-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Teeside University's Research Repository

Check for
updates

SL-COMP: Competition of Solvers
for Separation Logic

Mihaela Sighireanu?®), Juan A. Navarro Pérez'»'?F Andrey Rybalchenko?,
Nikos Gorogiannis*, Radu Iosif'*, Andrew Reynolds'3, Cristina Serban'?,
Jens Katelaan'?, Christoph Matheja®, Thomas Noll®, Florian Zuleger'?,
Wei-Ngan Chin®, Quang Loc Le?, Quang-Trung Ta®, Ton-Chanh Le?,
Thanh-Toan Nguyen®, Siau-Cheng Khoo®, Michal Cyprian®,

Adam Rogalewicz!, Tomas Vojnar®, Constantin Enea?, Ondrej Lengal®,
Chong Gao’, and Zhilin Wu”

L FIT, Brno University of Technology, Brno, Czechia
2 IRIF, University Paris Diderot and CNRS, Paris, France
mihaela.sighireanu@irif.fr
3 Microsoft Research, Cambridge, UK
4 Middlesex University London, London, UK
5 National University of Singapore, Singapore, Singapore
6 RWTH Aachen University, Aachen, Germany
7 State Key Laboratory of Computer Science,
Chinese Academy of Sciences, Beijing, China
8 Stevens Institute of Technology, Hoboken, USA
9 Teesside University, Middlesbrough, UK
10 TU Wien, Vienna, Austria
1 University College London, London, UK
12 Google, London, UK
13 University of Iowa, Iowa City, USA
14 VERIMAG, University Grenoble Alpes and CNRS,
Saint-Martin-d’Héres, France

Abstract. SL-COMP aims at bringing together researchers interested
on improving the state of the art of the automated deduction methods
for Separation Logic (SL). The event took place twice until now and col-
lected more than 1K problems for different fragments of SL. The input
format of problems is based on the SMT-LIB format and therefore fully
typed; only one new command is added to SMT-LIB’s list, the com-
mand for the declaration of the heap’s type. The SMT-LIB theory of
SL comes with ten logics, some of them being combinations of SL with
linear arithmetics. The competition’s divisions are defined by the logic
fragment, the kind of decision problem (satisfiability or entailment) and
the presence of quantifiers. Until now, SL-COMP has been run on the
StarExec platform, where the benchmark set and the binaries of partici-
pant solvers are freely available. The benchmark set is also available with
the competition’s documentation on a public repository in GitHub.

© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 116-132, 2019.
https://doi.org/10.1007/978-3-030-17502-3_8

https://core.ac.uk/display/322326088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_8

SL-COMP: Competition of Solvers for Separation Logic 117

1 Introduction

Separation Logic (SL) is an established and fairly popular Hoare logic for
imperative, heap-manipulating programs, introduced nearly fifteen years ago by
Reynolds [20,24,25]. Its high expressivity, its ability to generate compact proofs,
and its support for local reasoning, and its support for local reasoning have moti-
vated the development of tools for automatic reasoning about programs using
SL. A rather exhaustive list of the past and present tools using SL may be found
at [19].

These tools seek to establish memory safety properties and/or infer shape
properties of the heap at a scale of millions of lines of code. They intensively use
(semi-)decision procedures for checking satisfiability and entailment problems in
SL. Therefore, the development of effective solvers for such problems became a
challenge which led to both theoretical results on decidability and complexity of
these problems for different fragments of SL and to publicly available tools. To
understand the capabilities of these solvers and to motivate their improvement
by comparison on a common benchmark, we initiated in 2014 the SL-COMP
competition, inspired by the success of SMT-COMP for solvers on first order
theories.

This paper presents the history of this competition and its organization for
the round at TOOLympics 2019. Section 2 describes the main stages of the com-
petition. Each stage is detailed in a separate section as follows: benchmark’s
definition in Sect. 3, the participants in Sect. 4 and the running infrastructure in
Sect. 5. We conclude the paper in Sect.6 by a discussion on the impact of the
competition and its perspectives.

2 Competition’s Stages

2.1 A Short History

The first edition of SL-COMP took place at FLoC 2014 Olympic Games, as
an unofficial event associated with the SMT-COMP 2014 competition [31]. The
organization details and the achievements of this edition are presented in details
in [26]. This was an opportunity to collect from participants about 600 problems
on different fragments of SL, to involve six solvers, to lay the foundations of a
common input format and to set up a discussion list involving teams developing
solvers or verification tools based on SL. Being attached to SMT-COMP allowed
to benefit from the experience of SMT-COMP’s organizer, David Cok, in setting
competition’s rules and the execution platform StarExec, as well as in running
the competition and publishing the results.

The results of the first edition led to interesting discussions on the mailing list,
mainly on the input format chosen, the layout of divisions and the frequency of
running the competition. These discussions have converged in defining a working
group on the input format and fixed a sparse rhythm of the competition, mainly
aligned with FLoC venues.

118 M. Sighireanu et al.

Therefore, the second edition took place at FLoC 2018 and was associated
with the first workshop on Automated Deduction for Separation Logics (ADSL).
The organization of the competition followed the stages described in the next
section and was disconnected from SMT-COMP. The organizer, Mihaela Sighire-
anu, exploited the experience acquired with the first edition in running the com-
petition on StarExec. The competition involved ten solvers which ran on 1K
problems split over ten newly defined divisions. More precisely, the benchmark
set included the set of problems of the 2014 edition and new problems provided
by the participants. The problems were specified in the new input format which
is aligned with the latest version of SMT-LIB, as detailed in [15] and summarized
in Sect. 3.2. The competition’s results have been presented during a session of
ADSL, which gave the opportunity of a live discussion on the different aspects
of organization. The results are available on the competition web site [27].

The TOOLympics edition is a rerun of the second edition with two major
changes: a new solver has been included and some benchmark instances have
been fixed. The remainder of this paper will present the organization of this
edition and the participants involved.

2.2 Organization Process

The competition has a short organization period, three months on average. This
is possible due to the fact that material used in the competition (the bench-
mark set, the definition of the input format, the parsers for input and the pre-
processing tools) are publicly available on StarExec and on a shared development
repository [22] maintained by the participants and by the organizer.

The competition is launched by a call for benchmarks and participants which
also fixes the competition timeline. The call is sent on the competition mailing
list s1-comp@googlegroups.com.

New solvers are invited to send a short presentation (up to two pages) includ-
ing the team, the sub-fragment of SL dealt, the main bibliography and the web-
site. In addition, each solver has a corresponding person in the team, which is
responsible of preparing the solver for running the competition. This preparation
ensures that the input format is supported and that the solver is registered in the
execution platform in the divisions of the competition it asked to compete. The
organizer creates a subspace on the execution platform for each participant and
assigns the permission to the solver’s correspondent for this space. She may help
the incomer to prepare the solver by providing insights on the use of the execu-
tion platform, the input format and the pre-processors from the competition’s
input format to the solver’s format.

The benchmark problems are collected from the community and participants.
Until now, we did not limit the number of benchmark instances proposed by
participants in each category in order to improve our benchmark set. However,
this may change in the future, as discussed on Sect. 3. The benchmark set may
change during the competition due to reaction of competitors, but it is fixed
starting with the pre-final run.

SL-COMP: Competition of Solvers for Separation Logic 119

The competition is run in three steps. The first step is a training period
where the solver’s correspondent runs the solver on the execution platform and
the existing benchmark set. During this step, the benchmark set may be changed
as well as the solver’s binary. The second step is a pre-final run, launched by the
organizer using the binaries of solvers published on the execution platform. The
results of this pre-final run are available for all solvers’ representatives, which
may allow to compare results and have a first view on competitors’ achievements.
The organizer contacts each correspondent to be sure that the results of this run
are accepted. The last step is the final run, which determines the final result.
The binaries of solvers submitted to the final run may be different from the ones
used in the pre-final run.

The final run of the competition takes place one week before the event at
which the competition’s results are presented. However, the results are available
as soon as possible on the competition’s web site.

3 Benchmark Set

The current competition’s benchmark set contains more than 1K problems, (pre-
cisely 1286 problems), which cover several fragments of Separation Logic. 25%
of these problems are satisfiability checking problems. This section outlines the
main features of this benchmark set, including the fragments covered, the input
format, and the divisions established for this edition. A detailed description of
the input theory and format is [15].

3.1 Separation Logic Theory

The input theory is a multi-sorted second order logic over a signature Y =
(2%, £F), where the set of sorts X® includes two (non necessarily disjoint) subsets
of sorts representing locations of the heap, X}, respectively heap’s data, 22, .
For each sort Loc in IF__, the set of operations includes a constant symbol nil°
modeling the null location. The heap’s type 7 is an injection from location sorts
in X} . to data sorts in 23 ,,,. We also assume that the signature X includes the
Boolean signature and an equality function for each sort.

Let Vars be a countable set of first-order variables, each 27 € Vars having
an associated sort o. The Ground Separation Logic SLY is the set of formulae
generated by the following syntax:

pi=¢|emp|tiu|pr*pa|pr—kpa| 1|1 Apa| T2 . pi(z) (1)

where ¢ is a Y-formula, and t, u are X-terms of sorts in X . and X, respec-
tively, such that they are related by the heap’s type 7. As usual, we write
Va7 . p(x) for =3z7 . —p(x). We omit specifying the sorts of variables and
functions when they are clear from the context.

The special atomic formulas of SLY are the so-called spatial atoms: emp spec-
ifies an empty heap, t — u specifies a heap consisting of one allocated cell whose

120 M. Sighireanu et al.

address is t and whose value is u. The operator “x” is the separating conjunction
denoting that the sub-heaps specified by its operands have disjoint locations. The
operator “—” is the separating implication operator, also called magic wand. A
formula containing only spatial atoms combined using separating conjunction
and implication is called spatial. Formulas without spatial atoms and separating
operators are called pure.

The full separation logic SL contains formulas with spatial predicate atoms
of the form P?1%n(ty,...,t,), where each t; is a first-order term of sort oy,
for i = 1,...,n. The predicates P°*°" belong to a finite set PP of second-
order variables and have associated a tuple of parameter sorts o1,...,0, € X5.
Second-order variables P?t?» € P are defined using a set of rules of the form:

P(xla“'axn)(*¢P(x1w--;xn)a (2)

where ¢p is a formula possibly containing predicate atoms and having free vari-
ables in z1, ..., z,. The semantics of predicate atoms is defined by the least fixed
point of the function defined by these rules.

An example of a formula specifying a heap with at least two singly linked
list cells at locations x and y is:

x+—mnode(l,y) * y+> node(l,z) x 1ls(z,nil) A z#x (3)

where X® = {Int, Loc, Data} and the function node has parameters of sort Int
and Loc and its type is Data. The predicate 1s is defined by the following rules:

1s(h,f) < h= f Aemp (4)
1s(h, f) < 3z, . h# f AN x+— node(i,x) * 1ls(x,f) (5)

and specifies a possible empty heap storing a singly linked list of Data starting
at the location denoted by h and whose last cell contains the location denoted
by f. More complex examples of formulas and predicate definitions are provided
in [15,26].

3.2 Input Format

The input format of the competition has been changed between the first and the
second edition, but it was always based on the SMT-LIB format [2]. The syntax
and semantics of this format were discussed and agreed in the public mailing

group.

Signature encoding: Following this format, the new functions of SL theory are
declared in a “theory” file SepLogicTyped.smt2 as follows:

(theory SepLogicTyped

:funs ((emp Bool)
(sep Bool Bool Bool :left-assoc)

)

SL-COMP: Competition of Solvers for Separation Logic 121

(wand Bool Bool Bool :right-assoc)
(par (L D) (pto L D Bool))

(par (L) (mil L))

)

Observe that pto and nil are polymorphic functions, with sort parameters L
(for location sort) and D (for data sort). There is no restriction on the choice of
location and data sorts. However, each problem shall fix them using a special
command, not included in SMT-LIB, declare-heap. For example, to encode the
example given in Eq. 3, we declare an uninterpreted sort Loc and a sort Data as
a datatype as follows:

(declare-sort Loc 0)

(declare-datatype Data ((node (d Int) (next U))))

(declare-heap (Loc Data))

The last declaration fixes the type of the heap model.

The predicate definitions are written into SMT-LIB format using the recursive

function definition introduced in version 2.6. For instance, the definition of the
list segment from Eqs. 4 and 5 is written into SMT-LIB as follows (based on the
above declarations of Loc and Data):

(define-fun-rec 1s ((h Loc) (f Loc)) Bool

)

(or (and emp (= h £))
(exists ((x Loc) (d Int))
(and (distinct h f) (sep (pto h (node d x)) (1s x £))))

Problem format: Each benchmark file is organized as follows:

Preamble information required by the SMT-LIB format: the sub-logic of SL
theory (see Sect. 3.3), the team which proposed the problem, the kind (crafted,
application, etc.) and the status (sat or unsat) of the problem.

A list of declarations for the sorts for locations and data, for the type of
the heap (the declare-heap command), for the second order predicates, and
for the free variables used in the problem’s formulae. Notice that the input
format is strongly typed. At the end of the declarations, a checking command
check-unsat may appear to trigger for some solvers the checking for models
of predicate declarations.

One or two assertions (command assert) introducing the formulas used in
the satisfiability respectively entailment problem.

The file ends with a checking satisfiability command check-unsat. Notice
that checking the validity of the entailment A = B is encoded by satisfiability
checking of its negation A A —B.

122 M. Sighireanu et al.

3.3 Divisions

The main difficulty that faces automatic reasoning using SL is that the logic,
due to its expressiveness, does not have very nice decidability properties [1]. For
this reason, most program verification tools use incomplete heuristics to solve
the satisfiability and entailment problems in SL or restrict the logic employed to
decidable fragments. Overviews of decidable results for SL are available in [8,26].

Each benchmark instance of SL-COMP refers to one of the sub-logics of the
multi-sorted Separation Logic. These sub-logics identify fragments which are
handled by at least two participants or have been identified to be of interest
during the discussion for the organization of the round.

The sub-logics are named using groups of letters, in a way similar to SMT-
LIB format. These letters have been chosen to evoke the restrictions used by the
sub-logics:

— QF for the restriction to quantifier free formulas;

— SH for the so-called “symbolic heap fragment” where formulas are restricted
to (Boolean and separating) conjunctions of atoms and do not contain magic
wand; moreover, pure atoms are only equality or dis-equality atoms;

— LS where the only predicate allowed is the acyclic list segment, 1s, defined in
Egs. 4 and 5;

— ID for the fragment with user defined predicates;

— LID for the fragment of linear user defined predicates, i.e., only one recursive
call for all rules of a predicate is allowed;

— B for the ground fragment allowing any Boolean combination of atoms.

Moreover, the existing fragments defined in SMT-LIB are used to further restrict
the theory signature. For example, LIA denotes the signature for linear integer
arithmetics.

Table 1. Divisions at SL-COMP and the participants enrolled

Division size Solvers enrolled

gf_bsl_sat 46 CV(C4-SL

qf _bsllia_sat 24 CVC4-SL

qf _shid_entl 312 CycurisT-SL, HARRSH, S2S, SLEEK, SLIDE, SONGBIRD, SPEN
gf _shid_sat 99 HARRSH, S2S, SLEEK, SLSAT

qf _shidlia_entl 75 ComSPEN, S2S

qf _shidlia_sat 33 ComSPEN, S2S

gf_shlid_entl 60 ComSPEN, CycrLisT-SL, HARRSH, S2S, SPEN
qf_shls_entl 296 AsTERIX, ComSPEN, CycLisT-SL, HARRSH, S2S, SPEN
qf_shls_sat 110 AsTERIX, ComSPEN, CycLisT-SL, HARRSH, S2S, SPEN
shid_entl 73 CycrisT-SL, S2S, SLEEK, SONGBIRD

shidlia_entl 181 S2S, SONGBIRD

SL-COMP: Competition of Solvers for Separation Logic 123

The current round of the competition has eleven divisions, named by con-
catenation of the name of the logic and the kind of problem solved (sat or entl).
Table 1 provides the names of these divisions and the number of problems in each
division:

— gf_bsl_sat and qf _bsllia_sat divisions include satisfiability problems for
quantifier free formulas in the ground logic using respectively none or LIA
logic for pure formulas.

— gf_shid_entl and qf_shid_sat divisions include entailment respectively
satisfiability problems for the symbolic heap fragment with user defined
predicates.

— gf_shidlia_entl and qf_shidlia_sat divisions include entailment respec-
tively satisfiability problems for the quantifier free, symbolic heap fragment
with user defined predicates and linear arithmetics included in pure formulas
even in the predicate definitions.

— gf_shlid_entl division includes a subset of problems of division
qf_shid_entl where the predicates are “linear” and compositional [10]. This
fragment is of interest because the entailment problem has an efficient decision
procedure.

— gf_shls_entl and qf_shls_sat divisions include entailment respectively
satisfiability problems for the quantifier free symbolic heap fragment with
only 1s predicate atoms.

— shid_entl division contains entailment problems for quantified formulas in
the symbolic heap fragment with general predicate definitions and no other
logic theories than Boolean.

— shidlia_entl divisions extends the problems in shid_entl with constraints
from linear integer arithmetics.

3.4 Selection Process

The benchmark set was built mainly from the contributions of participants.
Some of these problems come from academic software analysis or verification
tools based on SL (e.g., SMALLFoOT [30], Hip [5]). We did not received any
problem issued from industrial tools. The problems were collected in the input
format submitted by the participants and then translated into the input format
of the competition. With the objective of increasing the size of the benchmark
set, we did not limit the number of problems submitted by a participant. In this
way, the edition 2018 has seen an increase of 100% in the size of the benchmark
set. However in the future we could consider a change in the regulations to find
a fair balance between teams. By using the meta-information in the preamble of
each file, we are able to track the team which proposed the problem.

Notice that each problem has been examined by the organizer to ensure that
the input format is respected and that it passed the parsing and type checking.
However, the organizer accepts the status of the problem proposed until it is
signaled incorrect by another team. In this case, a round of discussion is initiated
to find an agreement on the status included in the file. Notice that the status

124 M. Sighireanu et al.

(sat or unsat) shall be known because it is important for the computation of
the final result. The status of each problem was checked before the competition
using at least two solvers and it did not change during the competition.

4 Participants

Eleven solvers are enrolled for this edition of the competition after its public
announcement. Table 1 summarizes the enrollment of each solver in the divisions
presented in the previous section.

4.1 ASTERIX

ASTERIX is presented in details in [21]. It was submitted by Juan Navarro Perez
(at the time at University College London, UK, now at Google) and Andrey
Rybalchenko (at the time at TU Munich, Germany, now at Microsoft Research
Cambridge, UK). The solver deals with the satisfiability and entailment check-
ing in the QF_SHLS fragment. For this, it implements a model-based approach.
The procedure relies on SMT solving technology (Z3 solver is used) to untangle
potential aliasing between program variables. It has at its core a matching func-
tion that checks whether a concrete valuation is a model of the input formula
and, if so, generalizes it to a larger class of models where the formula is also
valid.

ASTERIX was the winner of divisions qf _shls_sat and qf_shls_entl for
both editions.

4.2 ComSPEN

The theoretical bases of ComSPEN have been presented in [11]. The develop-
ment team is composed of Taolue Chen (University of London, UK), Chong
Gao and Zhilin Wu (State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences).

The solver deals with both satisfiability and entailment problems in a frag-
ment included in logic QF_SHIDLIA and which extends QF_SHLID with integer
linear arithmetics in predicate definitions. The underlaying technique for sat-
isfiability checking of a formula ¢ is to define an abstraction, Abs(y), where
Boolean variables are introduced to encode the spatial part of ¢, together with
quantifier-free formulae to represent the transitive closure of the data constraints
in the predicate atoms. Checking satisfiability of ¢ is then reduced to checking
satisfiability of Abs(p), which can be solved by the state-of-the-art SMT solvers
(e.g., Z3), with an NP upper-bound. For the entailment problem ¢ F 4, if ¢ and
1) are satisfiable, the procedure builds graphs for each formula and tries to build
a graph isomorphism between them.

ComSPEN is implemented in C++. It uses the libraries Z3 and boost. The
input format is the SPEN’s format, which requires a pre-processor for the compe-
tition’s input format. Results are not available for ComSPEN because the 2019
edition is the first one for it.

SL-COMP: Competition of Solvers for Separation Logic 125

4.3 CycLisT-SL

CycLisT-SL [4,7] was submitted by Nikos Gorogiannis (Middlesex University
London, UK) in 2014. The solver deals with the entailment checking for the
QF_SLID fragment. It is an instantiation of the theorem prover CycCLIST-SL
for the case of Separation Logic with inductive definitions. The solver builds
derivation trees and uses induction to cut infinite paths in these trees that satisfy
some soundness condition. For the Separation Logic, CYCLIST-SL replaces the
rule of weakening used in first-order theorem provers with the frame rule of SL.

CycrisT-SL won the division qf _s1id_entl in 2014 and was at the second
place in the same division in 2018.

4.4 CVC4-SL

CVC4 has a decision procedure described in [23] for the fragment QF_BSL. The
solver CVC4-SL has been submitted by Andrew Reynolds (The University of
Iowa, USA). Although this fragment is not supported by other solvers, two divi-
sions were created for it because this fragment is the only one including the
separating wand operator. CVC4-SL [6] participated in the 2018 edition and
trivially won the two divisions.

4.5 HARRSH

HARRSH [17] was submitted by Jens Katelaan (TU Wien, Austria), the devel-
opment team including Florian Zuleger from the same institute and Christoph
Matheja and Thomas Noll (RWTH Aachen University, Germany). HARRSH deals
with the fragment QF_SHID for both satisfiability and entailment checking. The
decision procedures use a novel automaton model, so-called heap automata [16],
which works directly on the structure of symbolic heaps. A heap automaton
examines a SID bottom-up, starting from the non-recursive base case. At each
stage of this analysis, a heap automaton remembers a fixed amount of informa-
tion. Heap automata enjoy a variety of closure properties (intersection, union
and complementation).

HARRSH is licensed under the MIT license and available on GitHub [12].
HARRSH was implemented in Scala and runs on the JVM. HARRSH has its own
input format, but also supports both CycLIST-SL input format and the SL-
COMP input format. Many SL-COMP entailment problems violate the syntactic
restrictions of predicate definitions required by HARRSH. For this reason, the
solver comes with a preprocessor that is able to transform many (but not all)
benchmark’s problems in the division qf __shid_entl into equivalent, HARRSH
compatible specifications.

HARRSH entered SL-COMP in 2018 and competed in divisions qf _shls_sat
and qf_shid_sat with encouraging results. Compared to all other participants,
HARRSH has the disadvantage that it runs on the JVM: On simple problems,
more than 99% of the runtime of HARRSH is spent starting and shutting down
the JVM.

126 M. Sighireanu et al.

4.6 S2S

S28 is a solver submitted by Quang Loc Le (Teesside University, Middlesbrough,
UK). It supports separation logic extended with string and arithmetic con-
straints, which correspond to all divisions of SL-COMP except ones based on
QF_BSL. The solver is built around a generic framework to construct a forest of
disjoint cyclic reduction trees for an input, either an entailment or a satisfia-
bility problem. The implementation is done in Ocaml, from scratch. It contains
three main components: front end with parsers, the proof systems and backend
with SMT solvers (Z3). For the front end, the solver supports several formats,
including the one of SL-COMP. The solver implements three concrete cyclic proof
systems. The first system is a satisfiability solver in separation logic with general
inductive predicates and arithmetic (fragment SLIDLIA). The second one is an
entailment solver in the same fragment of separation logic above. Its implementa-
tion is the extension of a cyclic proof system with lemma synthesis [18]. The last
system is a satisfiability solver for string logics. In all these three systems, any
input of the leaf node evaluation method could be transformed into Presburger
arithmetic and discharged efficiently by Z3.

In SL-COMP’2018, S2S won division qf_shlid_entl and qf_shidlia_sat.

4.7 SLEEK

SLEEK |5, 28] participated in all editions of SL-COMP, the submitters at edition
2018 being Benjamin Lee and Wei-Ngan Chin (NUS, Singapore). The solver
deals with the satisfiability and entailment checking for the QF_SHID fragment.
It is an (incomplete but) automatic prover, that builds a proof tree for the input
problem by using the classical inference rules and the frame rule of SL. It also
uses a database of lemmas for the inductive definitions in order to discharge the
proof obligations on the spatial formulas. The proof obligations on pure formulas
are discharged by external provers like CVC4, Mona, or Z3.

SLEEK was the winner of the division qf _shid_entl in edition 2014, and was
in the third position in the same division in edition 2018.

4.8 SLIDE

SLIDE [14,29] was submitted by Adam Rogalewicz (FIT, Brno University of Tech-
nology, Czechia), the development team including Michal Cyprian and Tomas
Vojnar from the same institute and Radu losif (Verimag, University Greno-
ble Alpes & CNRS, France). The solver deals with the entailment problem in
the decidable sub-fragment of QF_SLID defined in [13]. The main principle of
SLIDE is a reduction of entailment problems in SL into inclusion problems of
tree automata. For the problems in the fragment identified in [13], the decision
procedure implemented in SLIDE is EXPTIME-hard. More precisely, the proof
method for checking ¢ = 1 relies on converting ¢ and 1 into two tree automata
A, resp. Ay, and checking the tree language inclusion of the automaton A, in
the automaton A,.

SL-COMP: Competition of Solvers for Separation Logic 127

SLIDE takes an input in its own input format, which can be generated by the
dedicated SL-COMP preprocessor. The reduction from the system of predicates
into tree automata and the join operator is implemented in Python3. The result
of the reduction are input files for the VATA tree automata library, which is
used as a backend for the inclusion tests.

SLIDE participated in both past editions of SL-COMP. In 2018 edition, SLIDE
solved 61 of 312 problems in division qf _shid_ent1, 7 of 60 problems in division
qf_shlid_entl, and 15 of 73 problems in division shid_entl. The number of
solved problems is related to the fact that SLIDE is a prototype implementation,
where our primary goal was to show the advantages of automata techniques. In
order to cover more problems, one have to implement a new top-level parser,
which would split the input entailment query into a set of subsequent queries,
for which the automata-based technique can be used.

4.9 SLSAT

SLSAT [3] was submitted at SL-COMP’2014 by Nikos Gorogiannis (Middlesex
University London, UK) and Juan Navarro Perez (at the time at UCL, UK,
now at Google). The solver deals with the satisfiability problem for the QF_SLID
fragment. The decision procedure is based on a fixed point computation of a
constraint, called the “base” of an inductive predicate definition. This constraint
is a conjunction of equalities and dis-equalities between a set of free variables
built also by the fixed point computation from the set of inductive definitions.

SLSAT was at the second position in division qf_slid_sat in edition 2014,
and won this division at edition 2018.

4.10 SONGBIRD

SONGBIRD [32] was submitted by Quang-Trung Ta (National University of Sin-
gapore) and the development team includes Ton-Chanh Le (Stevens Institute of
Technology, USA), Thanh-Toan Nguyen, Siau-Cheng Khoo, and Wei-Ngan Chin
(National University of Singapore, Singapore). SONGBIRD targets SHIDLIA frag-
ment. It employs mathematical induction to prove entailments involving user-
defined predicates. In addition, SONGBIRD is also equipped with powerful proof
techniques, which include a mutual induction proof system [35] and a lemma
synthesis framework [36].

SONGBIRD is implemented in OCaml and uses Z3 as the underlying SMT
solver for the first-order logic formula which contains equality and linear arith-
metic constraints. The input syntax of SONGBIRD is described in [32].

SONGBIRD integrated SL-COMP at the 2018 edition, and was the first in
four divisions: qf _shid_entl, qf _shidlia_entl, shid_entl, shidlia_entl. It
can also solve 100% of the problems in other two divisions qf _shls_entl and
qf_shls_sat, but the runtime is slower than the best provers of these divisions.

128 M. Sighireanu et al.

4.11 SPEN

SPEN [9,33] was submitted by Mihaela Sighireanu (IRIF, University Paris
Diderot & CNRS, France) and the development team includes Constantin Enea
from the same institute, Ondrej Lengal and Tomas Vojnar (FIT, Brno University
of Technology, Czechia). The solver deals with satisfiability and entailment prob-
lems for the fragments QF_SHLID and QF_SHLS. The decision procedures call the
MiniSAT solver on a Boolean abstraction of the SL formulas to check their satis-
fiability and to “normalize” the formulas by inferring its implicit (dis)equalities.
The core of the algorithm checking if ¢ = v is valid searches a mapping from
the atoms of ¢ to sub-formulas of ¢. This search uses the membership test in
tree automata to recognize in sub-formulas of ¢ some unfolding of the inductive
definitions used in .

SPEN is written in C and C++ and is open source [33]. It is based on
the VATA library for tree automata. SPEN won the division qf_shlid_entl
at edition 2014 and was in the second position in divisions qf _shls_entl and
qf_shls_sat in both editions.

5 Running the Competition

SL-COMP uses the StarExec platform [34] and requires several features provided
by this platform. The pre-processing phase allows to translate each problem
into the input format of the solver without time penalties. It is used by most
of the solvers and some pre-processors are provided by SL-COMP’s organizer,
freely available on the competition GitHub repository [22]. The competition did
not use the scrambling of benchmark’s problems because the names used for
inductive definitions defined in the files of some divisions are important for the
solvers. Each benchmark file includes only one problem. The incremental feature
was not used and is not supported by most of the competing solvers.

StarExec imposes a time and space limit on each attempt of a solver to solve
a given problem. For the 2014 edition, the CPU time was limited to 2400 s
and the memory (RAM) limit was 100 GB. To gain some time in running the
competition, the 2018 edition used by default a timeout of 600 s and 4 GB of
memory; if the time was exceeded, timeouts of 2400 then 3600 were tried. Even
with these bigger timeouts, some jobs did have CPU timeout or reached the
memory limit. To simplify the running, the new edition will use a memory limit
of 100 GB and a timeout of 3600 s.

The participants trained their solvers on the platform and provided feedback
where the expected result of a problem did not match their result. Several bench-
mark’s problems and solvers were fixed during this period. One training run was
executed before the official run to provide insights about the global results and
to do a final check of the benchmark set.

The participants at each divisions are ordered according to the rules fixed for
SMT-COMP’14 edition. The best solver is the one with, in order: (a) the least
number of incorrect answers, (b) the largest number of correctly solved prob-
lems, and (c) the smallest time taken in solving the correctly solved problems.

SL-COMP: Competition of Solvers for Separation Logic 129

Note that solvers are allowed to respond “unknown” or to time-out on a given
benchmark’s problem without penalty (other than not being able to count that
problem as a success).

StarExec requires that a public version of a solver be made available on
StarExec as a condition of participating in a competition. This allows users of
StarExec to rerun a competition if so desired. More importantly, it allows users
to upload a new set of problems of interest in their application domain and to
try the various solvers against those problems. This feature was very useful for
SL-COMP at edition 2018, because some solvers reused the binaries submitted in
2014. The results of the competition are provided on the competition web page
with a link to the CSV files generated by StarExec. We are also archiving the
results of previous editions in the GitHub.

6 Impact and Perspectives

The SL-COMP initiative fulfilled its goals: an interesting suite of SL problems
is publicly available in a common format and the maturity of solvers submitted
for this competition has been proven.

Moreover, we achieved to propose a common format for SL which is based on
a mature and maintained format for first-order theories, SMT-LIB. This format
reveals the features required by the existing solvers, e.g., the strong typing of
formulas, the kind of inductive definitions handled, etc.

The participation at SL-COMP allowed to measure solvers against competi-
tors and therefore to improve solvers during the competition and in meantime.
Moreover, the existing benchmark set includes challenging problems for the com-
petitors because about half (6 over 11) of the divisions are completely solved.
Five divisions include problems not yet dealt: gf _bsl_sat has 2 problems (5%),
qf_shid_entl has 11 problems (4%), qf _shid_sat has 26 problems (27%),
shid_entl has 3 problems (5%) and shid_sat has 29 problems (17%).

A community interested in such tools has been identified and informed about
the status of the existing solvers. This community could benefit from improving
the tools built on the top of decision procedures for SL.

The SMT-COMP community discovered the status of the solvers for SL and
became interested in this theory, as is demonstrated by the participation of
CVC4, one of the most complete solver of SMT-COMP.

We expect that the 2019 edition of SL-COMP will enforce these results.

The perspectives mainly concern improvement of the organization process as
the size of the competition (number of solvers and benchmark set) increases.

First of all, we are trying to reach a consensus for a good cadence of this
competition. Yearly competitions could be very exciting for the first years, but
may focus on engineering improvements rather than fundamental work. We feel
that a good cadence is alternating a competition year with a year of benchmark
set evaluation and improvement.

With the experience of the current competition, the benchmark set has to be
improved also. As mentioned above, we have to balance the number of problems

130 M. Sighireanu et al.

coming from the same team in each division in order to reach a fair comparison
criterium. For each problem, it would be interesting to attach a coefficient which
is taken into account in the scoring system and thus obtain a better evaluation
of each solver. A classic way to assign a difficulty level is to take into account
the size of the formulas and of the inductive definitions used in the problem.

Finally, we should intensify the exchanges with related competitions in soft-
ware verification and automated proving. Such competitions may benefit from
SL-COMP results in terms of automation, and may provide interesting bench-
mark sets. For this, the results of SL-COMP should be made available in forms
that allows to understood the state of the art of SL solvers and the contribution
of each participating solver to this state of the art. We should also provide, in
addition to the StarExec platform, other means to reproduce the results of each
edition. For example, virtual machines may be archived with the sources and
binaries of participants for each edition of the competition.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411-425. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 27

2. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2018). www.SMT-LIB.org

3. Brotherston, J., Fuhs, C., Navarro Pérez, J.A., Gorogiannis, N.: A decision proce-
dure for satisfiability in separation logic with inductive predicates. In: CSL-LICS,
pp- 25:1-25:10. ACM (2014)

4. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350-367.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2 25

5. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,

size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006-1036 (2012)
CVC4-SL. http://cved.cs.stanford.edu/wiki/Separation Logic
CYCLIST. https://github.com/ngorogiannis/cyclist
8. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non-
Classical Logics 25(1), 5099 (2015)
9. Enea, C., Lengal, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 314-333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12736-1 17
10. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separation
logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA
2015. LNCS, vol. 9364, pp. 80-96. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 7

11. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR
2016. LNCS (LNAI), vol. 9706, pp. 532-549. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40229-1 36

N o

https://doi.org/10.1007/978-3-642-54830-7_27
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-35182-2_25
http://cvc4.cs.stanford.edu/wiki/Separation_Logic
https://github.com/ngorogiannis/cyclist
https://doi.org/10.1007/978-3-319-12736-1_17
https://doi.org/10.1007/978-3-319-12736-1_17
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

SL-COMP: Competition of Solvers for Separation Logic 131

Harrsh. https://github.com/katelaan/harrsh

Tosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21-38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2 2

Tosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201-218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6_ 15

Tosif, R., Serban, C., Reynolds, A., Sighireanu, M.: Encoding separation logic in
smt-lib v2.5. (2018). https://github.com/sl-comp/SL-COMP18/input/Docs
Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning about
robustness properties of symbolic-heap separation logic. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 611-638. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54434-1 23

Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Harrsh: a tool for unied reason-
ing about symbolic-heap separation logic. In: Barthe, G., Korovin, K., Schulz, S.,
Suda, M., Sutcliffe, G., Veanes, M., (eds.) LPAR-22 Workshop and Short Paper
Proceedings. Kalpa Publications in Computing, vol. 9, pp. 23-36. EasyChair (2018)
Le, Q.L., Sun, J., Qin, S.: Frame inference for inductive entailment proofs in sep-
aration logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805,
pp- 41-60. Springer, Cham (2018). https://doi.org/10.1007,/978-3-319-89960-2 3
O’Hearn, P.: Separation logic. http://www0.cs.ucl.ac.uk/staff/p.ohearn/
SeparationLogic/Separation Logic/SL _Home.html

O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1-19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90-106. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03542-0_7

SL-COMP Repository. https://github.com/sl-comp

Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separa-
tion logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 244-261. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 16

Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Oxford-Microsoft Symposium in Honour of Sir Tony Hoare. Palgrave Macmillan,
Basingstoke (1999). Publication date November 2000

Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55-74. IEEE Computer Society (2002)

Sighireanu, M., Cok, D.: Report on SL-COMP 2014. JSAT 9, 173-186 (2014)
SL-COMP 2018. https://www.irif.fr/~sighirea/sl-comp/18/

SLEEK. http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/

SLIDE. http://www.fit.vutbr.cz/research /groups/verifit /tools/slide /

SmallFoot. http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot /

SMT-COMP. http://smtcomp.sourceforge.org

Songbird. https://songbird-prover.github.io/

SPEN. https://www.github.com/mihasighi/spen

StarExec. http://www.starexec.org

https://github.com/katelaan/harrsh
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-11936-6_15
https://github.com/sl-comp/SL-COMP18/input/Docs
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1007/978-3-319-89960-2_3
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-319-03542-0_7
https://github.com/sl-comp
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://www.irif.fr/~sighirea/sl-comp/18/
http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/
http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/
http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
http://smtcomp.sourceforge.org
https://songbird-prover.github.io/
https://www.github.com/mihasighi/spen
http://www.starexec.org

132 M. Sighireanu et al.

35. Ta, Q.-T., Le, T.C., Khoo, S.-C., Chin, W.-N.: Automated mutual explicit induc-
tion proof in separation logic. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 659-676. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 40

36. Ta, Q.-T., Le, T.C., Khoo, S.-C., Chin, W.-N.: Automated lemma synthesis in
symbolic-heap separation logic. Proc. ACM Program. Lang. 2(POPL), 9:1-9:29
(2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48989-6_40
https://doi.org/10.1007/978-3-319-48989-6_40
http://creativecommons.org/licenses/by/4.0/

	SL-COMP: Competition of Solvers for Separation Logic
	1 Introduction
	2 Competition's Stages
	2.1 A Short History
	2.2 Organization Process

	3 Benchmark Set
	3.1 Separation Logic Theory
	3.2 Input Format
	3.3 Divisions
	3.4 Selection Process

	4 Participants
	4.1 Asterix
	4.2 ComSPEN
	4.3 Cyclist-SL
	4.4 CVC4-SL
	4.5 Harrsh
	4.6 S2S
	4.7 Sleek
	4.8 Slide
	4.9 SlSat
	4.10 Songbird
	4.11 Spen

	5 Running the Competition
	6 Impact and Perspectives
	References

