181 research outputs found

    Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg

    Get PDF
    It has been shown that human-like hopping can be achieved by muscle reflex control in neuromechanical simulations. However, it is unclear if this concept is applicable and feasible for controlling a real robot. This paper presents a low-cost two-segmented robotic leg design and demonstrates the feasibility and the benefits of the bio-inspired neuromuscular reflex based control for hopping. Simulation models were developed to describe the dynamics of the real robot. Different neuromuscular reflex pathways were investigated with the simulation models. We found that stable hopping can be achieved with both positive muscle force and length feedback, and the hopping height can be controlled by modulating the muscle force feedback gains with the return maps. The force feedback neuromuscular reflex based controller is robust against body mass and ground impedance changes. Finally, we implemented the controller on the real robot to prove the feasibility of the proposed neuromuscular reflex based control idea. This paper demonstrates the neuromuscular reflex based control approach is feasible to implement and capable of achieving stable and robust hopping in a real robot. It provides a promising direction of controlling the legged robot to achieve robust dynamic motion in the future

    Design of Low-Cost Modular Bio-Inspired Electric–Pneumatic Actuator (EPA)-Driven Legged Robots

    Get PDF
    Exploring the fundamental mechanisms of locomotion extends beyond mere simulation and modeling. It necessitates the utilization of physical test benches to validate hypotheses regarding real-world applications of locomotion. This study introduces cost-effective modular robotic platforms designed specifically for investigating the intricacies of locomotion and control strategies. Expanding upon our prior research in electric–pneumatic actuation (EPA), we present the mechanical and electrical designs of the latest developments in the EPA robot series. These include EPA Jumper, a human-sized segmented monoped robot, and its extension EPA Walker, a human-sized bipedal robot. Both replicate the human weight and inertia distributions, featuring co-actuation through electrical motors and pneumatic artificial muscles. These low-cost modular platforms, with considerations for degrees of freedom and redundant actuation, (1) provide opportunities to study different locomotor subfunctions—stance, swing, and balance; (2) help investigate the role of actuation schemes in tasks such as hopping and walking; and (3) allow testing hypotheses regarding biological locomotors in real-world physical test benches

    From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability

    Get PDF
    Biomechanical models with different levels of complexity are of advantage to understand the underlying principles of legged locomotion. Following a minimalistic approach of gradually increasing model complexity based on Template & Anchor concept, in this paper, a spring-loaded inverted pendulumbased walking model is extended by a rigid trunk, hip muscles and reflex control, called nmF (neuromuscular force modulated compliant hip) model. Our control strategy includes leg force feedback to activate hip muscles (originated from the FMCH approach), and a discrete linear quadratic regulator for adapting muscle reflexes. The nmF model demonstrates human-like walking kinematic and dynamic features such as the virtual pendulum (VP) concept, inherited from the FMCH model. Moreover, the robustness against postural perturbations is two times higher in the nmF model compared to the FMCH model and even further increased in the adaptive nmF model. This is due to the intrinsic muscle dynamics and the tuning of the reflex gains. With this, we demonstrate, for the first time, the evolution of mechanical template models (e.g. VP concept) to a more physiological level (nmF model). This shows that the template model can be successfully used to design and control robust locomotor systems with more realistic system behaviours

    Basic set of behaviours for programming assembly robots

    Get PDF
    We know from the well established Church-Turing thesis that any computer program­ming language needs just a limited set of commands in order to perform any computable process. However, programming in these terms is so very inconvenient that a larger set of machine codes need to be introduced and on top of these higher programming languages are erected.In Assembly Robotics we could theoretically formulate any assembly task, in terms of moves. Nevertheless, it is as tedious and error prone to program assemblies at this low level as it would be to program a computer by using just Turing Machine commands.An interesting survey carried out in the beginning of the nineties showed that the most common assembly operations in manufacturing industry cluster in just seven classes. Since the research conducted in this thesis is developed within the behaviour-based assembly paradigm which views every assembly task as the external manifestation of the execution of a behavioural module, we wonder whether there exists a limited and ergonomical set of elementary modules with which to program at least 80% of the most common operations.IIn order to investigate such a problem, we set a project in which, taking into account the statistics of the aforementioned survey, we analyze the experimental behavioural decomposition of three significant assembly tasks (two similar benchmarks, the STRASS assembly, and a family of torches). From these three we establish a basic set of such modules.The three test assemblies with which we ran the experiments can not possibly exhaust ah the manufacturing assembly tasks occurring in industry, nor can the results gathered or the speculations made represent a theoretical proof of the existence of the basic set. They simply show that it is possible to formulate different assembly tasks in terms of a small set of about 10 modules, which may be regarded as an embryo of a basic set of elementary modules.Comparing this set with Kondoleon’s tasks and with Balch’s general-purpose robot routines, we observed that ours was general enough to represent 80% of the most com­mon manufacturing assembly tasks and ergonomical enough to be easily used by human operators or automatic planners. A final discussion shows that it would be possible to base an assembly programming language on this kind of set of basic behavioural modules

    Bioinspired template-based control of legged locomotion

    Get PDF
    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple models, coined ``templates'', able to represent the overall dynamics of animal (including human) gaits. One of the most recognized models is the spring-loaded inverted pendulum (SLIP) which consists of a point mass atop a massless spring. This model provides a good description of human gaits, such as walking, hopping and running. Despite its high level of abstraction, it supported and inspired the development of successful legged robots and was used as explicit targets for control, over the years. Inspired from template models explaining biological locomotory systems and Raibert's pioneering legged robots, locomotion can be realized by basic subfunctions: (i) stance leg function, (ii) leg swinging and (iii) balancing. Combinations of these three subfunctions can generate different gaits with diverse properties. Using the template models, we investigate how locomotor subfunctions contribute to stabilize different gaits (hopping, running and walking) in different conditions (e.g., speeds). We show that such basic analysis on human locomotion using conceptual models can result in developing new methods in design and control of legged systems like humanoid robots and assistive devices (exoskeletons, orthoses and prostheses). This thesis comprises research in different disciplines: biomechanics, robotics and control. These disciplines are required to do human experiments and data analysis, modeling of locomotory systems, and implementation on robots and an exoskeleton. We benefited from facilities and experiments performed in the Lauflabor locomotion laboratory. Modeling includes two categories: conceptual (template-based, e.g. SLIP) models and detailed models (with segmented legs, masses/inertias). Using the BioBiped series of robots (and the detailed BioBiped MBS models; MBS stands for Multi-Body-System), we have implemented newly-developed design and control methods related to the concept of locomotor subfunctions on either MBS models or on the robot directly. In addition, with involvement in BALANCE project (\url{http://balance-fp7.eu/}), we implemented balance-related control approaches on an exoskeleton to demonstrate their performance in human walking. The outcomes of this research includes developing new conceptual models of legged locomotion, analysis of human locomotion based on the newly developed models following the locomotor subfunction trilogy, developing methods to benefit from the models in design and control of robots and exoskeletons. The main contribution of this work is providing a novel approach for modular control of legged locomotion. With this approach we can identify the relation between different locomotor subfunctions e.g., between balance and stance (using stance force for tuning balance control) or balance and swing (two joint hip muscles can support the swing leg control relating it to the upper body posture) and implement the concept of modular control based on locomotor subfunctions with a limited exchange of sensory information on several hardware platforms (legged robots, exoskeleton)

    Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics

    Get PDF

    Towards understanding human locomotion

    Get PDF
    Die zentrale Frage, die in der vorliegenden Arbeit untersucht wurde, ist, wie man die komplizierte Dynamik des menschlichen Laufens besser verstehen kann. In der wissenschaftlichen Literatur werden zur Beschreibung von Laufbewegungen (Gehen und Rennen) oftmals minimalistische "Template"-Modelle verwendet. Diese sehr einfachen Modelle beschreiben nur einen ausgewählten Teil der Dynamik, meistens die Schwerpunktsbahn. In dieser Arbeit wird nun versucht, mittels Template-Modellen das Verständnis des Laufens voranzubringen. Die Analyse der Schwerpunktsbewegung durch Template-Modelle setzt eine präzise Bestimmung der Schwerpunktsbahn im Experiment voraus. Hierfür wird in Kapitel 2.3 eine neue Methode vorgestellt, welche besonders robust gegen die typischen Messfehler bei Laufexperimenten ist. Die am häfigsten verwendeten Template-Modelle sind das Masse-Feder-Modell und das inverse Pendel, welche zur Beschreibung der Körperschwerpunktsbewegung gedacht sind und das Drehmoment um den Schwerpunkt vernachlässigen. Zur Beschreibung der Stabilisierung der Körperhaltung (und damit der Drehimpulsbilanz) wird in Abschnitt 3.3 das Template-Modell "virtuelles Pendel" für das menschliche Gehen eingeführt und mit experimentellen Daten verglichen. Die Diskussion möglicher Realisierungsmechanismen legt dabei nahe, dass die Aufrichtung des menschlichen Gangs im Laufe der Evolution keine große mechanische Hürde war. In der Literatur wird oft versucht, Eigenschaften der Bewegung wie Stabilität durch Eigenschaften der Template-Modelle zu erklären. Dies wird in modifizierter Form auch in der vorliegen Arbeit getan. Hierzu wird zunächst eine experimentell bestimmte Schwerpunktsbewegung auf das Masse-Feder-Modell übertragen. Anschließend wird die Kontrollvorschrift der Schritt-zu-Schritt-Anpassung der Modellparameter identifiziert sowie eine geeignete Näherung angegeben, um die Stabilität des Modells, welches mit dieser Kontrollvorschrift ausgestattet wird, zu analysieren. Der Vergleich mit einer direkten Bestimmung der Stabilität aus einem Floquet-Modell zeigt qualitativ gute Übereinstimmung. Beide Ansätze führen auf das Ergebnis, dass beim langsamen menschlichen Rennen Störungen innerhalb von zwei Schritten weitgehend abgebaut werden. Zusammenfassend wurde gezeigt, wie Template-Modelle zum Verständnis der Laufbewegung beitragen können. Gerade die Identifikation der individuellen Kontrollvorschrift auf der Abstraktionsebene des Masse-Feder-Modells erlaubt zukünftig neue Wege, aktive Prothesen oder Orthesen in menschenähnlicher Weise zu steuern und ebnet den Weg, menschliches Rennen auf Roboter zu übertragen.Human locomotion is part of our everyday life, however the mechanisms are not well enough understood to be transferred into technical devices like orthoses, protheses or humanoid robots. In biomechanics often minimalistic so-called template models are used to describe locomotion. While these abstract models in principle offer a language to describe both human behavior and technical control input, the relation between human locomotion and locomotion of these templates was long unclear. This thesis focusses on how human locomotion can be described and analyzed using template models. Often, human running is described using the SLIP template. Here, it is shown that SLIP (possibly equipped with any controller) cannot show human-like disturbance reactions, and an appropriate extension of SLIP is proposed. Further, a new template to describe postural stabilization is proposed. Summarizing, this theses shows how simple template models can be used to enhance the understanding of human gait

    Spacelab mission 1 experiment descriptions, third edition

    Get PDF
    Experiments and facilities selected for flight on the first Spacelab mission are described. Chosen from responses to the Announcement of Opportunity for the Spacelab 1 mission, the experiments cover five broad areas of investigation: atmospheric physics and Earth observations; space plasma physics; astronomy and solar physics; material sciences and technology; and life sciences. The name of the principal investigator and country is listed for each experiment

    A Bio-inspired architecture for adaptive quadruped locomotion over irregular terrain

    Get PDF
    Tese de doutoramento Programa Doutoral em Engenharia Electrónica e de ComputadoresThis thesis presents a tentative advancement on walking control of small quadruped and humanoid position controlled robots, addressing the problem of walk generation by combining dynamical systems approach to motor control, insights from neuroethology research on vertebrate motor control and computational neuroscience. Legged locomotion is a complex dynamical process, despite the seemingly easy and natural behavior of the constantly present proficiency of legged animals. Research on locomotion and motor control in vertebrate animals from the last decades has brought to the attention of roboticists, the potential of the nature’s solutions to robot applications. Recent knowledge on the organization of complex motor generation and on mechanics and dynamics of locomotion has been successfully exploited to pursue agile robot locomotion. The work presented on this manuscript is part of an effort on the pursuit in devising a general, model free solution, for the generation of robust and adaptable walking behaviors. It strives to devise a practical solution applicable to real robots, such as the Sony’s quadruped AIBO and Robotis’ DARwIn- OP humanoid. The discussed solutions are inspired on the functional description of the vertebrate neural systems, especially on the concept of Central Pattern Generators (CPGs), their structure and organization, components and sensorimotor interactions. They use a dynamical systems approach for the implementation of the controller, especially on the use of nonlinear oscillators and exploitation of their properties. The main topics of this thesis are divided into three parts. The first part concerns quadruped locomotion, extending a previous CPG solution using nonlinear oscillators, and discussing an organization on three hierarchical levels of abstraction, sharing the purpose and knowledge of other works. It proposes a CPG solution which generates the walking motion for the whole-leg, which is then organized in a network for the production of quadrupedal gaits. The devised solution is able to produce goal-oriented locomotion and navigation as directed through highlevel commands from local planning methods. In this part, active balance on a standing quadruped is also addressed, proposing a method based on dynamical systems approach, exploring the integration of parallel postural mechanisms from several sensory modalities. The solutions are all successfully tested on the quadruped AIBO robot. In the second part, is addressed bipedal walking for humanoid robots. A CPG solution for biped walking based on the concept of motion primitives is proposed, loosely based on the idea of synergistic organization of vertebrate motor control. A set of motion primitives is shown to produce the basis of simple biped walking, and generalizable to goal-oriented walking. Using the proposed CPG, the inclusion of feedback mechanisms is investigated, for modulation and adaptation of walking, through phase transition control according to foot load information. The proposed solution is validated on the humanoid DARwIn-OP, and its application is evaluated within a whole-body control framework. The third part sidesteps a little from the other two topics. It discusses the CPG as having an alternative role to direct motor generation in locomotion, serving instead as a processor of sensory information for a feedback based motor generation. In this work a reflex based walking controller is devised for the compliant quadruped Oncilla robot, to serve as purely feedback based walking generation. The capabilities of the reflex network are shown in simulations, followed by a brief discussion on its limitations, and how they could be improved by the inclusion of a CPG.Esta tese apresenta uma tentativa de avanço no controlo de locomoção para pequenos robôs quadrúpedes e bipedes controlados por posição, endereçando o problema de geração motora através da combinação da abordagem de sistemas dinâmicos para o controlo motor, e perspectivas de investigação neuroetologia no controlo motor vertebrado e neurociência computacional. Andar é um processo dinâmico e complexo, apesar de parecer um comportamento fácil e natural devido à presença constante de animais proficientes em locomoção terrestre. Investigação na área da locomoção e controlo motor em animais vertebrados nas últimas decadas, trouxe à atenção dos roboticistas o potencial das soluções encontradas pela natureza aplicadas a aplicações robóticas. Conhecimento recente relativo à geração de comportamentos motores complexos e da mecânica da locomoção tem sido explorada com sucesso na procura de locomoção ágil na robótica. O trabalho apresentado neste documento é parte de um esforço no desenho de uma solução geral, e independente de modelos, para a geração robusta e adaptável de comportamentos locomotores. O foco é desenhar uma solução prática, aplicável a robôs reais, tal como o quadrúpede Sony AIBO e o humanóide DARwIn-OP. As soluções discutidas são inspiradas na descrição funcional do sistema nervoso vertebrado, especialmente no conceito de Central Pattern Generators (CPGs), a sua estrutura e organização, componentes e interacção sensorimotora. Estas soluções são implementadas usando uma abordagem em sistemas dinâmicos, focandos o uso de osciladores não lineares e a explorando as suas propriedades. Os tópicos principais desta tese estão divididos em três partes. A primeira parte explora o tema de locomoção quadrúpede, expandindo soluções prévias de CPGs usando osciladores não lineares, e discutindo uma organização em três níveis de abstracção, partilhando as ideias de outros trabalhos. Propõe uma solução de CPG que gera os movimentos locomotores para uma perna, que é depois organizado numa rede, para a produção de marcha quadrúpede. A solução concebida é capaz de produzir locomoção e navegação, comandada através de comandos de alto nível, produzidos por métodos de planeamento local. Nesta parte também endereçado o problema da manutenção do equilíbrio num robô quadrúpede parado, propondo um método baseado na abordagem em sistemas dinâmicos, explorando a integração de mecanismos posturais em paralelo, provenientes de várias modalidades sensoriais. As soluções são todas testadas com sucesso no robô quadrupede AIBO. Na segunda parte é endereçado o problema de locomoção bípede. É proposto um CPG baseado no conceito de motion primitives, baseadas na ideia de uma organização sinergética do controlo motor vertebrado. Um conjunto de motion primitives é usado para produzir a base de uma locomoção bípede simples e generalizável para navegação. Esta proposta de CPG é usada para de seguida se investigar a inclusão de mecanismos de feedback para modulação e adaptação da marcha, através do controlo de transições entre fases, de acordo com a informação de carga dos pés. A solução proposta é validada no robô humanóide DARwIn-OP, e a sua aplicação no contexto do framework de whole-body control é também avaliada. A terceira parte desvia um pouco dos outros dois tópicos. Discute o CPG como tendo um papel alternativo ao controlo motor directo, servindo em vez como um processador de informação sensorial para um mecanismo de locomoção puramente em feedback. Neste trabalho é desenhado um controlador baseado em reflexos para a geração da marcha de um quadrúpede compliant. As suas capacidades são demonstradas em simulação, seguidas por uma breve discussão nas suas limitações, e como estas podem ser ultrapassadas pela inclusão de um CPG.The presented work was possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant SFRH/BD/62047/2009

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials
    corecore