of O(mn1/3) on the number of such trees. Parametric
optimization problems have been studied for several other
graph problems as well; see [13,28] for a sample of such re-
sults. There are no known previous algorithms for the ki-
netic minimum spanning tree problem. A related problem,
which has been studied, is the kinetic Euclidean MST prob-
lem [4], in which we want to list all different Euclidean mini-
mum spanning trees of a set of points, each of which is mov-
ing along a line or curve.

Let p denote the number of edge insertions, edge dele-
tions, or minimum spanning tree topology changes. Here
we show the following results, substantially improving what
was previously known.

• We can maintain a structurally kinetic graph, and
keep track of the minimum spanning tree, in total
time O(min{pm2/3 log4/3 m, K (n,m)n2/3 log4/3 n}).
If we allow randomization, the expected time is
O(min{pm2/3 log m, K (n,m)n2/3 log n}).

• For any structurally kinetic graph belonging to a
minor-closed family, we can keep track of the min-
imum spanning tree in total time O(pn1/2 log3/2 n).
If we allow randomization, the expected total time is
O(pn1/2 log n).

• For any parametric or functionally kinetic graph be-
longing to a minor-closed family, we can keep track
of the minimum spanning tree in total time O(n3/2 +
P(n)n1/4 log3/2 n). If we allow randomization the ex-
pected total time is O(n3/2+ P(n)n1/4 log n). For pla-
nar graphs the O(n3/2) term in these bounds can be re-
moved. With Dey’s bound P(n) = O(n4/3), our to-
tal time is worst-case bounded by O(n19/12 log3/2 n), or
randomized expected time O(n19/12 log n).

2. Sparsification

Sparsification [11] is a divide-and-conquer technique
used in dynamic algorithms, whereby the edges of a graph
are split recursively into subsets, a certificate1 for each
subset is maintained dynamically, and the overall property
is maintained using a dynamic graph algorithm applied to
the union of these certificates. Fernández-Baca et al. [14]
showed that a similar idea applies also to parametric prob-
lems. We combine both of these applications of sparsifi-
cation to obtain an efficient data structure for the kinetic
problem, which is a common generalization of dynamic and
parametric problems.

2.1. General Graph Sparsification

The key result needed to apply sparsification is the fol-
lowing lemma, which shows that graphs can be replaced by
sparse certificates without changing the solution to the min-
imum spanning tree problem. This is a result about stati-
cally weighted graphs, but it holds a fortiori for any partic-
ular value of λ occurring in a kinetic algorithm.

Lemma 1 (Eppstein et. al [11]). The minimum spanning
tree of a graph G ∪ H is equal to the minimum spanning
tree of the subgraph formed by the union of the minimum
spanning trees of G andH.

We then use a divide and conquer approach, applying this
lemma to combine solutions to subproblems. The paramet-
ric case of the following lemma is implicit in [14].

Lemma 2. Suppose that we have a data structure that can
solve structurally kinetic minimum spanning tree problems
in time O(f (m,n)) per insertion, deletion, or topology
change, and that f (m,n) = Ä(mc) for some constant
c > 0. Then we can solve structurally or functionally ki-
netic problems in time O(K (n,m) f (2n,n)), and paramet-
ric problems in time O(P(n,m) f (2n,n)).

Proof: We outline the general method here; see [14] for
details. We divide the edges of the graph arbitrarily into
two equal subsets, and solve recursively the kinetic prob-
lems for each subset. The solutions to these subproblems
consist of a sequence of changes to the minimum spanning
trees of the subproblems. We use our assumed data structure
to solve a kinetic problem on the union of these two trees,
by merging these two sequences of updates. At any time
there are at most 2n edges in the kinetic problem, and the
number of updates coming from each subset is K (n,m/2),
hence we get a recurrence of T(m,n) = 2T(m/2,n) +
O(K (n,m) f (2n,n)) for the overall problem. As described
here, this might lead to an additional logarithmic factor over

1The certificates are subgraphs of the original graph; they should not be
confused with the distinct notion of certificate used in kinetic proofs [19].

the stated bounds; the “improved sparsification” technique
[11] avoids this extra logarithm by reducing the number of
vertices as well as the number of edges in the recursive sub-
problems. 2

2.2. Separator-Based Sparsification Certificates

We applied sparsification to speed up our kinetic algo-
rithms for general graphs. We now similarly apply separa-
tor based sparsification [12] to speed up our algorithms for
planar graphs and for minor-closed graph families. The ba-
sic idea of this approach is to divide the graph into two sub-
graphs by a separator, a small set X of vertices shared by
both subgraphs, so that each subgraph has only a constant
fraction of the original graph’s vertices. For planar graphs
and other minor closed families, there always exist separa-
tors of size O(n1/2), and a recursive decomposition into sep-
arators can be found in time O(n3/2) [2]; the time complexity
of this step can be improved to O(n) for planar graphs [17]).

As in the general graph sparsification, we recursively
solve a problem in each subgraph, and construct a certificate
so that the overall MST can be found by combining the two
subgraph certificates in a single kinetic problem. However,
for this approach to work, the certificate must have size pro-
portional to the number of vertices in the separator X, not to
the size of the whole subgraph.

Suppose we are given two edge-disjoint subgraphs G and
H; their union is the whole graph, and their (vertex) intersec-
tion is a separator X. We describe how to find a certificate
C(G,H) for G. The certificate is a graph of size O(|X|), ob-
tained by contracting certain vertices and edges of G. The
construction for H is completely symmetric. Our construc-
tion works for static weights; we will describe later how to
make it kinetic.

Without loss of generality (by inserting dummy edges of
low weight, as described in more detail in a later section),
we can assume that every vertex in G has degree at most
three. Let T be a forest formed by taking a spanning forest
of H, removing all degree-one vertices not in X, and con-
tracting all degree-two vertices not in X. Then T has at most
2|X| − 1 edges, and N (G) = G ∪ T is a minor of the over-
all graph. We form a parametric problem by keeping the
weights of edges in G fixed and assigning a weight function
we(λ) = λ to the edges in T . Then in this parametric prob-
lem, MSTN (G)(+∞)∩G is just the minimum spanning tree
of G itself, as paths through T are too expensive to be useful
for connecting nodes in G. Also, MSTN (G)(−∞) is a tree
formed by adding some of the the edges and vertices of T ,
while removing some edges from MSTN (G)(+∞) (we now
use all the cheap bypasses provided by T).

Lemma 3. Any edge e in MSTN (G)(−∞) ∩ G is an edge
in the minimum spanning tree of G ∪H.

Lemma 4. Any edge e in G that is not in MSTN (G)(+∞)
is not in the minimum spanning tree of G ∪H.

We call an edge e of G uncertain if e ∈ MSTN (G)(+∞)
but e 6∈ MSTN (G)(−∞). We cannot be sure whether an un-
certain edge is in the minimum spanning tree of the entire
graph without knowing the weights of the edges inH. If we
delete from MSTN (G)(−∞) all the vertices and edges not
in G, this tree is split into |X| connected components, each
containing exactly one vertex of X. It can be checked that
the uncertain edges of G connect these components to form
MST(G). This immediately implies the following.

Lemma 5. Any uncertain edge is part of a path in
MSTN (G)(+∞) between two vertices of X. The number of
uncertain edges is |X| − 1.

The certificate C(G,H) for G is constructed from
MSTN (G)(+∞) ∩ G as follows: First, we assign all
uncertain edges their weights in G, but the other edges
are given a weight of −∞. Then, we repeatedly remove
from MSTN (G)(+∞) ∩ G all degree-one vertices not in X.
Finally, as long as the remaining tree contains a degree-two
vertex that is not in X and that is adjacent to two edges with
weight −∞, we remove that vertex by contracting one of
the adjacent edges.

Lemma 6. The edges in the minimum spanning tree of
G ∪ H are the disjoint union of three sets: the edges in
MSTN (G)(−∞) ∩ G, the edges in MSTN (H)(−∞) ∩ H,
and the edges in the minimum spanning tree of C(G,H) ∪
C(H,G).

Lemma 7. If the weights of G change as part of a para-
metric or functionally kinetic problem, C(G,H) undergoes
O(PF (|V|)) structural changes.

Proof: This follows from the fact that the structure of
C(G,H) is determined by the structure of the two minimum
spanning trees MSTN (G)(+∞) and MSTN (G)(−∞). Each
change to one of these spanning trees causes O(1) changes
to C(G,H). 2

2.3. Separator-Based Sparsification

Lemma 8. LetF be a minor-closed graph family. Suppose
that we have a data structure that can solve structurally ki-
netic minimum spanning tree problems restricted to graphs
in F in time O(f (n)) per insertion, deletion, or topology
change, where f (n) ≥ log n and PF (n) f (n) = Ä(nc)

for some c > 1. Then we can solve functionally kinetic
or parametric problems on graphs in F in time O(n3/2 +
PF (n) f (

√
n)). If F contains only planar graphs, we can

solve these problems in time O(PF (n) f (
√

n)).

Proof: We form a separator decomposition of the
graph. At each level of the decomposition, we have
two subgraphs G and H the union of which is a sub-
graph at the next higher level. We maintain the four
trees MSTN (G)(+∞), MSTN (H)(+∞), MSTN (G)(−∞),
and MSTN (H)(−∞) described in the previous section, and
the certificate C(G,H) or C(H,G) derived from those trees.
Recall that the certificates are obtained by contracting sub-
trees of MSTN(G)(+∞) and MSTN(H)(+∞). In order to
update the certificates efficiently, we maintain these con-
tracted subtrees using the dynamic-tree data structure by
Sleator and Tarjan [27]. The two trees MSTN (G∪H)(+∞)
and MSTN (G∪H)(−∞) can then be found from this infor-
mation together with the solution to two structurally kinetic
problems on the graphs C(G,H)∪C(H,G) and C(G,H)∪
C(H,G) ∪ T (where T is a contracted tree representing a
subgraph at a higher level of the recursion, and has weights
that do not vary).

The resulting system of data structures contains two ki-
netic problems at each level of the recursion, each of which
undergoes a number of changes proportional to PF (x)
where x is the size of the subgraph. The overall time bound
therefore satisfies the recurrence

T(n) = 2T(n/2)+ PF (n) f (
√

n).

2

3. Data Structures

We have shown how to use sparsification to speed up
structurally kinetic minimum spanning tree data structures.
We now describe some techniques for constructing these
data structures.

As our kinetic or parametric algorithm progresses, the
minimum spanning tree it maintains will change by swaps,
in which one edge is removed and another inserted. We
begin by giving a geometric interpretation for these swaps.
We then partition the vertices into clusters, and classify the
swaps according to the inserted location of the endpoints
of the edge in the clusters, and show how to find the next-
occurring swap within each class.

3.1. Swaps, Duality, and Bitangents

As our algorithm progresses, topology changes arising
from insertions and deletions of edges will be relatively easy
to maintain. However, it will require work to locate topol-
ogy changes arising from changes in relative ordering of
edge weights. For a given spanning tree T of G and two
edges e, f ∈ E , we say that e and f form a swap if e ∈ T ,
f 6∈ T , and the cycle induced by f in T contains the edge e.
For any fixed value of λ, define the weight of a swap (e, f),
denoted 1e, f (λ), to be w f (λ) − we(λ); if e and f do not

F

E

Figure 1. Two sets of edges such that every pair of one edge from
each set forms a swap.

Figure 2. First non-positive swap: in line arrangement (left), right-
most point above lines from tree edges and below lines from non-
tree edges; in dual point arrangement (right), line with highest
slope above points from tree edges and below points from non-tree
edges.

form a swap, we set1e, f (λ) = +∞. That is,1e, f (λ) is the
amount by which the tree weight would increase if the swap
were performed. Given a value λ0 and MST(λ0), our algo-
rithm will need to find the first value of λ ≥ λ0 for which
1e, f (λ) ≤ 0, for some pair e, f ∈ E . For a pair E, F ⊆ E ,
where E ⊂ MST(λ0) and F ∩ MST(λ0) = ∅, we define
the next swap (or first non-positive swap) between E and F
to be the pair e ∈ E and f ∈ F so that 1e, f (λ

∗) ≤ 0 for
some λ∗ ≥ λ0 and1e′, f ′(λ) > 0 for all pairs e′ ∈ E, f ∈ F
and for all λ0 ≤ λ < λ∗. The pair of edges g ∈ E, h ∈ F
for which1g,h(λ0) has the minimum value is called the best
swap at λ0.

To help understand the problem of computing the next
swap, we interpret swaps geometrically. Suppose we have
a subset E of edges of a spanning tree of G and a subset F
of edges not in the spanning tree, where every pair (e, f)
of one edge from each set forms a swap (Figure 1). We can
form a line arrangement in the (λ,w) plane, where each line
is the graph of the weight function of a single edge. The first
non-positive swap can be found as the first (leftmost) point
in the arrangement where a line from F crosses below a line
from E; or, equivalently it is the last (rightmost) point that

lies on or below all lines from F and on or above all lines
from E (Figure 2).

We apply a projective duality to this configuration, in
which each line w = aλ + b in the primal (λ,w) plane
is transformed into a point (−a,b) in the dual (x, y) plane,
and each point (λ,w) in the primal plane is transformed into
a line y = λx + w in the dual plane. This transforma-
tion preserves point-line incidences and above-below rela-
tionships. The dual transform maps the graph of the weight
of each edge e to a point. For a subset X ⊆ E , let SE de-
note the set of such points corresponding to the edges in X.
In the dual plane, the first non-positive swap corresponds to
the maximum-slope line that lies on or below all points in SF

and on or above all points in SE. Such a line is a bitangent
to the lower convex hull of SF and the upper convex hull of
SE (Figure 2(b)).

Because of this connection between non-positive swaps
and bitangents, we can apply computational geometry tech-
niques in our solution of the parametric and kinetic mini-
mum spanning tree problems. If we are given a represen-
tation of the two hulls above that supports binary searches,
their bitangent can be found in O(log n) time. In the special
case in which E or F consists of a single edge, we are sim-
ply seeking a tangent through the corresponding dual point
to the convex hull of the points corresponding to the other
set, and again this can be done in logarithmic time.

3.2. Dynamic Convex Hull Data Structure

Because of the connection between swaps and hulls out-
lined above, our algorithm will need to use some data struc-
tures for maintaining convex hulls of point sets. The specific
operations we need are point insertion and undo operations:
an undo deletes the most recently inserted point remaining
in the data structure.

Theorem 1. We can maintain the convex hull of a planar
point set, subject to insertions and undo operations, in time
O(log n) per update or query.

Proof: We maintain a sorted list of the vertices on the hull
using any of various balanced binary search tree data struc-
tures. The time bound for queries then becomes immediate.
To insert a point, we do two binary search queries to locate
its left and right tangents, split the sorted list of hull vertices
at those two points, and rejoin the left side of the left cut,
the new vertex, and the right side of the right cut. We re-
tain pointers to the discarded subtrees so that undo opera-
tions can similarly be performed by O(1) split and join op-
erations. 2

3.3. Parametric Search

In several cases of our algorithm it will prove easier to
find the best swap for a fixed value of λ than to find the value

λ∗ leading to the first non-positive swap. Megiddo’s para-
metric search [26] provides a general mechanism for turn-
ing an algorithm for the former problem into an algorithm
for the latter.

The parametric search method starts from two given al-
gorithms: a decision oracle that determines if a given λ is
less or greater than λ∗, and a simulated algorithm that com-
putes a function f (λ) discontinuous at λ∗. The conditional
branches of the simulated algorithm must depend only on
low-degree polynomials in λ. Since the decision oracle is
discontinuous at λ∗, it is common to use the same algo-
rithm in both roles. Parametric search then produces the se-
quences of steps the simulated algorithm would perform if
it were given λ∗ as its argument; each conditional branch
is simulated by using the decision algorithm to compare λ∗

with the roots of the polynomial tested at that branch. Be-
cause of the simulated algorithm’s discontinuity, we must
eventually find a root equal to λ∗. If the decision oracle
takes time TD , and the simulated algorithm is a parallel algo-
rithm taking time TS with PS processors, we can test many
roots at once using binary search, giving an overall time of
O(TDTS log PS+ TSPS). Standard techniques for speeding
this up further include moving as much as possible out of the
simulated algorithm, using partial results to speed up the de-
cision oracle, and Cole’s technique for avoiding the log PS

factor by allowing a constant fraction of the simulated pro-
cessors to fail to make progress at each step [6].

3.4. Restricted Partitions

Our algorithms use a technique of partitioning trees and
forests into smaller subtrees, or clusters of vertices, that was
introduced by Frederickson [15,16] and used by him and oth-
ers as part of various dynamic graph algorithms. We will
combine this clustering technique with some geometric data
structures (primarily, planar convex hulls) in a manner sim-
ilar to techniques used in our previous paper on speedups in
the network simplex method [10].

We first transform our input graph G into a new graph G ′
with degree at most three, so any tree in G ′ will be binary.
Let v be any edge of degree 1 > 3; replace v by 1 − 2
vertices connected by a path. Path endpoints receive two
of the original edges of v, and each interior vertex receives
one. Path edges are given a cost function that is a sufficiently
small constant so that all path edges are always part of the
current minimum spanning tree. This transformed graph is
not hard to maintain as G undergoes edge insertions or dele-
tions: each update in G causes a constant number of updates
to G ′. Thus, for the remainder of the description of our ki-
netic algorithm, we assume our input graph has all vertex de-
grees at most three.

The following definition is due to Frederickson [16].

Definition 1. A restricted partition of order z with respect

to a tree T in which all vertex degrees are at most three is a
partition of the vertices of V such that:

1. Each set in the partition contains at most z vertices.

2. Each set in the partition induces a connected subtree of
T .

3. For each set S in the partition, if S contains more than
one vertex, then there are at most two tree edges having
one endpoint in S.

4. No two sets can be combined and still satisfy the other
conditions.

We call each set in the partition a cluster. The endpoints
of an edge of T connecting two different clusters are called
terminal vertices. Each cluster has at most two terminal ver-
tices. A cluster with k terminal vertices will be referred to
as a k-terminal cluster.

Frederickson also showed that such a partition can easily
be found in linear time. There are at most O(n/z) clusters
in a restricted partition of an n-vertex tree. If we change the
tree by performing a swap, we can update the restricted par-
tition in time O(z) by splitting and re-merging O(1) clus-
ters [16].

Given a restricted partition of the current minimum span-
ning tree in a parametric or kinetic MST problem, we can
classify the potential swaps into three types according to
how many clusters are involved in the endpoints of the
swapped edges:

Definition 2. Let edges e and f form a swap in a tree for
which we have a restricted partition, so that e is a tree edge
on the tree path between the endpoints of f . Then if both
endpoints of f are in a single cluster, e must be in the same
cluster as f ; we call this an intra-cluster swap. If f has end-
points in different clusters, and ebelongs to one of these two
clusters, we call this a dual-cluster swap. Finally, if the end-
points of f do not lie in the same cluster and e does not be-
long to one of these two clusters, we call this an inter-cluster
swap.

We next show how to maintain the next swap that can oc-
cur, for each of these three types of swap.

3.5. Intra-Cluster Swaps

To find the first non-positive intra-cluster swap in a given
cluster, we apply parametric search. Recall that this requires
two subroutines: a decision oracle for comparing a given
parameter λ to the optimal value λ∗ we are seeking, and a
simulated algorithm discontinuous at λ∗.

Lemma 9. A decision oracle for the first non-positive
intra-cluster swap in a cluster of O(z) vertices can be im-
plemented in time O(z).

Proof: We need to detect whether the given value of λ
is before or after the first non-positive swap; equivalently,
whether there exists a non-positive swap at λ itself. Since
a given spanning tree is the minimum only within a single
interval of values of λ, we perform this test by computing
the values of all intra-cluster edges at the parameter value λ,
and testing whether the given tree is still the minimum span-
ning tree at that parameter using a minimum spanning tree
verification algorithm [8, 25]. 2

Lemma 10. We can find the first non-positive intra-cluster
swap in a cluster of O(z) vertices in O(z log z) time.

Proof: We apply parametric search with the decision or-
acle described above. For a simulated algorithm, we use
sorting, since the sorted order is discontinuous at all swaps.
Cole [6] shows how to apply parametric search to sorting
with O(log n) calls to the decision oracle and O(n log n) ad-
ditive overhead. 2

3.6. Dual-Cluster Swaps

To find dual-cluster swaps, we combine the dynamic con-
vex hull data structure described earlier with Frederickson’s
idea of ambivalent data structures. Let C be a cluster in
a restricted partition. A non-tree edge whose one endpoint
lies in C and the other does not lie in C is called an exter-
nal edge of C. For each cluster C, we want to maintain the
next dual swap that involves an external edge of C. Recall
that C has at most two terminal vertices. An external edge
of C incident upon a vertex u of C can swap only with an
edge of C that lies on the path from u to a terminal vertex
of C. For each such external edge and each terminal vertex
v of C, we will therefore store the edge e on the path from
u to v for which w f (λ) − we(λ) becomes zero first. Let us
denote this edge by µv(f). Note that if v lies on the path
in the minimum spanning tree between the endpoints of f ,
then (µv(f), f) forms a swap.

Lemma 11. Let 5 be a restricted partition of order z, and
let C be a newly formed cluster of 5. For all non-tree
edges f having exactly one endpoint in C and for each ter-
minal vertex v of C, we can compute µv(f) in total time
O(z log z).

Proof: Let v be a terminal vertex of C. We traverse the
subtree contained in C, starting from v, and keep track of
the edges on the path from the current vertex u to v. As out-
lined in Section 3.1 the weights of the edges in this path cor-
respond to points in a plane, and we use the dynamic convex
hull data structure described in Theorem 1 to maintain the
convex hull of these points. When our traversal first visits
an edge of the tree we insert the corresponding point into the

hull, and when we return from traversing an edge we per-
form an undo operation to remove the point from the hull.
Then, as described in Section 3.1, for an external non-tree
edge f incident upon u, µv(f) can be found by computing
a tangent from the point corresponding to f ’s weight func-
tion to the current hull, in time O(log z). 2

Lemma 12. As we dynamically maintain a restricted par-
tition of order z on a spanning tree of a dynamic m-vertex
degree-three graph, we can maintain a data structure in time
O(z log z+m/z) per update to the graph which will let us
query the first non-positive dual-cluster swap in time O(1)
per pair of clusters.

Proof: We store for each endpoint of each non-tree edge
the information described in Lemma 11. Since each update
modifies only O(1) clusters, we can recompute this infor-
mation in O(z log z) per update, as described in that lemma.
For each cluster C, we partition the external edges in C into
O(m/z) groups, so that all edges whose other endpoints lie
in the same cluster Ci 6= C belong to the same group. For
each such group Fi and for each terminal vertex v of C, we
store the pair µv(Ci) = (µv(f), f) for which w f − wµv(f)

becomes zero first among all edges f ∈ Fi . This informa-
tion can be updated in time O(z)whenever a cluster is modi-
fied. We also store a lowest-common-ancestor data structure
for the tree formed by contracting each cluster of the parti-
tion; this takes time O(m/z) per update to maintain.

Suppose we want to find the next dual swap involving an
external edge whose one endpoint lies in C1 and the other
in C2. We first find the terminal vertices v1, v2 of C1,C2,
respectively, that connect the path from C1 to C2 in the min-
imum spanning tree. This can be done in O(1) time using
the lowest-common-ancestor data structure. It is easily seen
that µv1(C2) and µv2(C1) form swaps. Of these two, we re-
turn the one whose weight becomes zero first. 2

3.7. Inter-Cluster Swaps

We now need to show how to find the first non-positive
inter-cluster swap. We first describe a deterministic tech-
nique based on the intra-cluster swap technique described in
Section 3.5.

Recall that we will be maintaining a restricted partition of
order z of the minimum spanning tree of the graph. For any
value of λ, consider forming the following contracted graph
G ′(λ) from G, with only O(m/z) vertices: Contract each 1-
terminal cluster, with the terminal vertex v, to a single node
v. Contract each 2-terminal cluster, with terminal vertices
u, v, to an edge (u, v) whose weight is equal the weight of
the heaviest edge on the path connecting u and v. Let C1,C2

be two clusters, and let v1 and v2 be the terminal vertices of

C1,C2, respectively, that lie on the path connecting C1 to C2.
We contract all non-tree edges between C1 and C2 to a sin-
gle edge (v1, v2)whose weight is equal to the lightest weight
among all the non-tree edges between C1 and C2.

Lemma 13. We can maintain a data structure in time
O(z log z) per change to the restricted partition, so that for
any λ, the graph G ′(λ) described above can be found in time
O(log n) per edge.

Proof: Suppose we maintain a restricted partition of order
z of the minimum spanning tree of G. We can maintain the
convex hull of the points corresponding to the path connect-
ing the two terminals of each two-terminal cluster, and of
the points corresponding to the edges connecting each pair
of clusters. The weight of each edge in G ′ can be found in
time O(log n) by binary search in the appropriate hull. 2

Lemma 14. The first non-positive inter-cluster swap in G
is the first non-positive swap in G ′(λ∗).

Lemma 15. We can maintain a data structure in time
O(z log z) per change to the restricted partition, such that
if the graph G ′(λ) described above has m′ edges, the best
inter-cluster swap can be found in time O(m′ log2 n).

Proof: The structure we maintain is simply the set of hulls
described in Lemma 13. To find the best swap, we apply
a parametric search routine similar to the one described in
Section 3.5. We modify the minimum spanning tree ver-
ification used as the decision oracle, to compute G ′ and
then verify that the contraction of the current spanning tree
is the true minimum spanning tree of G ′; this takes time
O(m′ log n) per oracle call. We also modify the simulated
algorithm, to compute G′ before sorting its edge weights;
the computation of G ′ is just a collection of parallel bi-
nary searches and does not increase the overall complex-
ity beyond its previous bound of O(log m′) oracle calls and
O(m′ log m′) additive overhead. 2

With the use of randomization, we can reduce this bound
slightly:

Lemma 16. We can maintain a data structure in time
O(z log z) per change to the restricted partition, such
that if the graph G ′(λ) described above has m′ edges,
the best inter-cluster swap can be found in expected time
O(m′ log n).

Proof: We perform two different cases, depending on
whether the contracted graph G ′ is sparse or not. If it has at
least as many non-tree edges as tree edges, we choose ran-
domly a non-tree edge e of G ′, find the best swap involv-
ing that edge and one of the tree edges, and use this swap

to eliminate (in expectation) half the non-tree edges. Alter-
nately, if G ′ has few non-tree edges, we choose a tree edge
e randomly, and use the best swap involving that edge to
eliminate in expectation half the tree edges. Repeating this
process eventually leads to an empty graph, at which point
we return the best swap found in the process. We omit the
details in this extended abstract. 2

4. Parametric and Kinetic MST Algorithms

The data structures described in the preceeding sections
let us find the next non-positive swap of each type. We are
ready to put them together into our overall kinetic minimum
spanning tree algorithm.

4.1. General Graphs

Theorem 2. We can maintain a graph, having at most
m linearly weighted edges at any one time, and keep
track of the minimum spanning tree kinetically, in time
O(pm2/3 log4/3 m), where p denotes the number of edge in-
sertions, edge deletions, or minimum spanning tree topol-
ogy changes. If we allow randomization the expected time
is O(pm2/3 log m).

Proof: We apply the transformation described above to
make G have degree at most three, which increases the num-
ber of nodes to O(m). Then we use the data structures de-
scribed above to keep track of the next non-positive swap,
in time O(z log z+m/z+ (m/z)2 log2 z) per update. When
we encounter an edge insertion, we update these structures,
and use them to test whether a non-positive swap exists at
the time of insertion; if so we perform the swap. When we
encounter a deletion of a minimum spanning tree edge, we
use our convex hull data structures to find the best replace-
ment edge in each group of edges connecting a pair of clus-
ters; there are O((m/z)2) such groups, so this step takes time
O((m/z)2 log n). When we encounter a deletion of a non-
tree edge we update our structures and continue. And, when
the next non-positive swap found after one update occurs be-
fore the next insertion or deletion operation, we again up-
date our structures and continue. Setting z = m2/3 log1/3 n
or m2/3 produces the bound above. 2

We now apply sparsification to further improve these
bounds.

Theorem 3. We can solve the kinetic minimum spanning
tree problem in time O(K (n,m)n2/3 log4/3 n) or in random-
ized expected time O(K (n,m)n2/3 log n). We can solve
the parametric minimum spanning tree problem in time
O(P(n,m)n2/3 log4/3 n) or in randomized expected time
O(P(n,m)n2/3 log n).

4.2. Planar and Minor-Closed Graph Families

Our time bound becomes better for planar graphs or other
minor-closed families of graphs, because the contracted
graph G ′ is sparse.

Theorem 4. We can maintain a graph, having at most n
vertices at any one time, belonging to some minor-closed
familyF , and keep track of the structurally kinetic minimum
spanning tree, in total time O(pn1/2 log3/2 n). If we allow
randomization the expected total time is O(pn1/2 log n).

Proof: Because the number of non-tree edges in G ′
is O(n/z), the tradeoff above reduces to O(z log z +
(n/z) log2 z), or randomized O(z log z+ (n/z) log z). Set-
ting z to n1/2 log1/2 n or n1/2 produces the stated bounds. 2

Again, applying sparsification leads to further improve-
ments.

Theorem 5. We can maintain a graph, having at most n
vertices at any one time, belonging to some minor-closed
family F , and keep track of the parametric or function-
ally kinetic minimum spanning tree, in total time O(n3/2 +
P(n)n1/4 log3/2 n). If we allow randomization the expected
total time is O(n3/2 + P(n)n1/4 log n). For planar graphs
the O(n3/2) term can be removed from these bounds.

With Dey’s bound P(n) = O(n4/3), our total time is
worst-case bounded by O(n19/12 log3/2 n), or randomized
expected time O(n19/12 log n).

5. Conclusions

We have given deterministic and randomized algorithms
for solving the parametric and kinetic minimum spanning
tree problems for general graphs, and improvements for spe-
cial families, such as minor-closed and planar graphs. The
mixture of graph-theoretic and geometric attributes is an es-
pecially appealing aspect of this problem.

It would be desirable to find kinetic data structures for
maintaining the MST of a graph that do not require the heavy
arsenal of tools we have used: sparsification, both general
and separator-based, dynamic convex hulls, restricted parti-
tions, ambivalent data structures, and parametric search. We
plan to work both on simplifying our methods and on im-
proving our bounds.

References

[1] P. K. Agarwal and M. Sharir. Algorithmic techniques
for geometric optimization. In Computer Science To-
day: Recent Trends and Developments, Lecture Notes
in Computer Science, vol. 100 (J. van Leeuwen, ed.),
Springer-Verlag, 1995.

[2] N. Alon, P. Seymour, and R. Thomas. A separator the-
orem for graphs with an excluded minor and its appli-
cations. In Proc. 22nd ACM Symp. Theory of Comput-
ing, 1990, 293–299.

[3] J. Basch, L. J. Guibas, and J. Hershberger., pp. 293–
299 Data structures for mobile data. In Proc. 8th ACM-
SIAM Symp. Discrete Algorithms, 1997, 747–756.

[4] J. Basch, L. J. Guibas, and L. Zhang. Proximity prob-
lems on moving points. In Proc. 13th ACM Symp.
Computational Geometry, 1997, 344–351.

[5] B. Chazelle. A faster deterministic algorithm for mini-
mum spanning trees. In Proc. 38th Symp. Foundations
of Computer Science, 1997, 22–31.

[6] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34 (1987), 200–208.

[7] T. K. Dey. Improved bounds on planar k-sets
and k-levels. Discrete & Computational Geometry.
19 (1998), 373–382.

[8] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and
sensitivity analysis of minimum spanning trees in lin-
ear time. SIAM J. Computing, 21 (1992), 1184–1192.

[9] D. Eppstein. Geometric lower bounds for parametric
matroid optimization. To appear in Discrete & Com-
putational Geometry.

[10] D. Eppstein. Clustering for faster network simplex
pivots. In Proc. 5th ACM-SIAM Symp. Discrete Algo-
rithms, 1994, 160–166.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig. Sparsification — A technique for speed-
ing up dynamic graph algorithms. J. ACM, 44 (1997),
669–696.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer.
Separator based sparsification I: planarity testing and
minimum spanning trees. J. Computing & Systems Sci-
ences, 52 (1996), 3–27.

[13] D. Fernández-Baca and G. Slutzki. Parametric prob-
lems on graphs of bounded tree-width. J. Algorithms,
16 (1994), 408–430.

[14] D. Fernández-Baca, G. Slutzki, and D. Eppstein. Us-
ing sparsification for parametric minimum spanning
tree problems. Nordic J. Computing, 3 (1996), 352–
366.

[15] G. N. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees. SIAM J. Computing,
14 (1985), 781–798.

[16] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM J. Computing, 26 (1997), 484–538.

[17] M. T. Goodrich. Planar separators and parallel polygon
triangulation. J. Computing & Systems Sciences, 51
(1995), 374–389.

[18] R. L. Graham and P. Hell. On the history of the min-
imum spanning tree problem. Ann. Hist. Comput.,
7 (1985), 43–57.

[19] L. J. Guibas. Kinetic data structures — a state of the
art report. To appear in Proc. 3rd Worksh. Algorithmic
Foundations of Robotics, 1998.

[20] M. R. Henzinger and V. King. Maintaining minimum
spanning trees in dynamic graphs. In Proc. 24th Int.
Coll. Automata, Languages and Programming, Lec-
ture Notes in Computer Science, vol. 1256, Springer-
Verlag, 1997, 594–604.

[21] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity and minimum spanning tree. In Proc.
30th ACM Symp. Theory of Computing, 1998, 79–89.

[22] D. Karger, P. N. Klein, and R. E. Tarjan. A random-
ized linear-time algorithm for finding minimum span-
ning trees. J. ACM, 42 (1995), 321–329.

[23] N. Katoh. Parametric combinatorial optimization
problems and applications. J. Inst. Electronics, In-
formation and Communication Engineers, 74 (1991),
949–956.

[24] N. Katoh. Bicriteria network optimization problems.
IEICE Trans. Fundamentals of Electronics, Communi-
cations and Computer Sciences, E75-A (1992), 321–
329.

[25] V. King. A simpler minimum spanning tree verifica-
tion algorithm. In Proc. 4th Worksh. Algorithms and
Data Structures, Lecture Notes in Computer Science,
vol. 955, Springer-Verlag, 1995, 440–448.

[26] N. Megiddo. Applying parallel computation algo-
rithms in the design of sequential algorithms. J. ACM,
30 (1983), 852–865.

[27] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Computer and System Sciences,
26 (1983), 362–391.

[28] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster para-
metric shortest path and minimum-balance algorithms.
Networks, 21 (1991), 205–221.

