13,332 research outputs found

    A Universal Formula for Deformation Quantization on K\"ahler Manifolds

    Full text link
    We give an explicit local formula for any formal deformation quantization, with separation of variables, on a K\"ahler manifold. The formula is given in terms of differential operators, parametrized by acyclic combinatorial graphs.Comment: 20 pages, 8 figure

    Constructing internally 4-connected binary matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2013 ElsevierIn an earlier paper, we proved that an internally 4-connected binary matroid with at least seven elements contains an internally 4-connected proper minor that is at most six elements smaller. We refine this result, by giving detailed descriptions of the operations required to produce the internally 4-connected minor. Each of these operations is top-down, in that it produces a smaller minor from the original. We also describe each as a bottom-up operation, constructing a larger matroid from the original, and we give necessary and su fficient conditions for each of these bottom-up moves to produce an internally 4-connected binary matroid. From this, we derive a constructive method for generating all internally 4-connected binary matroids.This study is supported by NSF IRFP Grant 0967050, the Marsden Fund, and the National Security Agency

    On 22-cycles of graphs

    Full text link
    Let G=(V,E)G=(V,E) be a finite undirected graph. Orient the edges of GG in an arbitrary way. A 22-cycle on GG is a function d:E2Zd : E^2\to \mathbb{Z} such for each edge ee, d(e,)d(e, \cdot) and d(,e)d(\cdot, e) are circulations on GG, and d(e,f)=0d(e, f) = 0 whenever ee and ff have a common vertex. We show that each 22-cycle is a sum of three special types of 22-cycles: cycle-pair 22-cycles, Kuratowski 22-cycles, and quad 22-cycles. In case that the graph is Kuratowski connected, we show that each 22-cycle is a sum of cycle-pair 22-cycles and at most one Kuratowski 22-cycle. Furthermore, if GG is Kuratowski connected, we characterize when every Kuratowski 22-cycle is a sum of cycle-pair 22-cycles. A 22-cycles dd on GG is skew-symmetric if d(e,f)=d(f,e)d(e,f) = -d(f,e) for all edges e,fEe,f\in E. We show that each 22-cycle is a sum of two special types of skew-symmetric 22-cycles: skew-symmetric cycle-pair 22-cycles and skew-symmetric quad 22-cycles. In case that the graph is Kuratowski connected, we show that each skew-symmetric 22-cycle is a sum of skew-symmetric cycle-pair 22-cycles. Similar results like this had previously been obtained by one of the authors for symmetric 22-cycles. Symmetric 22-cycles are 22-cycles dd such that d(e,f)=d(f,e)d(e,f)=d(f,e) for all edges e,fEe,f\in E

    Decorous lower bounds for minimum linear arrangement

    Get PDF
    Minimum Linear Arrangement is a classical basic combinatorial optimization problem from the 1960s, which turns out to be extremely challenging in practice. In particular, for most of its benchmark instances, even the order of magnitude of the optimal solution value is unknown, as testified by the surveys on the problem that contain tables in which the best known solution value often has one more digit than the best known lower bound value. In this paper, we propose a linear-programming based approach to compute lower bounds on the optimum. This allows us, for the first time, to show that the best known solutions are indeed not far from optimal for most of the benchmark instances
    corecore