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Abstract. We consider the satisfiability problem for a fragment of separation
logic including inductive predicates with shape and arithmetic properties. We
show that the fragment is decidable if the arithmetic properties can be represented
as semilinear sets. Our decision procedure is based on a novel algorithm to infer
a finite representation for each inductive predicate which precisely characterises
its satisfiability. Our analysis shows that the proposed algorithm runs in expo-
nential time in the worst case. We have implemented our decision procedure and
integrated it into an existing verification system. Our experiment on benchmarks
shows that our procedure helps to verify the benchmarks effectively.
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1 Introduction

Separation logic [14,27] is a well-established assertion language designed for reason-
ing about heap-manipulating programs. Combined with inductive predicates, separation
logic has been shown to capture semantics of loops and recursive procedures naturally
and succinctly. A decision procedure for satisfiability of separation logic with induc-
tive predicates could be useful for multiple analysis problems associated with heap-
manipulating programs, e.g., compositional verification [8,26,19], shape analysis [15],
termination analysis [6] as well as to uncover reachability in bug finding tools [17]. It
has been shown that the satisfiability of the fragment of separation logic which does not
include inductive (user-defined) predicates is decidable [7,23,22,17]. The main chal-
lenge on satisfiability checking of separation logic with inductive predicates is that it
often requires reasoning about infinite heaps as well as infinite integer domain. Indeed,
the problem in the full fragment of inductive predicates with shape and arithmetic prop-
erties is shown to be undecidable [29]. One research goal is thus to identify decidable
yet expressive fragment of the logic, based on which we can have precise and always-
terminating reasoning over heap-manipulating programs.

One way to show that a fragment of separation logic with inductive predicates is de-
cidable is to infer, for each inductive predicate, a finite representation without any induc-
tive predicates which precisely characterizes its satisfiability. For example, the authors
in [1] showed that inductive predicates on linked lists can be precisely characterised by
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models of length zero or two and thus concludes that the fragment of separation logic
with inductive predicates on linked lists only is decidable. Later, Brotherston et. al. pro-
posed SLSAT [5], a decision procedure to compute for every arbitrary heap-only induc-
tive predicate a finite (disjunctive) set of base formulas which exactly characterises its
satisfiability, and consequently showed that the fragment of separation logic with heap-
only inductive predicates is decidable. Finally, the work in [29] extended SLSAT to
show that a fragment of separation logic with inductive predicates and arithmetic prop-
erties under several restrictions is decidable. In particular, their fragment only allows
inductive predicates satisfying the following conditions: for each inductive predicate,
its heap part has two disjuncts and the arithmetic part is restricted in DPI predicates.

In this work, we present a decidable fragment of separation logic including induc-
tive predicates with shape and arithmetic properties, which is more expressive than all
fragments which have been shown to be decidable previously. The decidability is shown
through a novel algorithm which computes for each inductive predicate a base formula
(i.e. one without inductive predicates) which exactly characterizes its satisfiability. The
idea is to compute for each heap-only inductive predicate a non-recursive base formula
regardless of the infinite domains. In the case that the inductive predicate includes shape
and arithmetic properties, if the arithmetical properties can be precisely computed in the
form of arithmetic closures, we derive a combination of the base formula and the arith-
metic closures which precisely characterises satisfiability for the inductive predicate.

In particular, we show how to derive a disjunctive base formula for each inductive
predicate based on flat formulas, which are designed to capture the notion of a (infinite)
set of formulas which can be represented by the same base formula (allocated memory,
(dis)equalities and arithmetic closures). First, we describe a novel algorithm to derive
for each inductive predicate a cyclic unfolding tree prior to flattening the tree into a
disjunctive set of regular formulas. Every regular formula in this set has the same base
pair of the allocated memory and (dis)equalities over a set of free variables (similar
to [5]). Secondly, we define a decidable fragment where every regular formula derived
for inductive predicates is flattable i.e., its arithmetic part is a conjunction of periodic
constraints and the closure of the union of these conjunctions can be represented by
some semilinear sets and thus is Presburger-definable (similar to [4,29]). As a result,
our algorithm derives for each inductive predicate a disjunctive set of flat formulas, and
then a disjunctive set of base formulas.

Contributions We make the following technical contributions.

– Firstly, we present a novel algorithm to generate cyclic unfolding trees for inductive
predicates with shape and arithmetic properties. Our complexity analysis shows that
the proposed algorithm runs in exponential time in the worst case.

– Secondly, based on the algorithm, we present a decision procedure for satisfiabil-
ity checking of the fragment of separation logic with inductive predicates where
arithmetic properties can be represented as semilinear sets.

– Thirdly, we have implemented our algorithm and applied it to verify several bench-
mark programs. In our implementation, we generate under-/over-approximated bases
for those inductive predicates beyond the decidable fragment systematically.



Predicates Pred ::= pred P1(v̄)≡Φ1; · · · ; pred Pn(v̄)≡Φn

Formula Φ ::= ∆ | Φ1 ∨ Φ2 ∆ ::= ∃v̄· (κ∧α∧φ)
Spatial formula κ ::= emp | x7→c(fi:vi) | P(v̄)ou | κ1∗κ2

Ptr (Dis)Equality α ::= true | false | v1=v2 | v=null | v1 6=v2 | v 6=null | α1∧α2

Presburger arith. φ ::= true | i | ∃v· φ | ¬φ | φ1∧φ2 | φ1∨φ2

Linear arithmetic i ::= a1=a2 | a1≤a2
a ::= kint | v | kint×a | a1+a2 | −a | max(a1,a2) | min(a1,a2)

P={P1, ..., Pn} c ∈ Node fi ∈ Fields v,vi,x,y ∈ Var v̄ ≡ v1, . . ., vn

Fig. 1: Syntax.

Organization The rest of the paper is organized as follows. Sect 2 presents relevant
definition. Sect 3 shows an overview of our approach through an example. We show
how to compute bases of regular formulas in Sect 4 and subsequently compute regular
formulas of inductive predicates in Sect 5. Sect 6 describes a decision procedure. Our
implementation and evaluation are presented in Sect 7. Sect 8 reviews related work and
lastly Sect 9 concludes. For space reason, all missing proofs are presented in [20].

2 Preliminaries

We use x̄ to denote a sequence of variables and xi to denote its ith element. We write
x̄N and x̄S to denote the sequence of integer variables and pointer variables in x̄, resp.

Syntax A formula is defined by the syntax presented in Fig. 1. A symbolic heap∆ is an
existentially quantified conjunction of some spatial formula κ, some pointer (dis)equality
α and some formula in Presburger arithmetic φ. All free variables in ∆, denoted by
function FV(∆), are implicitly universally quantified at the outermost level. The spa-
tial formula κ may be conjoined (∗) by emp predicate, points-to predicates x7→c(fi:vi)
and inductive predicate P(v̄)ou where o and u are labels used for constructing unfolding
trees in a breadth-first manner. While o captures the ordering number, u is the number
of unfolding. We occasionally omit these numbers if there is no ambiguity. Whenever
possible, we discard fi of the points-to predicate and use its short form as x7→c(v̄). We
often use π to denote a conjunction of α and φ formulas. Note that v1 6=v2 and v 6=null

are short forms for ¬(v1=v2) and ¬(v=null) respectively. is used to denote a “don’t
care” term.

We write P to denote a set of n predicates in our system. Each inductive predicate
is defined by a disjunction Φ using the key word pred. In each disjunct, we require that
variables which are not formal parameters must be existentially quantified.

Example 1. We define an increasingly sorted list using the fragment above.

pred sortll(root,n,mi) ≡ root7→node2(mi, null) ∧ n=1
∨ ∃ q,n1,mi1· root7→node2(mx, q) ∗ sortll(q, n1,mi1) ∧ n=n1+1 ∧mi≤mi1;

where the data structure node2 is declared as: data node2 { int val; node2 next;}. In
the sorted list sortll(root,n,mi), root is the root, n is the size property and mi is
the minimal value stored in the list.



We use ∆[t1/t2] for a substitution of all occurrences of t2 in ∆ to t1. Note that we
always apply the following normalization after predicate unfolding: (∃w̄1· κ1∧π1) ∗
(∃w̄2· κ2∧π2)≡(∃w̄1,v̄2· κ1∗(κ2ρ)∧π1∧(π2ρ)) where v̄2 is a vector of fresh variables
and has the same length n as w̄2; and ρ is a substitution: ρ= ◦ {[vi/wi] | ∀i ∈ {1...n}}.

Our proposal relies on the following definitions. P(v̄) is called (heap) observable if
there is at least one free pointer-typed variable in v̄. Otherwise, it is called unobservable.
v 7→c(t̄) is called (heap) observable if v is free. Otherwise, it is unobservable.

– (base formula) Φ is a base formula (or base for short) if it does not include any
occurrences of inductive predicates. Otherwise, it is an inductive formula.

– (∆∃ formula) Let ∆∃ be a base formula and is of the form:

∆∃≡∃w̄·x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n)∧α∧φ

∆∃ is a totally (existentially) quantified heap base formula if xi∈w̄ for all i∈{1, .., n}
and FV(α)⊆w̄. We show that existentially quantified pointer-typed variables are not
externally visible wrt. the satisfiability problem (Sec. 4). This is the fundamental
for the transformation of an inductive predicate into an equi-satisfiable set of base
formulas.

– (regular formula) Φ is a regular formula if it is of the form: Φ≡∆b∗Υ ∃ where ∆b

is a base formula and Υ ∃ is a disjunctive (possibly infinite) set of ∆∃ formulas.
For example ∆b∗(∃w̄·P1(v̄1)∗...∗Pn(v̄n)), where v̄Si ⊆w̄ ∀i∈{1...n}, is a regular
formula.

– (flat formula) Φ is a flat formula if it is a regular formula and is flattable, i.e. can
be represented by a base formula.

We use ∆b to denote a conjunctive base formula, ∆re a regular formula and ∆flat a
flat formula. The following definition is critical for the computation of base formulas.

Definition 1 The numeric projection (Φ)N is defined inductively as follows.

(∆1 ∨∆2)N ≡ (∆1)N ∨ (∆2)N

(∃x̄ ·∆)N ≡ ∃x̄N · (∆)N

(κ∧α∧φ)N ≡ (κ)N∧φ

(κ1∗κ2)N ≡ (κ1)N∧(κ2)N

(P(v̄))N ≡ PN(v̄N )
(x7→c(v̄))N≡(emp)N ≡ true

For each inductive predicate P(t̄)≡Φ, we assume the inductive predicate symbols PN

and predicate PN(t̄N ) for its numeric projection satisfy PN(t̄N )≡ΦN . The semantics
of the numeric projection PN(t̄N ) is as follows. Let Υ b

P be a (infinite) set base formulas
derived from P(t̄). If all variables in t̄ are pointer-typed, then PN(t̄N )≡true . Otherwise,
PN(t̄N )≡

∨
{(∆b)N | ∆b ∈ Υ b

P }.

Example 2. The numeric definition sortllN corresponding to the above increasingly
sorted list sortll is defined as follows.

pred sortllN (n,mi) ≡ n=1
∨ ∃ n1,mi1· sortllN (n1,mi1) ∧ n=n1+1 ∧mi≤mi1;



s, h |= emp iff h=∅
s, h |= v 7→c(fi : vi) iff l=s(v), dom(h)={l→ r} and r(c, fi)=s(vi)
s, h |= P(t̄) iff s, h |= P(t̄)m for some m≥0

s, h |= P(t̄)k+1 iff s, h |= ∆[P(t̄)k/P (t̄)] for some definition branch ∆ of P
s, h |= P(t̄)0 iff never
s, h |= κ1 ∗ κ2 iff ∃h1, h2· h1#h2 and h=h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= true iff always s, h |= false iff never
s, h |= ∃v1, ..., vn·(κ∧π) iff ∃α1...αn · s(v1 7→α1∗...∗vn 7→αn), h |= κ

and s(v1 7→α1∗...∗vn 7→αn) |= π
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

Fig. 2: Semantics.

Semantics Concrete heap models assume a fixed finite collection Node, a fixed finite
collection Fields, a disjoint set Loc of locations (heap addresses), a set of non-address
values Val, such that null∈Val and Val ∩ Loc = ∅. Further, we define:

Heaps def
= Loc⇀fin(Node→ Fields→ Val ∪ Loc)

Stacks def
= Var→ Val ∪ Loc

The semantics is given by a forcing relation: s,h |= Φ that forces the stack s and heap
h to satisfy the constraint Φ where h ∈ Heaps, s ∈ Stacks, and Φ is a formula.

The semantics is presented in Fig. 2. dom(f) is the domain of function f ; h1#h2
denotes that heaps h1 and h2 are disjoint, i.e., dom(h1) ∩ dom(h2) = ∅; and h1·h2
denotes the union of two disjoint heaps. Semantics of pure formulas depend on stack
valuations. It is straightforward and omitted for simplicity.

3 Overview and Illustration

In this section, we illustrate how our decision procedure works through checking the
satisfiability of the following inductive predicate over the data structure node which is
declared as: data node { node left; node right;}.

pred Q(x,y,n) ≡ ∃ y1·x7→node(null,y1)∧y=null∧x6=null∧n=1
∨ ∃ x1,y1,n1·y 7→node(x1,y1) ∗ Q(x, y1, n1)0∧y 6=null∧n=n1+2;

First, we infer a disjunctive set of base formulas for the predicate Q which precisely
characterizes Q’s satisfiability. After that, we check satisfiability of each disjunct in the
set. If one of the disjuncts is satisfied, so is Q. We remark that as the base formulas do not
contain any occurrences of inductive predicates, their satisfiability is decidable [23,17].
We generate the base formulas for each inductive predicate by: (i) constructing a cyclic
unfolding tree and (ii) extracting base formulas from the leaf nodes in the tree.
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Constructing Cyclic Unfolding Tree We construct
the cyclic unfolding tree for inductive predicate Q

as shown in Fig. 3. In an unfolding tree, a node
v is a conjunctive formula. An edge from v1 to
v2 where v2 is a child of v1 is obtained by un-
folding v1, i.e., substituting an occurrence of an
inductive predicate in v1 with one disjunct in the
predicate’s definition (after proper actual/formal
parameter substitutions). For instance, in Fig. 3,
the root of the tree is ∆2≡Q(x,y,n)00. We remark
that the ordering number and unfolding number of the root are initially set to 0. The
root has two children, ∆21 and ∆22, which are obtained by unfolding the occurrence of
Q with its two branches.

∆21≡∃ y1·x7→node(null, y1) ∧ y=null∧x6=null∧n=1
∆22≡∃ x1,y1,n1·y 7→node(x1,y1) ∗ Q(x, y1, n1)01∧y 6=null∧n=n1+2

In turn, ∆22 has two children, ∆23 and ∆24, which are obtained by unfolding the
occurrence of Q again.

∆23≡∃ x1,y1,n1,y2·y 7→node(x1,y1) ∗ x7→node(null, y2) ∧
y1=null∧x6=null∧n1=1∧y 6=null∧n=n1+2

∆24≡∃ x1,y1,n1,x2,y2,n2·y 7→node(x1,y1)∗y1 7→node(x2,y2)∗Q(x, y2, n2)02 ∧
y1 6=null∧n1=n2+2∧y 6=null∧n=n1+2

We remark that unfolding numbers annotated for occurrences of recursive predi-
cates (e.g., Q(x, y1, n1)01 in ∆22 and Q(x, y2, n2)02 in ∆24) are increased by one after
each unfolding.

A leaf in the unfolding tree is either a base formula (e.g., ∆21 and ∆23), or one
whose all occurrences of inductive predicates are unobservable, or one which is linked
back to an interior node (e.g.,∆24). Intuitively, a leaf node v is linked back to an interior
node v′ only if v is subsumed (wrt. the satisfiability problem) by v′ in terms of the
constraint on the heap. These back-links generate (virtual) cycles in the tree. A leaf is
marked either closed or open. It is marked closed if it is either unsatisfiable or is linked
back to some interior node. Otherwise, it is marked open. For instance, ∆24 is linked
back to∆22 and thus marked closed. These two nodes are labeled with the fresh symbol
♣ in Fig. 3. They are linked as they have (i) the same observable points-to predicate
y 7→node( , ), (ii) the same observable occurrence of inductive predicate Q(x, , ) and
(iii) the same disequalities over free variables (i.e., y 6= null).

Each path ending with a leaf node which is not involved in any back-link represents
(a way to derive) a formula which can be obtained by unfolding the inductive predicates
according to the edges in the path. A cycle in the tree thus represents an infinite set of
formulas, since we can construct infinitely many paths by iterating through the cycle an
unbounded number of times. For instance, in Fig. 3, we can obtain a different formula
following the cycle from ∆22 to ∆24 and back to ∆22 for a different number of times
and then following the edge from ∆22 to ∆23. We show that all formulas obtained
by iterating through the same cycle a different number of times have the same spatial



base. Furthermore, if the closure of the arithmetic part of these formulas is Presburger-
definable, we can construct one formula to represent this infinite set of formulas.

Flattening Cyclic Unfolding Tree After constructing the tree, we derive the base for the
inductive predicates, e.g. Q in this example. To do that, we flatten the tree iteratively until
there is no cycle left. To flatten the tree iteratively, we keep flattening the minimal cyclic
sub-trees, i.e. the sub-trees without nested cycles, in a bottom-up manner. For instance,
in Fig. 3 the sub-tree in which ∆22 is the root is a minimal cyclic sub-tree. In principle,
we can derive an infinite number of base formulae, each of which corresponds to the
formula constructed by iterating the cyclic a different number of times. For instance,
the following is the disjunctive set of the formulas obtained by following the cycle zero
or more times (and then visiting ∆23).

∆flat
23 ≡ ∃ x1,y1,n1,y2·(y 7→node(x1,y1)∗x7→node(null, y2)∧x6=null∧

y 6=null∧n=n1+1) ∧ (y1=null∧n1=1)
∨ ∃ x1,y1,n1,x2,y2,n2,y3·(y 7→node(x1,y1)∗x7→node(null, y3)∧x6=null∧

y 6=null∧n=n1+1) ∗ (y1 7→node(x2,y2)∗∧y2=null∧n1=n2+2
n2=1)

∨...

∆2

∆21 ∆b
23

Fig. 4: Flattened Tree.

Notice that each iteration of this cycle results in a for-
mula which conjuncts ∆23 with unobservable heaps (e.g.,
y1 7→node( ,y2)∧y2=null where y1, y2 are existentially
quantified variables) and a constraint which requires that
the third parameter of Q is increased by two. We refer to
∆flat

23 as a flat formula. One of our main contribution in this
work is to show that all formulae in the set have the same
base. In particular, we state that a quantified heap base formula ∆∃i is equi-satisfiable
to its numeric projection, i.e. (∆∃i)

N . As a result, a flat formula is equi-satisfiable to
a conjunction of a base formula (i.e., ∆23) and the set of the numeric projections. Fur-
thermore, in the proposed decidable fragment, closure of this numeric set is Presburger-
definable. In this example, this numeric set can be represented by the arithmetic pred-
icate: Pcyc(n1)≡n1=1 ∨ ∃n2·n1=n2+2∧Pcyc(n2). Following [29], we can show that
this predicate is equivalent to the following Presburger formula: ∃k·n1=2k+1∧k≥0.
As a result, ∆flat

23 is equi-satisfiable to the following base formula:

∆b
23≡∃ x1,y1,x2,y2,n1·(y 7→node(x1,y1)∗x7→node(null, y2)∧x6=null∧
y 6=null∧n=n1+1)∧(∃k·n1=2k+1∧k≥0)

T Q
2 is flattened as the tree presented in Fig. 4 which has no cycle. Finally, the base of Q

is computed based on the open leaf nodes of the tree shown in Fig. 4. It is the disjunction
of ∆21 and ∆b

23 as:

{∃ y1·x7→node(null, y1)∧y=null∧x6=null∧n=1;
∃ x1,y1,y2,k·y 7→node(x1,y1)∗x7→node(null, y2)∧x6=null∧y 6=null∧n=2k+2∧k≥0}

Since either disjunct of the set above is satisfiable, so is Q.



4 Foundation of Base Computation

In this section, we show that existentially quantified pointer-typed variables are not
externally visible wrt. the satisfiability problem. This finding is fundamental for the
transformation of an inductive predicate into regular formulas and then flat formulas.
The following two functions: eXPure(∆b) and Π(π, w̄), are relevant in our argument.

Reduction We first define a function called eXPure, which transforms a base formula
into an equi-satisfiable first-order formula. eXPure is defined as follows:

eXPure(∃w̄· x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n) ∧ π) ≡
∃ w̄·

∧
{xi 6=null | i∈{1...n}} ∧

∧
{xi 6=xj | i, j∈{1...n} and i6=j} ∧ π

Proposition 1. For all s such that s |= eXPure(∆b), there exists s′,h such that s⊆s′,
|dom(h)|=n+|w̄|, (s(xi)→ ) ∈ dom(h) ∀i∈{1...n}, and s′, h |= ∆b where |dom(h)|
is the size of heap dom(h) and |w̄| is the length of sequence w̄.

Proposition 2. For all s, h such that s, h |= ∆b, s |= eXPure(∆b).

Lemma 1. ∆b is satisfiable if only if eXPure(∆b) is satisfiable.
Proof The “if” direction follows immediately from Prop. 1. The “only if” direction
follows immediately from Prop. 2. �

We remark that the proposed function eXPure is similar to the well-formed function
in [22]. Indeed, the well-formed function is more general than eXPure as it additionally
supports singly-linked lists lseg.

Quantifier Elimination FunctionΠ(π, w̄) eliminates the existential quantifiers on pointer-
typed variables w̄S . It is defined as follows.

Definition 2 Π(true , w̄) = true , Π(false , w̄) = false , Π(v1 6=v1∧π1, w̄) =
false , Π(∃w̄· α∧φ, w̄) = ∃w̄· Π(α, w̄)∧φ. Otherwise,

Π(v1=v2∧α1, w̄) =


Π(α1[v1/v2], w̄) if v1 ∈ w̄S

Π(α1[v2/v1], w̄) if v2 ∈ w̄S and v1 6∈ w̄S

v1=v2∧Π(α1, w̄) otherwise

Π(v1 6=v2∧α1, w̄) =

{
v1 6=v2∧Π(α1, w̄) if vi 6∈w̄S , i={1, 2}
Π(α1, w̄) otherwise

For soundness, we assume that α is sorted s.t. equality conjuncts are processed before
disequality ones.

Lemma 2. For all s, s |= ∃w̄·α iff there exists s′⊆s and s′ |= Π(α, w̄).

We remark that quantifier elimination in equality logic has been studied well and can
be done in SMT solvers (i.e., Z3 [10]). In this paper, we present a simplified implemen-
tation for efficiency.

Lemma 1 and Lemma 2 imply that it is sound and complete to discard existentially
quantified heaps while solving satisfiability in our fragment. The base of a regular for-
mula is computed as follows.



Lemma 3. For all s and h, s,h |= ∆b∗Υ ∃ iff there exist s′⊆s, h′⊆h and s′,h′ |=
∆b∧

∨
{(∆∃)N | ∆∃ ∈ Υ ∃}

The proof, based on structural induction on the number of base formulas ∆∃ of Υ ∃, is
presented in [20]. We remark that this result can be implicitly implied from the results
presented in [6,17,18]. Now, the problem of base computation in separation logic is
reduced to the problem of closure computation for arithmetic constraints. We formally
define this reduction as follows.

Definition 3 (Base Computation) Let ∆re≡∆b∗Υ ∃ be a regular formula. ∆re is flat-
table, i.e. can be represented as a base formula, if

∨
{(∆∃)N | ∆∃ ∈ Υ ∃} is equivalent

to a Presburger formula.

We note that the disjunction set Υ ∃ may be infinite. In the next section we transform
each inductive predicate into a set of regular formulas; each of these regular formulas is
of the form: ∆re ≡∆b∗(∃w̄·P1(v̄1)∗...∗Pn(v̄n)), where v̄Si ⊆w̄ for all i∈{1...n}. Based
on Definition 3, ∆re is equivalent to ∆re ≡ ∆b∗(∃w̄·P1N (v̄N1 )∧...∧PnN (v̄Nn )). Thus,
the problem of base computation for inductive predicates is reduced to the problem of
closure computation for numeric predicates.

5 Transformation of Inductive Predicates

In this section, we present an algorithm, named pred2reg, to transform each inductive
predicate into a disjunctive set of regular formulas. Each of these regular formulas is
of the form: ∆re ≡ ∆b∗(∃w̄·P1(v̄1)∗...∗Pn(v̄n)), where v̄Si ⊆w̄ for all i∈{1...n}. For
each inductive predicate in P , pred2reg first uses procedure utree to construct a cyclic
unfolding tree to characterise its satisfiability (Sec. 5.1). After that, pred2reg uses pro-
cedure extract regular to flatten the tree into a set of regular formulas in a bottom-up
manner (Sec. 5.2). The correctness of the transformation is presented in Sec. 5.3.

5.1 Constructing Cyclic Unfolding Tree

Procedure utree presented in Algorithm 1 aims to construct an unfolding tree given an
inductive predicate. This algorithm is an instantiation of the S2SAT algorithm described
in [17]. While S2SAT is designed for decision problems (SAT or UNSAT), utree works as
a re-write procedure. It transforms an user-defined predicate into an unfolding tree with
(virtual) cycles. Given an inductive predicate, say P(v̄), it constructs a cyclic unfolding
tree for the formula∆≡P(v̄)00. Each iteration (lines 2-12) conducts one of the following
four actions. Function OA over-approximates every leaf node and checks whether it is
unsatisfiable. If it is the case, the function marks the leaf closed. Function link back

links a leaf back to an interior node if they have the same free (externally) pointer-based
variables. In each such back-link, the leaf node is called a bud and the interior node is
called a companion. Function choose bfs chooses an open leaf for the unfolding with
function unfold.



Algorithm 1: Procedure utree

input : ∆
output: Tn

1 i←0; T0←{∆} ; /* initialize */
2 while true do
3 Ti←OA(Ti) ; /* mark unsat and closed */
4 Ti←link back(Ti) ; /* detect similarly */
5 (is exists,∆i)←choose bfs(Ti) ; /* open leaf for unfolding */
6 if not is exists then
7 return Ti;
8 else
9 i←i+1 ;

10 Ti←unfold(∆i);
11 end
12 end

Over-approximation Given an input tree Ti, for each its leaf node ∆, function OA ob-
tains the over-approximation ∆′ by substituting all occurrences of inductive predicates
appearing in ∆ with true prior to transforming ∆′ into an equi-satisfiable first-order
formula π′ using function eXPure (defined in Section 4). Finally, π′ is discharged using
an SMT solver. If π′ is unsatisfiable, so is ∆.

Unfolding In each iteration, our algorithm selects one open leaf node including some
occurrences of inductive predicates to expand the tree. The node is selected in a breadth-
first manner. Among all open leaf nodes, a node is selected if it contains at least one
observable occurrence of an inductive predicate, e.g. P(v̄)ou, where u is the smallest
unfolding number. If there are more than one such occurrences, the one with the smallest
ordering number is chosen. We remark that a leaf node whose occurrences of inductive
predicates are all unobservable is never unfolded as this leaf is already a regular formula.
For each new node derived, unfold marks it open and creates a new edge accordingly.
Let Q(t̄)ol denote a predicate occurrence of the derived node, its unfolding number is set
to u+1 if it is (not necessary directly) recursive. Otherwise, it is u. Its sequence number
is set to ol+o.

Linking back Function link back links an open leaf with at least one observable occur-
rence of inductive predicate (say, ∃w̄1·κ1∧α1∧φ1) to an interior node (say, ∃w̄2·κ2∧α2∧φ2)
as follows.

1. First, it discards all unobservable points-to predicates and all unobservable in-
ductive predicates, and then eliminates existentially quantified variables in pointer
equalities and disequalities in the two formulas. Afterwards, the two formulas be-
come κ′1∧α1a∧φ1 and κ′2∧α2a∧φ2 where α1a≡Π(α1, w̄

S
1 ), α2a≡Π(α2, w̄

S
2 ).

2. Secondly, it constructs α1b (resp., α2b) by augmenting the closure for equalities on
pointers into α1a (resp., α2a): if x=y ∈ α and y=z ∈ α then x=z ∈ α.

3. Thirdly, it builds a set of addresses, i.e. B1, B2, for each formula. Given a formula
∃w̄·κ∧α∧φ, its set of addresses B is collected as follows. If x7→c( )∈κ then x ∈ B;
if x ∈ B and x=y ∈ α then y ∈ B.
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Fig. 5: Flattening minimal cyclic sub-tree.
4. Next, it adds into α1b (resp. α2b) the boolean abstraction of separating predicates,

e.g. α1c≡α1b∧
∧
{x6=null | x ∈ B1}∧

∧
{x6=y | x,y ∈ B1} and similarly for α2c.

Note that we assume redundant constraints in α1c and α2c are discarded.
5. Finally, κ′1∧α1c∧φ1 is linked to κ′2∧α2c∧φ2 if the following conditions hold:

– i) B1 and B2 are identical; and
– ii) α1c and α2c are identical; and
– iii) For all occurrence Pi(t̄)

o2
u2

in κ′2, there exists one occurrence Pi(v̄)o1u1
in

κ′1 such that u1>u2 and for all free variable vi ∈ v̄, ti is a free variable and
α1c =⇒ ti=vi.

5.2 Flattening Cyclic Unfolding Tree

To compute a set of regular formulas for a cyclic tree, procedure extract regular flat-
tens its cycles using procedure flat tree iteratively in a bottom-up manner until there
is no cycle left. Afterward, the set is derived from the disjunctive set of flattened open
leaf nodes. In particular, it repeatedly applies flat tree on minimal cyclic sub-trees. A
cyclic sub-tree is minimal if it does not include any (nested) cyclic sub-trees and among
other companion nodes, its companion node is the one which is closest to a leaf node.
We use C(∆c→{∆1

b , ..,∆
n
b }) to denote a minimal cyclic sub-tree where back-links are

formed between companion ∆c and buds ∆i
b. If there is only one bud in the tree, we

write C(∆c→∆b) for simplicity. Function flat tree takes a minimal cyclic sub-tree as
an input and returns a set of regular formulas, each of them corresponds to an open leaf
node in the tree.

We illustrate procedure flat tree through the example in Fig. 5 where the tree
in the left (Fig. 5(a)) is a minimal cyclic sub-tree C(∆i→∆i6) and is the input of
flat tree. For a minimal cyclic sub-tree, flat tree first eliminates all closed leaf
nodes (e.g., ∆i1 and ∆i5 ). We remark that if all leaf nodes of a cyclic sub-tree are
unsatisfiable, the whole sub-tree is pruned i.e. replaced by a closed node with false .
After that, the open leaf nodes (e.g.,∆i3 and∆i4 ) are flattened by the function flat. Fi-
nally, flattened nodes (e.g., flat(C(∆i→∆i6), ∆i3) and flat(C(∆i→∆i6), ∆i5 )) are
connected directly to the root of the minimal cyclic sub-tree (e.g., ∆i); all other nodes
(e.g., ∆i2 and ∆i6 ) are discarded. The result is presented in Fig 5(b).

Function flat takes a minimal cyclic sub-tree, e.g. C(∆c→∆b), and an open leaf
node in the sub-tree, e.g. ∆re

j ≡∃w̄·∆b∗P1(t̄1)∗...∗Pn(t̄n) where t̄i
S⊆w̄ ∀i ∈ {1...n},

as inputs. It generates a regular formula representing the set of formulas which can
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be obtained by unfolding according to the path which iterates the cycle (from ∆c to
∆b and back to ∆c) an arbitrary number of times and finally follows the path from
∆c to ∆re

j . As the formulas obtained by unfolding according to the paths of the cycle
are existentially heap-quantified, following lemma 3, they are equi-satisfiable with their
numeric part. As so, flat constructs a new arithmetical inductive predicate, called Pcyc,
to extrapolate the arithmetic constraints over the path from ∆c to ∆b. The generation
of Pcyc only succeeds if the arithmetical constraints of ∆c, ∆re

j and ∆b are of the form
φc, φc∧φbase and φc∧φrec, respectively. Let t1,..,ti be a sequence of integer-typed
parameters of the matched inductive predicates in ∆c and t′1,..,t

′
i be the corresponding

sequence of integer-typed parameters of the matched inductive predicates in ∆b. Then,
flat generates the predicate Pcyc(t1,...,ti) defined as follows.

pred Pcyc(t1,...,ti) ≡ ∃w̄b·φbase ∨ ∃w̄c·φrec∧Pcyc(t′1,...,t′i)

where w̄b=FV(φbase)\{t1,...,ti} and w̄c=FV(φrec)\{t1,...,ti}\{t′1,...,t′i}. Afterward,
flat produces the output as: ∃w̄·∆b∧PN1(t̄N1 )∧...∧PNn(t̄Nn )∧Pcyc(t1,..,ti).

Finally, we highlight the flattening procedure with a fairly complex example in
Fig. 6. The input tree, presented in Fig. 6a), has three cycles. First, flat tree flat-
tens the lower tree C(∆2→∆4) and produces the tree in the middle, Fig. 6b), where
∆′5≡flat(C(∆2→∆4), ∆5). After that, it flattens the intermediate tree and produces
a cyclic-free tree in Fig. 6c). In the final tree, ∆′3≡flat(C(∆→{∆1, ∆6}), ∆3) and
∆′′5≡flat(C(∆→{∆1, ∆6}), ∆′5). As the latter tree has two back-links, the corre-
sponding arithmetic predicate generated for it has two recursive branches.

5.3 Correctness

Procedure utree First, it is easy to verify that the cyclic unfolding tree derived by the
procedure utree preserves satisfiability and unsatisfiability of the given predicate.

Lemma 4. Let Ti be the cyclic unfolding tree derived by procedure utree for predicate
Pi(t̄i). Ti contains at least one satisfiable leaf node iff Pi(t̄i) is satisfiable.

Next, we provide a complexity analysis for procedure utree. Intuitively, the procedure
terminates if there is no more leaf node for unfolding. This happens when all leaf nodes
are either base formulas, or formulas with unobservable occurrences of inductive pred-
icates or linked back. The last case occurs if two nodes involved in a back link have
similar arrangement over free predicate arguments. As the number of these free argu-
ments are finite, so is the number of arrangements. In particular, suppose we have N



inductive predicates (e.g., P1,...,PN), and m is the maximal length of predicate param-
eters (including one more for null). The maximal free pointer-typed variables of an
inductive predicate is also m. We compute the complexity based on N and m.

Lemma 5. Every path of the cyclic unfolding tree generated by procedure utree (al-
gorithm 1) has at most O(2m × (2m)N × 22m

2

) nodes.

Procedure extract regular For simplicity, we only discuss the minimal cyclic sub-
trees including one cycle. Let C(∆c→∆b) be a minimal cyclic sub-tree and ∆b

j be
a satisfiable leaf node in the tree. Let lassos(∆c,∆b,∆

b
j ,k) be a formula which is

obtained by unfolding the tree following the cycle (from ∆c to ∆b and back to ∆c) k
times and finally following the path from ∆c to ∆b

j .

Lemma 6. s, h |=
∨

k≥0 lassos(∆c,∆b,∆
b
j ,k) iff there exist s′ ⊆ s and h′ ⊆ h such

that s′, h′ |= flat(C(∆c→∆b), ∆
b
j).

Proof By structural induction on k and lemma 3. �
The correctness of function flat tree immediately follows Lemma 6.

Lemma 7. Let C(∆c→∆b) be a minimal cyclic sub-tree. C(∆c→∆b) is satisfiable iff
there exist ∆re ∈ flat tree(C(∆c→∆b)) and s, h such that s, h |= ∆re.

6 Decision Procedure

Satisfiability of inductive predicates is solvable if all cycles of their unfolding trees can
be flattened into regular formulas and all these regular formulas are flattable.

6.1 Decidable Fragment

Our decidable fragment is based on classes of regular formulas in which each formula
is flattable. We focus on the special class of regular formulas generated from the proce-
dure pred2reg in the previous section (i.e., based on inductive predicates) and show how
to compute bases for this class. In particular, each regular formula in this class is a set of
base formulas unfolded from inductive predicates, e.g.∆re ≡∆b∗(∃w̄·P1(v̄1)∗...∗Pn(v̄n)),
where v̄Si ⊆w̄ for all i∈{1...n}. Following Lemma 3, we have: ∆re is equi-satisfiable
with ∆b∧(∃w̄·P1N (t̄N1 )∗...∧PnN (t̄Nn )). Hence, ∆re is flattable, i.e. can be represented
by a base formula, if every Pi

N (t̄Ni ) is equivalent with a Presburger formula φi for all
i∈{1..n}. As so, ∆re is equi-satisfiable to the base formula: ∆b∧(∃w̄·φ1∧...∧φn). In
consequence, we define a class of flattable formulas, called flat DPI formula, based on
DPI predicates where each predicate is equivalent to a Presburger formula [29].

An arithmetic inductive predicate is DPI if it is not inductive or is defined as follows.

pred PN (x̄) ≡
∧

1≤i≤m φ0,i ∨ ∃z̄ ·
∧

1≤i≤m φi ∧
∧

1≤l≤L P
N (z̄l)

where m is the arity of PN , FV(φ0,i)⊆{xi}, z̄⊇z̄l, and there exists j such that φi is
either of xi=f(z̄i), xi≥f(z̄i), or xi≤f(z̄i) for all i6=j, and φj is either of the following:

(1) xj = f(z̄j) + c ∧ φ′ (2) xj ≥ f(z̄j) + c ∧ φ′ (3) xj ≤ f(z̄j) + c ∧ φ′

(4) a conjunction of the following forms with some integer constant n > 0 :
φ′, nxj = f(z̄j), nxj ≥ f(z̄j), or nxj ≤ f(z̄j)



Algorithm 2: Deriving Bases.
input : P
output: baseP

1 baseP←∅; Pcyc←∅; Pres←∅;
2 foreach Pi(t̄i) ∈ P do
3 (reg(Pi(t̄i)),Pcyc

Pi
)←pred2reg(Pi(t̄i)); /* to regular formulas */

4 Pcyc←Pcyc∪Pcyc
Pi

; /* and numeric predicates for cycles */

5 end
6 foreach PNj(t̄j) ∈ PN∪Pcyc do
7 Pres(PNj(t̄j))←pred2pres(pred PNj(t̄j)); /* compute fixed points */
8 end
9 foreach Pi(t̄i) ∈ P do

10 baseP(Pi(t̄i))←subst(Pres, reg(Pi(t̄i)));
11 end
12 return baseP ;

where c is some integer constant, z̄j is z1j , . . . , z
L
j , φ′ is an arithmetical formula such

that FV(φ′) ⊆ z̄j and φ′[z/z̄j ] is true for any z, f(z̄j) is a combination of z1j , . . . , z
L
j

with max,min, defined by f(z̄j) ::= zlj | max(f(z̄j), f(z̄j)) | min(f(z̄j), f(z̄j)), and
f ’s may be different from each other in the conjunction of (4).

The authors in [29] showed that each inductive predicate DPI exactly represents
some eventually periodic sets which are equivalent to some sets characterized by some
Presburger arithmetical formulas.

Lemma 8 ([29]). For every DPI inductive predicate P (x̄), there is a formula φ equiv-
alent to P (x̄) such that φ does not contain any inductive predicates.

Finally, we define flat DPI formulas based on the DPI predicates as follows.

Definition 4 (Flat DPI Formula) Let∆≡∆b∗(∃w̄·P1(v̄1)∗...∗Pn(v̄n)) where v̄Si ⊆w̄ for
all i∈{1...n}. ∆ is flattable if, for all i ∈ {1...n}, the arithmetic predicate PiN (v̄Ni ) is
a DPI predicate.

We remark that flat formulas can be extended to any class of inductive predicates whose
numeric projections can be defined in Presburger arithmetic.

Now, we define a decidable fragment based on the flattable formulas.

Definition 5 (Decidable Fragment) Let P={P1, ..., Pn} and Pcyc={Pcyc1 , ..., P
cyc
m } be

arithmetic predicates generated by function flat tree while transforming the predi-
cates in P using pred2reg. Solving satisfiability for every inductive predicate Pi in P is
decidable iff every arithmetic predicate inPN∪Pcyc is DPI wherePN={P1N , ..., PnN}.

We remark that the decidable fragment is parameterized by the classes of flattable for-
mulas. It is extensible to any decidable fragment of arithmetic inductive predicates.

6.2 Decision Algorithm

Computing Bases for Inductive Predicates We present a procedure, called pred2base,
to compute for each inductive predicate in P a set of base formulas. pred2base is de-
scribed in Algorithm 2. It takes a set of predicates P and produces a mapping baseP



which maps each inductive predicate to a set of base formulas. pred2base first uses pro-
cedure pred2reg (lines 2-5) to transform the predicates into regular formulas (which are
stored in reg) together with a set of arithmetic inductive predicates (which are stored
in Pcyc) while flattening cycles. We recap that for each inductive predicate function
pred2reg first uses procedure utree in Sec. 5.1 to construct a cyclic unfolding tree and
then uses procedure extract regular in Sec. 5.2 to flatten the tree into a set of regular
formulas. After that, it uses function pred2pres (lines 6-8) to compute for each induc-
tive predicate in PN∪Pcyc an equivalent Presburger formula. These relations is stored in
the mapping Pres. Finally, at lines 9-11 it obtains a set of base formulas from substi-
tuting all arithmetic inductive predicates in the corresponding regular formulas by their
equivalent Presburger formulas.

Satisfiability Solving Let ∆ be a formula over a set of user-defined predicates P where
P={P1, ..., Pm}. The satisfiability of ∆ is reduced to the satisfiability of the predicate:
pred P0(t̄0) ≡ ∆; where P0 is a fresh symbol and t̄0 is the set of free variables in ∆:
t̄0≡FV(∆).

6.3 Correctness

We now show the correctness of our procedure in the decidable fragment.

Theorem 1. Procedure pred2base terminates for the decidable fragment.

Proposition 3. Let Pi(t̄i) be an inductive predicate in the decidable fragment. If Pi(t̄i)
is satisfiable, reg(Pi(v̄i)) produced by procedure pred2reg contains at least one satis-
fiable formula.

Proposition 4. Let Pi(t̄i) be an inductive predicate in the decidable fragment. If pro-
cedure pred2reg can derive for it a non-empty set of satisfiable regular formulas, then
there exists an unfolding tree of Pi(t̄i) containing at least one satisfiable leaf node.

The proof is trivial.

Theorem 2. Suppose that P is a system of inductive predicates in the proposed decid-
able fragment. Assume that procedure pred2base can derive for every Pi(t̄i) a base
basePPi(t̄i). For all s, h and Pi ∈ P , s,h |= Pi(t̄i) iff there exist s′⊆s, h′⊆h, and
∆b ∈ basePPi(t̄i) such that s′,h′ |= ∆b.

Proof The “if” direction follows immediately from lemma 3, lemma 8 and Prop. 3.
The “only if” direction follows immediately from lemma 3, lemma 8 and Prop. 4. �

The above theorem implies that base generation for a system of heap-only inductive
predicates is decidable with the complexity O(2m × 22m

2 × (2m)N ) time in the worst
case. This finding is consistent with the one in [5].



7 Implementation and Evaluation

The proposed solver has been implemented based on the S2SAT framework [17]. We
use Fixcalc [25] to compute closure for arithmetic relations. The SMT solver Z3 [10]
is used for satisfiability problems over arithmetic. In the following, we first describe
how to infer over-/under-approximated bases for those predicates beyond the decidable
fragment. While over-approximated bases are improtant for unsatisfiability in verify-
ing safety [8,26,15], under-approximated bases are critical for satisfiability in finding
bugs [16]. After that, we show experimental results on the base computation and the
satsisfiability problem.

We sometimes over-approximate a base formula in order to show unsatisfiability,
which helps to prune infeasible disjunctive program states and discharge entailment
problems with empty heap in RHS [8]. In particular, the validity of the entailment
checking ∆ ` emp∧πc is equivalent to the unsatisfiability of the satisfiability problem
∆∧¬πc. Similarly, we sometimes under-approximate a base formula in order to show
satisfiability, which helps to generate counter-examples that highlight scenarios for real
errors. For the latter, our approach is coupled with an error calculus [16] to affirm a real
bug in HIP/S2 system [8,15]. When an error (which may be a false positive) is detected,
we perform an additional satisfiability check on its pre-condition to check its feasibil-
ity. If it is satisfied, we invoke an error explanation procedure to identify a sequence of
reachable code statements leading to the error [16]. With our new satisfiability proce-
dure, we can confirm true bugs (which were not previously possible) so as to procide
support towards fixing program errors.

It can be implied from section 6 that generating approximated base for a formula
relies on the approximation of the arithmetic part of inductive predicates, and then of
regular formulas. To compute an under-approximation, we adopt the k-index bound ap-
proach from [4]. In particular, to compute a closure for a predicate PN, we only consider
all unfolded formulas which have at most k occurrences of inductive predicates. As
the disjunction of the bounded formulas is an under-approximation, the closure com-
puted is an under-approximated base. To compute an over-approximation, we adopt the
approach in [30]. In particular, first we transform the system of arithmetic inductive
predicates into a system of constrained Horn clauses. After that, we use Fixcalc [25] to
solve the constraints and compute an over-approximated base.

In the rest, we show the capability of our base inference and its application in pro-
gram verification. We remark that, in [17] we show how a satifiability solver in separa-
tion logic is applied into the verification system S2td. The experiments were performed
on a machine with the Intel i7-960 (3.2GHz) processor and 16 GB of RAM.

Base Inference Using our proposed procedure, we have inferred bases for a broad range
of data structures. The results are shown in Table 1. The first column shows the names of
inductive predicates including cyclic linked-list, list segment, linked-list with even size,
binary trees. TLL is binary trees whose nodes point to their parent and all leave nodes
are linked as a singly-linked list. In all these predicates, size n is the pure property. The
second column shows the inferred bases. Note that we use for existentially quantified
variables for simplicity. The third column presents type of the base (exact base or over-
approximated base). The last column captures time (in seconds) of the computation.



Table 1: Bases Inference for Data Structures

Data Structure Base Inferred Type Sec.
Singly llist (size) {emp∧root=null∧n=0; root7→c1( , )∧n>0} exact 0.15
Even llist (size) {emp∧root=null∧n=0; ∃i· root7→c1( , )∧i>0 ∧ n=2∗i} exact 0.28

Sorted llist
(size, sorted)

{emp∧root=null∧n=0 ∧ sm≤lg;
root7→c1( , )∧n>0 ∧ sm≤lg} exact 0.14

Doubly llist (size) {emp∧root=null∧n=0; root7→c1( , )∧n>0} exact 0.16
CompleteT

(size, minheight)
{emp∧root=null∧n=0∧minh=0;
root7→c2( , )∧n≤2∗minh−1∧nmin≤n; } over 2.3

Heap trees
(size, maxelem)

{emp∧root=null∧n=0∧mx=0;
root7→c2( , )∧n>0 ∧ mx≥0} over 0.3

AVL (height, size)
{emp∧root=null∧n=0∧bal=1;
root7→c2( , )∧h>0∧n≥h∧n≥2∗h−2} over 0.67

RBT(size, color,
blackheight)

{emp∧root=null∧n=0 ∧ bh=1 ∧ cl=0;
root7→c2( , )∧n>0∧cl=1; root7→c2( , )∧n>0∧cl=0} over 0.61

TLL {root7→c4( , , , )∧root=ll; root7→c4( , , , )∗ll 7→c4( , , , )} exact 0.14

Table 2: Experimental Results on Satisfiability Problems

Data Structure (pure properties) #query #unsat #sat Time (seconds)
Singly llist (size) 666 75 591 0.85
Even llist (size) 139 125 14 1.04

Sorted llist (size, sorted) 217 21 196 0.46
Doubly llist (size) 452 50 402 1.08

CompleteT (size, minheight) 387 33 354 55.41
Heap trees (size, maxelem) 487 67 400 7.22

AVL (height, size) 881 64 817 52.15
RBT (size, blackheight, color) 1741 217 1524 40.85

TLL 128 13 115 0.39

While our proposal can infer bases for most predicates, there are also predicates
where we have inferred approximated bases (AVL tree, heap tree, complete tree and
red-black tree). These typically occur when they are outside of the decidable fragments.
In all these cases, we had to infer over-approximation and under-approximations by k-
index (under-approximated bases are not shown for brevity).

Satisfiability Solving We have implemented a new satisfiability solver based on the base
inference. Our solver supports input as presented in Sec. 2 as well as in SMT2 format
based on the description in [28]. We have integrated our proposed satisfiability proce-
dure into HIP/S2 [8,15], a verification system based on separation logic. Table 2 shows
the experimental results on a set of satisfiability problems generated from the verifica-
tion of heap-manipulating programs. The first column lists the data structures and their
pure properties. The second column lists the total number of satisfiability queries sent
to the decision procedure. The next two columns show the amount of unsat and sat



queries, respectively. We use k=10 for the inference of under-approximation. The last
column captures the processed time (in seconds) for queries of each data structure. The
experimental results show that our satisfiability solver could exactly decide all sat and
unsat problems from our suite of verification tasks for complex data structures. This is
despite the use of approximated bases for four examples, namely Heap trees, Complete
trees, AVL and RBT, that are outside of the decidable fragment.

8 Related Work

Solving satisfiability in fragments of separation logic with inductive predicates has been
studied extensively. Several decidable fragments were proposed with some restrictions
over either shape of inductive predicates, or arithmetic, or satisfiability queries. Propos-
als in [2,21,9,13,5,11,17,29]5 presented decision procedures for fragments including
inductive predicates with heap properties, pure equalities but without arithmetic. Initial
attempts like [2,21,9] focus only on linked lists. Smallfoot [2] exploits the small model
property of linked lists. SPEN [11] enhances the decidable fragment above with nested
lists and skip lists. [13] extends the decidable fragment with tree structures. The satis-
fiability problem is reduced to decidability of Monadic Second Order Logic on graphs
with bounded tree width. Finally, SLSAT [5] proposes a decision procedure for arbitrary
inductive definitions. The essence of SLSAT is an algorithm to derive for each predicate
an equi-satisfibale base. Our work is an extension of SLSAT to support a combination
of inductive predicates and arithmetic. To support arithmetical properties, instead of
computing a least fixed point for heap property, our procedure first constructs a cyclic
unfolding tree and then flattens the tree to derives the base. The decidable fragment in
[29] has the following restrictions: for each inductive definition, (1) it has only a single
induction case, (2) its inductive case has only a single occurrence of the inductive pred-
icate unless the satisfiability of the spatial part becomes trivial, and (3) mutual inductive
definitions are not allowed. Our decidable fragment removes these restrictions. Finally,
[17] supports satisfiability checking of the universal fragment restricted in both shape
and arithmetic. In comparison, our procedure supports arbitrary inductive definitions
with relations based on semilinear sets over arithmetical parameters.

In terms of decision procedures supporting inductive predicates and arithmetic,
GRASShoper [23] and Asterix [22] are among the first decision procedures where
shape definitions are restricted to linked lists. The decidable fragments have been re-
cently widened in extended GRASShoper [24], CompSPEN [12], S2SATSL [17], [18]
and [29]. While CompSPEN extends the graph-based algorithm [9] to doubly-linked
list, S2SATSL is an instantiation of S2SAT [17]. For back-link construction, the instantia-
tions [17,18] are based on both heap and arithmetic constraints. Our algorithm in this
work is more compositional i.e., it first forms back-links based only on the heap domain
and then reduces the satisfiability problems into the satisfiability problems over arith-
metic. By doing so, we can exploit well-developed results for the arithmetic domain.
In this work, we reuse the result based on semilinear sets [29] for the arithmetic. In
[20], we show how to adapt results based on periodic relations [4]. We are currently

5 We remark that works in [2,21,9,13,11] also discussed decision procedures for the entailment
problem which is beyond the scope of this paper.



investigating how to use regular model checking [3] to enhance our decision procedure.
The procedure S2SATSL presented in [17] constructs back-links based on a combination
of heap and arithmetic domains. In this work, back-links are constructed based on heap
domain only. The satisfiability of the arithmetic part is processed in a separate phase.
By doing so, the decidable fragment proposed in this paper is much more expressive
when compared with the decidable fragment in [17]. For instance, while the decidable
fragment in [17] includes a restricted fragment of heap-only predicates, the decidable
fragment presented in this work includes arbitrary heap-only predicates. Our proposal
may be viewed as an extension of the work [29] with the construction of cyclic un-
folding trees to support arbitrary spatial predicates. To the best of our knowledge, our
proposal is the most powerful decision procedure for satisfiability in separation logic.

9 Conclusion

We have presented a novel decision procedure for an expressive fragment of separation
logic including shape and arithmetic properties. Our procedure is based on computing
an equi-satisfiable base formula for each inductive predicate. This base computation,
in turn, relies on the computation of the base for a set of flat formulas. We provide a
complexity analysis to show that the decision problem for heap-based fragment is, in
the worst case, in exponential time. We have implemented our proposal in a prototype
tool and integrated it into an existing verification system. Experimental results shows
that our procedure works effectively over the set of satisfiability benchmarks.
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