11 research outputs found

    Designing Decentralized controllers for distributed-air-jet MEMS-based micromanipulators by reinforcement learning.

    No full text
    International audienceDistributed-air-jet MEMS-based systems have been proposed to manipulate small parts with high velocities and without any friction problems. The control of such distributed systems is very challenging and usual approaches for contact arrayed system don't produce satisfactory results. In this paper, we investigate reinforcement learning control approaches in order to position and convey an object. Reinforcement learning is a popular approach to find controllers that are tailored exactly to the system without any prior model. We show how to apply reinforcement learning in a decentralized perspective and in order to address the global-local trade-off. The simulation results demonstrate that the reinforcement learning method is a promising way to design control laws for such distributed systems

    Robust control of a planar manipulator for flexible and contactless handling

    No full text
    International audienceMany industries require non-contact and flexible manipulation systems, such as magnetic or pneumatic devices. In this paper, we describe a one-degree-of-freedom position control of an induced-air-flow surface. This device allows to convey objects on an air cushion using an original aerodynamic traction principle. A model of the system is established and the parameters are identified experimentally. A H1 robust controller is designed and implemented on the device in order to control the object position. Experiments with objects of various dimensions and materials are conducted and showed the robustness capabilities of the controller

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Contribution au micro-actionnement multi-stable piloté par radiations optiques

    Get PDF
    In this work, a bistable mechanism based on antagonistic pre-shaped double beams was proposed. Employing the proposed bistable mechanism, a quadristable micro-actuator was designed. ln order to validate the quadristability of the device, a meso-scaled prototype was fabricated from MDF by laser cutting. After the quadristability was experimentally confirmed, a quadristable micro-actuator was realized on SOl wafer using DRIE technique. Strokes for inner row and outer row were reduced to 300 µm and 200 µm respectively. For the actuation of the quadristable micro-actuator,laser heated SMA elements with deposited Si02 layer were used to realize the optical wireless actuation. With the help of a laser beam steering micro-mirror, both inner row and outer row were successfully actuated. ln order to further reduce the stroke, a bistable actuator with stroke reducing structure was designed and a prototype eut from MDF was tested. Bistability was validated and a stroke of 1µm was experimentally achieved. Based on this bistable module, a multistable nano-actuator, which contains four parallel coupled bistable modules,was designed and simulated. The simulated result have indicated that it was capable of outputs 16 discrete stable positions available from 0 nm to 150 nm with a step of 10 nm between two stable positions.Cette thèse traite le sujet du micro-actionnement multistable employant des radiations optiques pour atteindre les différentes positions offertes par le micro-actionneur. Dans le cadre des travaux réalisés, un mécanisme bistable reposant sur un principe de doubles poutres préformées situées en position antagoniste est proposé, et, sur cette brique élémentaire, un micro-actionneur quadristable a été conçu. Afin de valider le principe de fonctionnement de micro-actionneur, des procédés de fabrication Laser (sur le matériau « médium - MDF») puis DRIE (sur un wafer SOI de silicium) ont été utilisés. Sur le prototype en silicium, permettant une réduction des courses du rang interne et du rang externe du micro-actionneur, celles-ci ont été fixées à 300 µm et 200 µm respectivement. L’actionnement à distance de ce micro-actionneur a été prouvé en utilisant le chauffage laser d’un élément actif en Nitinol structuré par un dépôt de SiO2, ceci générant un effet « deux sens » de l’élément actif permettant d’annuler la charge sur les poutres du micro-actionneur une fois celui-ci déclenché puis en position stable. L’utilisation d’un banc expérimental incluant une membrane MEMS de balayage laser a permis de démontrer la quadristabilité du micro-actionneur sur 90 000 cycles. Afin de réduire davantage la course de ce micro-actionneur, des concepts de dispositifs de réduction de course ont été développés pour démontrer, à partir de prototypes fabriqué en MDF par usinage laser, la capacité à atteindre une course de 1 µm. Enfin, à la suite de ces travaux de réduction de course, un concept de nano-actionneur multistable a été proposé. Ce nano-actionneur est composé de quatre modules bistables liés et disposés en parallèle pour offrir 16 positions discrètes sur une course rectiligne. Les simulations de cet actionneur montrent la possibilité d’atteindre les 15 positions espacées de 10 nm sur une course de 150 nm

    Distributed manipulation by controlling force fields through arrays of actuators

    Get PDF
    Tato práce se zaměřuje na řízení distribuované manipulace prostřednictvím fyzikálních polí vytvářených maticí akčních členů. Práce se zabývá především manipulací s objekty pomocí nehomogenního elektrického a magnetického pole - dielektroforézou a magnetoforézou. Pro oba principy jsou odvozeny matematické modely vhodné pro začlenění do zpětnovazební řídicí smyčky. Modely mají v obou doménách podobnou strukturu, která dovoluje vývoj jednotného řídicího systému. Nelineární model dynamiky systému je v každé vzorkovací periodě invertován pomocí numerického řešení optimalizačního problému. Výhodou navržené strategie řízení je, že dovoluje paralelní manipulaci - nezávislou manipulaci s několika objekty najednou. Práce vedle teoretických konceptů popisuje také technické detaily experimentálních platforem spolu s výsledky mnoha experimentů. Pro dielektroforézu je navrženo nové uspořádání elektrod, které umožňuje manipulaci s více objekty v rovině a zároveň vyžaduje pouze jednovrstvou výrobní technologii. Na algoritmické straně práce představuje nové použití fázové modulace napětí pro řízení dielektroforézy. Dále také popisuje součásti vyvinuté instrumentace, jako jsou vícekanálové generátory pro řízení dielektroforézy prostřednictvím amplitudové a fázové modulace a optické měření polohy v reálném čase pomocí senzoru bez objektivu. Pro magnetoforézu je detailně popsána modulární experimentální platforma sestávající se z pole cívek se železnými jádry. Díky modularitě může být platforma použita k ověření nejen centralizovaných, ale také distribuovaných řídicích systémů.This work focuses on the control of distributed manipulation through physical fields created by arrays of actuators. In particular, the thesis addresses manipulation of objects using non-uniform electric and magnetic fields---dielectrophoresis and magnetophoresis, respectively. In both domains, mathematical models suitable for incorporation into a feedback control loop are derived. The models in the two domains exhibit a similar structure, which encourages the development of a unified approach to control. The nonlinear model of the system dynamics is inverted by solving a numerical optimization problem in every sampling period. A powerful attribute of the proposed control strategy is that a parallel manipulation---the simultaneous and independent manipulation of several objects---can be demonstrated. Besides the theoretical concepts, the thesis also describes technical details of experimental platforms for both physical domains, together with outcomes from numerous experiments. For dielectrophoresis, a new layout of electrodes is documented that allows full planar manipulation while requiring only a one-layer fabrication technology. On the algorithmic side, work presents a novel use of phase modulation of the voltages to control dielectrophoresis. Dedicated instrumentation is also discussed in the thesis such as multichannel generators for control of dielectrophoresis through amplitude and phase modulation and optical real-time position measurements using common optics and a lensless sensor. For magnetophoresis, a modular test bed composed of a planar array of coils with iron cores is described in detail. Thanks to the modularity, the platform can be used for verification of not only the centralized but also distributed control strategies

    Novel estimation and control techniques in micromanipulation using vision and force feedback

    Get PDF
    With the recent advances in the fields of micro and nanotechnology, there has been growing interest for complex micromanipulation and microassembly strategies. Despite the fact that many commercially available micro devices such as the key components in automobile airbags, ink-jet printers and projection display systems are currently produced in a batch technique with little assembly, many other products such as read/write heads for hard disks and fiber optics assemblies require flexible precision assemblies. Furthermore, many biological micromanipulations such as invitro-fertilization, cell characterization and treatment rely on the ability of human operators. Requirement of high-precision, repeatable and financially viable operations in these tasks has given rise to the elimination of direct human involvement, and autonomy in micromanipulation and microassembly. In this thesis, a fully automated dexterous micromanipulation strategy based on vision and force feedback is developed. More specifically, a robust vision based control architecture is proposed and implemented to compensate errors due to the uncertainties about the position, behavior and shape of the microobjects to be manipulated. Moreover, novel estimators are designed to identify the system and to characterize the mechanical properties of the biological structures through a synthesis of concepts from the computer vision, estimation and control theory. Estimated mechanical parameters are utilized to reconstruct the imposed force on a biomembrane and to provide the adequate information to control the position, velocity and acceleration of the probe without damaging the cell/tissue during an injection task

    Enabling Capillary Self-Assembly for Microsystem Integration

    Get PDF
    Efficient and precise assembly of very-large quantities of sub-millimeter-sized devices onto pre-processed substrates is presently a key frontier for microelectronics, in its aspiration to large-scale mass production of devices with new functionalities and applications (e.g. thin dies embedded into flexible substrates, 3D microsystem integration). In this perspective, on the one hand established pick&place assembly techniques may be unsuitable, due to a trade-off between throughput and placement accuracy and to difficulties in predictably handling very-small devices. On the other hand, self-assembly processes are massively parallel, may run unsupervised and allow contactless manipulation of objects. The convergence between robotic assembly and self-assembly, epitomized by capillarity-enhanced flip-chip assembly, can therefore enable an ideal technology meeting short-to-medium-term electronic packaging and assembly needs. The objective of this thesis is bridging the gap between academic proofs-of- concept of capillary self-assembly and its industrial application. Our work solves several issues relevant to capillary self-assembly of thin dies onto preprocessed substrates. Very-different phenomena and aspects of both scientific and technological interest coexist in such a broad context. They were tackled both experimentally and theoretically. After a critical review of the state-of-the-art in microsystem integration, a complete quasi-static study of lateral capillary meniscus forces is presented. Our experimental setup enables also a novel method to measure the contact angle of liquids. Recessed binding sites are introduced to obtain perfectly-conformal fluid dip-coating of patterned surfaces, which enables the effective and robust coding of geometrical information into binding sites to direct the assembly of parts. A general procedure to establish solder-mediated electro-mechanical interconnections between parts and substrate is validated. Smart surface chemistries are invoked to solve the issue of mutual adhesion between parts during the capillary self-assembly process. Two chemical kinetic-inspired analytic models of fluidic self-assembly are presented and criticized to introduce a novel agent-based model of the process. The latter approach allows realistic simulations by taking into account spatial factors and collision dynamics. Concluding speculations propose envisioned solutions to residual open issues and further perspectives for this field of rapidly-growing importance

    Design for microassembly: a methodology for product design and process selection

    Get PDF
    The thesis presents research carried out in the field of design for microassembly (DFµA), a field that has hereto been characterised by the absence of well defined methodologies intended to facilitate transfer of prototypes from the research lab to production on industrial scale. A DFμA methodology has been developed, serving the purpose of integrating product and micro assembly process development. It aims in particular at increasing the efficiency of the microproduct development process, decreasing the development time and the product and process cost, and enhancing the product quality. Chapter 1 presents the motivations, objectives, and structure of the thesis. The work carried out is inspired by the need to overcome barriers currently existing between the making of single research products and production on an industrial level. The main objective is to contribute to the creating of a novel DFμA that supports product design and process selection, thereby facilitating the efficient assembly of complex three-dimensional miniaturised devices. This is complemented by a range of secondary targets that deal with the development and verification of supporting methods and models related to DFμA. The summary of a comprehensive literature review is given in chapter 2. The survey provides results of studies closely related to the work reported in this thesis and relates that work to a larger ongoing dialogue about the topic of assembly and design in the microworld. Chapter 3 outlines the research approach adopted here for the developing of a DFμA methodology. It carefully analyses the way in which the knowledge gaps identified can be addressed and how the stated objectives can best be achieved. The key contributions made to the developing of a DFμA methodology are presented in chapters 4,5, and 6. The micro assembly process capability model is described first, in Chapter 4. It constitutes the first attempt made at introducing a general framework for capturing of microassembly characteristics. The model developed enables selection and characterisation of microassembly processes. A framework to characterise the model's application to microjoining, -feeding, and -handling is as well suggested. Chapter 5 concerns the actual DFμA methodology. The methodology's layout and structure are introduced in detail. Moreover, the main functions and key phases of the methodology are explained. Special attention is paid to the integration of the microassembly process capability model and to the development of further elements used within the methodology, such as support in product design. Provided in Chapter 6 is a comprehensive analysis of conventional DFA guidelines, intended to explain how the microspecific guidelines have been formulated. The chapter also describes how these are implemented within the overall DFμA methodology. The procedure of validating and illustrating the methodology, which includes applying it to practical test cases, takes place in Chapter 7. The thesis is concluded in Chapter 8, wherein evidence of the originality of the knowledge contribution achieved through the work presented is highlighted. Opportunities for further research work building on th

    Towards an integrated framework for the configuration of modular micro assembly systems

    Get PDF
    The future of manufacturing in high-cost economies is to maximise responsiveness to change whilst simultaneously minimising the financial implications. The concept of Reconfigurable Assembly Systems (RAS) has been proposed as a potential route to achieving this ideal. RASs offer the potential to rapidly change the configuration of a system in response to predicted or unforeseen events through standardised mechanical, electrical and software interfaces within a modular environment. This greatly reduces the design and integration effort for a single configuration, which, in combination with the concept of equipment leasing, enables the potential for reduction in system cost, reconfiguration cost, lead time and down time. This work was motivated by the slow implementation of the RAS concept in industry due, in part, to the limited research into the planning of multiple system reconfigurations. The challenge is to enable consideration of, and planning for, the production of numerous different products within a single modular, reconfigurable assembly environment. The developed methodology is to be structured and traceable, but also adaptable to specific and varying circumstances. This thesis presents an approach that aims towards providing a framework for the configuration of modular assembly systems. The approach consists of a capability model, a reconfiguration methodology and auxiliary functions. As a result, the approach facilitates the complete process of requirement elicitation, capability identification, definition and comparison, configuration analysis and optimisation and the generation of a system configuration lifecycle. The developed framework is demonstrated through a number of test case applications, which were used during the research, as well as the development of some specific technological applications needed to support the approach and application
    corecore