442,770 research outputs found

    Quantifying Volume Changing Perturbations in a Wave Chaotic System

    Full text link
    A sensor was developed to quantitatively measure perturbations which change the volume of a wave chaotic cavity while leaving its shape intact. The sensors work in the time domain by using either scattering fidelity of the transmitted signals or time reversal mirrors. The sensors were tested experimentally by inducing volume changing perturbations to a one cubic meter mixed chaotic and regular billiard system. Perturbations which caused a volume change that is as small as 54 parts in a million were quantitatively measured. These results were obtained by using electromagnetic waves with a wavelength of about 5cm, therefore, the sensor is sensitive to extreme sub-wavelength changes of the boundaries of a cavity. The experimental results were compared with Finite Difference Time Domain (FDTD) simulation results, and good agreement was found. Furthermore, the sensor was tested using a frequency domain approach on a numerical model of the star graph, which is a representative wave chaotic system. These results open up interesting applications such as: monitoring the spatial uniformity of the temperature of a homogeneous cavity during heating up / cooling down procedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity by another fluid, etc.Comment: 13 pages, 13 figure

    VR Technologies in Cultural Heritage

    Get PDF
    This open access book constitutes the refereed proceedings of the First International Conference on VR Technologies in Cultural Heritage, VRTCH 2018, held in Brasov, Romania in May 2018. The 13 revised full papers along with the 5 short papers presented were carefully reviewed and selected from 21 submissions. The papers of this volume are organized in topical sections on data acquisition and modelling, visualization methods / audio, sensors and actuators, data management, restoration and digitization, cultural tourism

    Orbit Determination with Event-Based Cameras to Improve Space Domain Awareness

    Get PDF
    The objective of this research is to assess the utility of a COTS EBC for SDA applications by evaluating its ability to produce data for orbit updates of resident space objects. Unlike traditional frame-based imaging sensors, the pixels on an EBC activate independently when a change in brightness is detected to produce a continuous data flow on a per pixel basis. This unique functionality provides much higher temporal resolution than traditional frame-based sensors, such that an EBC can generate far more data points from a single observation than a frame-based sensor. However, current COTS EBCs have less spatial resolution than current COTS frame-based sensors, and no research has yet investigated whether the increased volume of data from an EBC can compensate for the lack of spatial resolution of each data point. Using a beamsplitter to provide equal data to an EBC and a frame-based sensor for observations of multiple RSOs, this research found that the volume of data produced by an EBC can compensate for the EBC\u27s reduced spatial resolution to generate orbit updates of comparable accuracy to those produced by data from a frame-based sensor. This is especially true for single pass orbit updates, where the EBC provided a more accurate update than the frame-based sensor in 13 out of 14 cases

    VR Technologies in Cultural Heritage

    Get PDF
    This open access book constitutes the refereed proceedings of the First International Conference on VR Technologies in Cultural Heritage, VRTCH 2018, held in Brasov, Romania in May 2018. The 13 revised full papers along with the 5 short papers presented were carefully reviewed and selected from 21 submissions. The papers of this volume are organized in topical sections on data acquisition and modelling, visualization methods / audio, sensors and actuators, data management, restoration and digitization, cultural tourism

    Minuteman 2 launched small satellite

    Get PDF
    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure
    • …
    corecore