510 research outputs found

    Compositional Satisfiability Solving in Separation Logic

    Get PDF
    We introduce a novel decision procedure to the satisfiability problem in array separation logic combined with general inductively defined predicates and arithmetic. Our proposal differentiates itself from existing works by solving satisfiability through compositional reasoning. First, following Fermat’s method of infinite descent, it infers for every inductive definition a “base” that precisely characterises the satisfiability. It then utilises the base to derive such a base for any formula where these inductive predicates reside in. Especially, we identify an expressive decidable fragment for the compositionality. We have implemented the proposal in a tool and evaluated it over challenging problems. The experimental results show that the compositional satisfiability solving is efficient and our tool is effective and efficient when compared with existing solvers

    Tractability of Separation Logic with Inductive Definitions: Beyond Lists

    Get PDF
    In 2011, Cook et al. showed that the satisfiability and entailment can be checked in polynomial time for a fragment of separation logic that allows for reasoning about programs with pointers and linked lists. In this paper, we investigate whether the tractability results can be extended to more expressive fragments of separation logic that allow defining data structures beyond linked lists. To this end, we introduce separation logic with a simply-nonlinear compositional inductive predicate where source, destination, and static parameters are identified explicitly (SLID[snc]). We show that if the inductive predicate has more than one source (destination) parameter, the satisfiability problem for SLID[snc] becomes intractable in general. This is exemplified by an inductive predicate for doubly linked list segments. By contrast, if the inductive predicate has only one source (destination) parameter, the satisfiability and entailment problems for SLID[snc] are tractable. In particular, the tractability results hold for inductive predicates that define list segments with tail pointers and trees with one hole

    S2TD: a Separation Logic Verifier that Supports Reasoning of the Absence and Presence of Bugs

    Full text link
    Heap-manipulating programs are known to be challenging to reason about. We present a novel verifier for heap-manipulating programs called S2TD, which encodes programs systematically in the form of Constrained Horn Clauses (CHC) using a novel extension of separation logic (SL) with recursive predicates and dangling predicates. S2TD actively explores cyclic proofs to address the path explosion problem. S2TD differentiates itself from existing CHC-based verifiers by focusing on heap-manipulating programs and employing cyclic proof to efficiently verify or falsify them with counterexamples. Compared with existing SL-based verifiers, S2TD precisely specifies the heaps of de-allocated pointers to avoid false positives in reasoning about the presence of bugs. S2TD has been evaluated using a comprehensive set of benchmark programs from the SV-COMP repository. The results show that S2TD is more effective than state-of-art program verifiers and is more efficient than most of them.Comment: 24 page

    Biabduction (and related problems) in array separation logic

    Get PDF
    We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space

    Biabduction (and related problems) in array separation logic

    Get PDF
    We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space

    SL-COMP: Competition of Solvers for Separation Logic

    Get PDF
    International audienceSL-COMP aims at bringing together researchers interested on improving the state of the art of the automated deduction methods for Separation Logic (SL). The event took place twice until now and collected more than 1K problems for different fragments of SL. The input format of problems is based on the SMT-LIB format and therefore fully typed; only one new command is added to SMT-LIB's list, the command for the declaration of the heap's type. The SMT-LIB theory of SL comes with ten logics, some of them being combinations of SL with linear arithmetics. The competition's divisions are defined by the logic fragment, the kind of decision problem (satisfiability or entailment) and the presence of quantifiers. Until now, SL-COMP has been run on the StarExec platform, where the benchmark set and the binaries of participant solvers are freely available. The benchmark set is also available with the competition's documentation on a public repository in GitHub
    • …
    corecore