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Biomechanical models with different levels of complexity are of

advantage to understand the underlying principles of legged

locomotion. Following a minimalistic approach of gradually

increasing model complexity based on Template & Anchor
concept, in this paper, a spring-loaded inverted pendulum-

based walking model is extended by a rigid trunk, hip muscles

and reflex control, called nmF (neuromuscular force modulated

compliant hip) model. Our control strategy includes leg

force feedback to activate hip muscles (originated from the

FMCH approach), and a discrete linear quadratic regulator

for adapting muscle reflexes. The nmF model demonstrates

human-like walking kinematic and dynamic features such as

the virtual pendulum (VP) concept, inherited from the FMCH

model. Moreover, the robustness against postural perturbations

is two times higher in the nmF model compared to the FMCH

model and even further increased in the adaptive nmF model.

This is due to the intrinsic muscle dynamics and the tuning of

the reflex gains. With this, we demonstrate, for the first time,

the evolution of mechanical template models (e.g. VP concept)

to a more physiological level (nmF model). This shows that the

template model can be successfully used to design and control

robust locomotor systems with more realistic system behaviours.
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1. Introduction

Building a legged system with agile, efficient and robust functionality requires appropriate design and

control. To this end, roboticists can learn from biological locomotor systems. As a result, the biological

body as the representative of the mechanical design and the neural system as the controller can be

considered for understanding the basic concepts of legged locomotion. However, detailed modelling of

such an intricate phenomenon is challenging and also computationally expensive. Employing template

(conceptual) models were introduced as an alternative method for realizing the fundamentals of

locomotion [1]. The striking feature of templates is that they ignore all the redundancies and still lend

themselves to be used as simple conceptual models explaining complex problems [2].

As one of such templates, the spring-loaded inverted pendulum (SLIP), which is composed of a massless

spring along with a point mass at top, can remarkably describe human running [3,4] and walking [5,6]. This

simple conceptual model also helped develop some legged robots in the past [7,8]. For addressing human

posture control, the extension of the point mass with a rigid trunk was introduced in TSLIP [9] or ASLIP

[10] for running and BTSLIP (bipedal TSLIP) [11,12] for walking. In constructing a model that resembles

the salient features of human locomotion, employing proper control techniques for balancing the upper

body warrants consideration. Several methods comprising hip joint control have been proposed for

stabilizing the upper body [7,9,12–14]. From another perspective, bioinspired control concepts such as

virtual pendulum (VP) [11] were introduced based on analysing and modelling human (or animal) gaits.

Therefore, inspiration from nature (e.g. in virtual pendulum posture control (VPPC [9]) or force modulated

compliant hip (FMCH [12])) may open new doors in the design and control of legged systems which

might not be accessible by engineering approaches. In FMCH, the leg force is employed to adjust hip

compliance and to generate the required hip torque for balance control accordingly. This method can

stabilize running [14] and walking [12] while predicting human hip torques in walking [15]. Furthermore,

this method presents a simple physical representation for implementing the control concept using minimal

exchange of sensory information between different locomotor subfunctions (stance and balance) [15].

Our selected road-map for the evolution of models from template to anchor and the position of the

current study are shown in figure 1. Here, we take a step towards developing a biologically plausible

version of the VPP concept (figure 1d ). For this, we extend the FMCH to the neuromuscular level by

replacing hip springs with the Hill-type muscle model [16]. This way, the leg force plays the role of a

reflex signal to activate hip muscles. The nmF (neuromuscular FMCH) and FMCH are compared

regarding their abilities in predicting human walking data. Furthermore, to deal with external

disturbances, we design a discrete linear quadratic regulator (LQR) using Poincaré map to adapt the

muscle feedback gains in an event-based manner. The robustness and efficiency of the proposed

methods (nmF and adaptive nmF) are analysed and compared to those of the FMCH model and a

feed-forward control approach. This latter approach which mimics preflex control [17] in the human

body is considered as a baseline for stabilizing property of a controller without feedback. This

minimalistic feed-forward control showed already acceptable quality in stabilizing bipedal robot gaits [18].

The remainder of the paper is organized as follows: §2 describes the development and formulation of

the presented neuromuscular model and the developed control approaches. In §3, the walking results

(from human experiments and modelling) are presented and the robustness of the proposed

approaches against external perturbations is investigated by demonstrating the basin of attraction for

each method. The discussion about the results and predictability of the VPP concept by different

models besides the future of this research are described in §4. Finally, §5 concludes the paper. The

abbreviations used throughout the paper are summarized in table 1.
2. Methodology
In this section, we explain the new nmF (neuromuscular FMCH) model which is used for posture control

in walking. This model is placed between template models and neuromuscular anchor models (figure 1).

In addition, the event-based control for adapting the reflex gains to increase robustness against

uncertainties and perturbations is presented.

2.1. Modelling
The model adopted for simulations in this paper is an extension of the bipedal TSLIP (BTSLIP) model in

the sagittal plane equipped with hip muscles (figure 2). Combining this model with the FMCH control



Table 1. Nomenclature.

abbreviation definition

CoM centre of mass

BW body weight

GRF ground reaction force

PTS preferred transition speed

SLIP spring loaded inverted pendulum

TSLIP SLIP extended by trunk

BTSLIP bipedal TSLIP

FMCH force modulated compliant hip

nmF neuromuscular FMCH

VBLA velocity-based leg adjustment

VPPC virtual pendulum posture control

VP virtual pendulum

LQR linear quadratic regulator

RF rectus femoris

HAM hamstrings

ECC excitation contraction coupling

MTC muscle tendon complex

CE contractile element

SEE series elastic element

MCx motor cortex

t

CoM CoM CoM

CoM

template anchor

nmFFMCHBTSLIPBSLIP

CoM

(a) (b) (c) (e) ( f )(d)

Figure 1. Model evolution from template to anchor; (a) BSLIP template with a point mass at the hip joint and two massless springs
for the legs, (b) BSLIP model extended by substituting the point mass with a rigid trunk; this model is also known as BTSLIP, (c)
FMCH model wherein leg forces are used as feedback signals to generate required hip torques for posture control, (d ) nmF model
investigated in this paper, where hip springs are replaced by Hill-type muscle models, (e) the next step of modelling by adding
segmented legs and biarticular muscles, and ( f ) a complete neuromuscular (anchor) model.
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concept results in the nmF (neuromuscular FMCH) model. In the following, we explain both the BTSLIP

model and the muscle-tendon unit modelling.
2.1.1. BTSLIP model

An extension of the SLIP model (figure 1a) for bipedal walking including the upper body to address posture

control was introduced in [11]. This BTSLIP model, which is shown in figure 1b, comprises a rigid trunk that



DSk

jh

DSk+1

take offtouch downmid stance mid stance

hip
(xh, yh)

y

x

CoM
(x, y)

trunk
(m, J)

HAM

RF

(k, 10)
(x2, 0)(0, 0)

rh

Fs1 Fs2

f

(e)(b)(a) (c) (d )

Figure 2. (a – e) The neuromuscular BTSLIP model with a rigid trunk and legs modelled as massless prismatic springs and definitions of
walking phases. A rectus femoris (RF) and a hamstrings (HAM) muscle group are added to each leg. The muscles involved during each
phase of walking are coloured in red with different shades. Muscles with dark red colour inject more force than those shown in light red.
Also, the muscles silent in each phase are shown in grey. The chequered circles approximate the centre of mass (CoM) location.
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travels on two massless compliant legs. Similar to the SLIP, in the BTSLIP model, the segmented leg is

represented by a virtual leg, between the hip and the foot. In the FMCH model (figure 1c), adjustable

springs and in the nmF model, two muscles between each leg and the trunk (figure 1d) provide the

required hip torques. Except the hip actuation mechanism, the rest of these three models are equal, as

explained in the following. In figure 2, a schematic of the model is illustrated in one step.

The walking gait comprises two phases: single support and double support. The single support phase

describes a period in which only one leg is in contact with the ground (stance leg) and the other, called

swing leg, moves forward until its distal end hits the ground (i.e. touch down). Following the onset of

swing leg contacting the ground, the double support phase (having two stance legs) starts. At the end

of this phase, the former stance leg takes off, while the former swing leg remains on the ground

which results in the next single support phase. In both phases, the hip torques exerted between the

trunk and the stance legs (t1, t2) control the interactions between the stance leg and the upper body.

Changes between single support and double support phases can be easily identified as one leg touches

or leaves the ground. For a leg, the stance phase initiates once the leg touches the ground. During this phase,

the spring force along the leg axis is given by Fs ¼ k(l 2 l0) where, l, l0 and k denote the leg length, the rest

length of leg spring and stiffness, respectively. Stance phase ends once the leg leaves the ground. This

moment is detected when the ground reaction force (GRF) has no vertical component. That is when

GRFy ¼ 0. According to figure 2, the generalized coordinates required for describing the dynamical

equations of the BTSLIP model are chosen as [x, y, f ]T. In this vector, x, y and f represent the horizontal

and vertical positions of CoM and trunk orientation, respectively, while the superscript T denotes

transpose function, hereafter. As shown in figure 2, the hip position (Xh ¼ [xh, yh]T), which is the

intersection of the two legs on the trunk, is placed below the CoM with distance rh:

xh ¼ x� rh cosf

and yh ¼ y� rh sinf:

)
(2:1)

Also, the ground reaction force GRF¼ [GRFx, GRFy]T is produced as a result of the hip torque t and the

spring force Fs along the leg axis:

GRFx ¼ Fs
xh

l
þ t

yh

l2

and GRFy ¼ Fs
yh

l
� t

xh

l2
:

9>=
>; (2:2)

The dynamical equations in the single support phase can be written as follows:

m€x ¼ GRFx,

m€y ¼ GRFy �mg

and J€f ¼ tþ rh(GRFx sinf� GRFy cosf),

9>>=
>>; (2:3)

where g is the gravitational acceleration and m is the body mass.
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Deriving the motion dynamics in the double support phase amounts to taking into account the spring

force of both legs. For the sake of simplicity, unless otherwise specified, the parameters related to the first

and second legs are denoted by subscripts 1 and 2, respectively. In this phase, the controller applies hip

torques (t1, t2) to maintain balance and consequently to keep the system stable. Defining the position of

the second stance leg by [x2, 0],1 the dynamical equations in the double support phase are as follows:

m€x ¼ GRFx1 þGRFx2 ,

m€y ¼ GRFy1 þGRFy2 �mg,

J€f ¼ t1 þ t2 þ rh( GRFx1 þ GRFx2 ) sinf

and � rh( GRFy1 þGRFy2 ) cosf,

9>>>>=
>>>>;

(2:4)

where

GRFx1 ¼ Fs1
xh

l1
þ t1

yh

l21
,

GRFy1 ¼ Fs1
yh

l1
� t1

xh

l21
,

GRFx2 ¼ Fs2
xh � x2

l2
þ t2

yh

l22
,

GRFy2 ¼ Fs2
yh

l2
� t2

xh � x2

l22

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:5)

and

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xh)2 þ (yi � yh)2

q
, i ¼ 1, 2: (2:6)
2.1.2. Muscle model

In the nmF model, we replace the adjustable hip springs of the FMCH model [12] with the Hill-type

muscle models for posture control. Here, we briefly describe the muscle modelling. In the proposed

neuromuscular model which is added on the top of the BTSLIP model, the hip torques (t1, t2) result

from muscle forces. Each leg has its own pair of muscles. In general, the muscle-tendon complex

(MTC) consists of a contractile element (CE) and a series elastic element (SEE). However, we only

consider the CE part of the MTC to investigate the muscle properties (similar to [19]). In the Hill-type

muscle model [16], the generated force by CE is given by

FCE(A, lCE, vCE) ¼ AFmaxfl(lCE)fv(vCE), (2:7)

where A is the muscle activation level which accepts values between 0 and 1. In addition, lCE, vCE and

Fmax are the muscle length, contraction speed and maximum isometric force, respectively. For the

force–length fl(lCE) and the force–velocity fv(vCE) relations, we use the equations introduced by

Aubert [20], which are used in the neuromuscular model of Geyer et al. [21–23].

fl(lCE) ¼ exp c
lCE � lopt

loptw

����
����
3

" #
: (2:8)

In this equation, lopt is the optimal CE length, w denotes the width of the bell-shaped fl(lCE) curve and c is

a constant value that can be considered as the muscle stiffness. The force–velocity fv(vCE) is as follows:

fv(vCE) ¼
vmax�vCE

vmaxþkvCE
vCE , 0

N þ (N � 1) vmaxþvCE

7:56kvCE�vmax
vCE � 0

(
, (2:9)

where, vmax, k and N are constant values representing the maximum contraction velocity, the curvature

constant and the eccentric force enhancement [20], respectively. The values for all the constant

coefficients are borrowed from [21].

The antagonistic pair of muscles in the nmF model represent the muscles actuating the upper limb of

the human segmented leg. The biarticular thigh muscles (i.e. rectus femoris (RF) and hamstrings (HAM))

in the human body contribute to both knee and hip joints. In [24], it was shown that by setting the hip to
1It is assumed that the rear leg is positioned at [0, 0].
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knee lever arm ratio of a biarticular thigh muscle to 2, the segmented leg model, shown in figure 1e, will

be equal to the nmF model, depicted in figure 1d. Hence, by representing the segmented leg with a

virtual compliant leg, the biarticular thigh muscles can be responsible for balance control without

cross-talk to the stance leg axial direction. Now, according to figure 2, the RF and HAM muscle

lengths (LRF and LHAM) are related to the angle between the trunk and the corresponding leg (wh). In

the following, the equations for the single support or the rear leg in the double support are presented.

Considering the position of the foot contact, similar formulation can be found for the front leg.

LRF ¼ LRF0
þ rr0(wh � wref(RF))

and LHAM ¼ LHAM0
þ rr0(wref(HAM) � wh)

)
(2:10)

in which, r0 is the constant moment arm of the muscle and LRF0
and LHAM0

represent the rest length of the

RF and HAM muscles, respectively. Also, r accounts for the muscle pennation angles and wref(RF) and

wref(HAM) are the reference joint angles defined for the RF and HAM muscles, respectively. In addition,

the hip angle can be calculated as follows:

wh ¼ f� tan�1 yh

xh

� �
: (2:11)

The torque that each muscle (RF and HAM) exerts at the hip joint for one leg is given by

tRF ¼ FCE(LRF)r0

and tHAM ¼ FCE(LHAM)r0

)
(2:12)

and the total hip torque is resulted from these two torques as

t ¼ tHAM � tRF: (2:13)

As already mentioned, in the double support phase, similar torques can be found for the second leg that

should be summed up with this value to calculate the total hip torque on the upper body. Using these

equations for the hip torque in equations (2.2)–(2.5) completes the dynamical formulation of the

neuromuscular BTSLIP model. The next step is to address the control approach required for achieving

stable and robust walking.
2.2. Control approach
Inspired by the Raibert control approach [7], we consider three locomotor subfunctions [25] to generate a

stable gait: (i) stance, the axial function of the stance leg; (ii) swing, the rotational movement of the swing

leg; and (iii) balance, upper body posture control. Since the stance leg is passive (linear spring), the

control strategy for the BTSLIP model consists of the swing and balance subfunctions (for more

details about the locomotion subfunction concept see [25]). In the swing phase, a leg placement

strategy for adjusting the swing leg orientation is needed. For this, the leg angle of attack should

result in appropriate initiation of the next double support phase. The second task is stabilization of

the upper body which is exerted in both stance and swing phases. Accordingly, we propose an

adaptive control approach to maintain balancing. In the following, we detail our proposed control

methods at each phase for achieving a stable and robust walking.

Stability is defined based on the step to fall concept which is a common approach in model-based

model analyses of legged locomotion [26,27]. Here, the model can predict stable walking at a certain

speed if it can take 50 steps, while the variations in motion speed at each step are not more than 5%

of the specified speed. In other words, stability is defined by staying in the neighbourhood of a limit

cycle. The system is robust against a certain perturbation, if it can maintain stability, specified here as

50 steps after perturbation occurrence.
2.2.1. Velocity-based leg adjustment during swing phase

A fixed angle of attack (swing leg angle with respect to ground) is sufficient for stable running [26] and

walking [5]. However, robustness against perturbations or uncertainties with a large domain of attraction

cannot be achieved without leg angle adaptation. In earlier studies, the adjustment of the leg orientation

was accomplished based on the horizontal velocity [10,28,29]. In [30], a robust strategy for controlling the

leg angle, named VBLA (velocity-based leg adjustment) is proposed which takes into account both the
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CoM velocity and the gravity vectors. The potential to mimic human leg adjustment in different gaits,

supporting larger range of walking velocities and having higher robustness against perturbations are

some of the advantages of VBLA compared to previous approaches [30]. Due to these characteristics,

we select this method in this paper.

In VBLA, a weighted average of the CoM velocity vector V and gravity vector G yields the leg

direction O as follows:

O ¼ (1� m)V þ mG, (2:14)

with weighting constant m ranging from 0 to 1. Here, m ¼ 0 corresponds to a position where the leg is in

parallel with the CoM velocity vector and m ¼ 1 results in vertical leg orientation.
rnal/rsos
R.Soc.open

sci.6:181911
2.2.2. Posture stabilization with neuromuscular FMCH

An efficient stable bipedal gait (e.g. in humans) requires an upright posture [11]. To generate stable

walking with the neuromuscular BTSLIP model, a proper control framework for balancing the upper

body is needed. In [12], the leg FMCH was introduced as a new model for human-like postural

control in walking. In this work, leg forces were used as feedback signals to exert the torque profile

required at the hip joint. This concept was then applied to a BTSLIP model through stiffness

adjustment of the rotational springs for stabilizing the posture (figure 1c). In the FMCH model, the

hip torques are given with the following equation:

t ¼ GFs(wh0 � wh) (2:15)

in which, G, Fs, wh and wh0 are the normalized stiffness, the leg force, the angle between the upper body

and the leg and the rest angle of the spring, respectively. It was shown that the leg force feedback (e.g.

approximated using sensory information from knee extensor muscles) is crucial to tune the hip

compliance, required for balancing. This model can generate different stable gaits (hopping, running

[14] and walking [12]) in addition to precise prediction of human posture control in walking at

different speeds [15].

As an extension of FMCH to the neuromuscular level, in this work, the leg force Fs, which is the GRF

in the leg axial direction, is employed as a sensory pathway for activating RF and HAM muscles. For that,

the sensory signal (Fs) is delayed, gained and subsequently passed through the excitation-contraction

coupling (ECC) to create the muscle activation A (used in Hill muscle model, equation (2.7)). A

similar reflex scheme was shown to be advantageous in generating a stable hopping when using

muscle length and force feedbacks [21]. However, it differs from our approach in the sense that we

employ the leg force instead of muscle force as the sensory feedback. As the leg force Fs can be

approximated by vastus muscle force in human body, our control approach can be interpreted as

using the reflex signal from another muscle (vastus) to adjust the activation of the biarticular thigh

muscles. Similar reflex pathways are used for walking in two dimensions [22] and three dimensions

[23], while the control structure and feedback gains are obtained by optimization methods. Instead,

our reflex control is developed based on a bioinspired posture control method (VPP concept). Figure 3

illustrates the proposed control structure, schematically. This model is termed nmF, standing for

neuromuscular FMCH, which is demonstrated in figure 3 within the green dashed box. This neural

feedback (reflex) can be formulated as follows:

STIM(t) ¼ STIM0þ GFs(t� DP)

and T
@A
@t
¼ Sat(STIM(t))� A(t)

9>=
>; (2:16)

where in the first line, STIM, STIM0 and DP are defined as the stimulation signal, the stimulation bias and

the feedback delay, respectively. In the second line, the Sat function is for saturating the stimulation to a

predefined range and a first-order differential equation relating stimulation to activation signal is

described with T being a time constant.

To demonstrate the different levels of reaction to perturbations, we compare preflex control [31] with

adaptive nmF. Preflexes are defined as the intrinsic properties of muscles at the lowest level of the

hierarchical sensorimotor neuromuscular control [17]. An optimal predefined stimulation to control

muscle activation exhibits similarities to human preflex behaviour [31] with minimal effort for

generating repetitive motions [18,32]. In this feed-forward control, the activation signals to the muscles

are chosen as those obtained in the nmF model in steady walking. Finally, in adaptive nmF, for
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Figure 3. Control loop schematic. In the inner control loop (i.e. neuromuscular FMCH control loop), the stance leg force is used as
the feedback signal for creating muscle activations. In the outer loop, shown in red (i.e. LQR control loop), a discrete LQR controller is
implemented to tune the reflex gains once per step at mid-stance (even based).
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increasing the robustness against perturbations we employ a discrete LQR controller to readjust the

muscle gains at each step. More details are discussed in the following.
81911
2.2.3. Adaptive nmF for posture control

Our proposed neuromechanical model addresses balance control in bipedal walking. Using reflex control

in the nmF model provides robustness against perturbations based on low-level sensory information and

motor control. However, in human locomotion, higher level control (e.g. from brain based on visual or

vestibular system) can increase robustness by reacting to larger perturbations. For implementing such a

higher control layer, we adapt the reflex gains using a discrete LQR (linear quadratic regulator) [33], once

per step. We use S ¼ [ _xk, yk, _yk, fk, _fk] as the descritized model of walking by linearizing the continuous

system dynamics about the Poincaré section S�. The mid-stance configuration in which the stance leg is

completely vertical in the middle of the single support is used to define S�. A stable limit cycle in the

continuous model equals the stable fixed point of the discrete model. In our reduced order linearized

model, the horizontal position of the CoM (xk) is skipped, because this state is incremental during

forward walking and its regulation to a fixed value means stopping movement which is against stable

walking at a certain speed. The discrete linearized model is given by

DSkþ1 ¼ AsDSk þ BsDUk, (2:17)

with

DSk ¼ Sk � S� ¼ [D _xk, Dyk, D _yk, Dfk, D _fk], (2:18)

DUk ¼ Uk �U� ¼ [GHAM GRF]T
k � [G�HAM G�RF]T (2:19)

and As ¼
@F
@S

(S�, U�), Bs ¼
@F
@U

(S�, U�), (2:20)

where F represents the dynamical equation of the system and the Jacobian matrices As and Bs are the

derivatives of F with respect to the state and the input vectors at S*, respectively. Here, Uk denotes the

control vector which comprises RF and HAM muscle feedback gains. Also, U� ¼ G� ¼ [G�HAM G�RF]T

indicates the initial muscle gains before adaptation.

Since the stability of the original continuous system is related to the stability of the corresponding

Poincaré map, we employ a discrete LQR controller which minimizes the following cost function to

stabilize the discrete dynamical model of equation (2.17):

J ¼
X1
k¼1

DST
k QDSk þ DUT

k RDUk, (2:21)

where Q and R are weighting factors defined according to performance and stability metrics. The optimal

control sequence minimizing equation (2.21) and stabilizing equation (2.17) is given by state feedback

DUk ¼ �KDSk, (2:22)



Table 2. BTSLIP model parameters. The model parameters are set to match the characteristics of an ordinary human being.

parameter definition value (units)

m trunk mass 80 (kg)

J trunk moment of inertia 4.6 (kg m2)

rh distance hip – CoM 0.1 (m)

L0 leg rest length 1 (m)

g gravitational acceleration 9.81 (m s22)

m leg adjustment parameter 0.34

kN normalized leg stiffness 40

royalsocietypublishing.org/journal/rsos
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with K being the optimal gain vector found iteratively from the following equations:

K ¼ (BT
s PBsþR)�1BT

s PAs (2:23)

and P ¼ Qþ AT
s (P� PBs(BT

s PBsþR)�1BT
s P)As (2:24)

In this paper, we refer to the combination of neuromuscular FMCH and LQR controller as adaptive
nmF. The control loop schematic is illustrated in figure 3, by the red dashed line.

2.3. Human experiment
In order to compare the modelling results with human experiments, we have employed a dataset

published in [34]. This dataset was collected in walking experiments on a treadmill (type ADAL-WR,

Hef Tecmachine, Andrezieux Boutheon, France) at different speeds. However, we have selected one

speed for comparison. For other speeds, we need to tune the model parameters if it is in the

achievable walking speeds with SLIP-based models (i.e. 0.5–1.5 m s21). Motion capture data and GRF

data are measured by Qualisys set-up (Gothenburg, Sweden) from 11 markers and from force sensors

within the treadmill, respectively. Twenty-one subjects (11 females, 10 males, age: 22–28 yrs, height:

1.64–1.82 m, weight: 59.2–82.6 kg) were asked to walk at different percentages of their preferred

transition speeds (PTS).2 The treadmill speed was employed as the walking speed. Here, we use

walking data for 50% PTS which is about 1 m s21, addressing moderate walking speed. Kinematic and

kinetic data processing were described in [34].
3. Results
In this section, the performance of the proposed control schemes on the neuromuscular BTSLIP models is

compared in walking. We use the VBLA for leg adjustment and force feedback-based strategies by

modulating the hip spring stiffness (FMCH) or muscle activation (nmF and adaptive nmF) for balance

control. The BTSLIP and nmF model parameter values are summarized in tables 2 and 3, respectively.

The forward velocity considered for this model is 1 m s21. Also, unless noted otherwise, the values of

Q and R matrices are chosen as identity matrices of proper dimensions, giving similar weights to the

error and energy consumption.

3.1. Comparison to human walking
Figure 4 shows the simulation and experimental results from different perspectives (kinetics and

kinematics). In figure 4a, the CoM movement in vertical direction is depicted for FMCH and nmF

models along with the human data. Double humped vertical displacement of CoM during one stride

of walking is observed in both human experiments and simulation models. The CoM vertical

displacements are about 5 cm for both cases. Figure 4b illustrates the torque applied by the hip

springs for FMCH model and by the hip muscles for nmF model. Except the time shift seen in this

figure, one can easily observe that the torque profile of the model is the same as the human hip
2PTS is the preferred speed for transition between running and walking which is typically about 1.9–2.1 m s21 for humans [34].



Table 3. Muscle model parameters.

value (units)

parameter definition RF HAM

Lmtu0 MTU reference length 0.11 (m) 0.11 (m)

fref reference joint angle 3.291 (rad) 3.246 (rad)

r constant lever contribution 0.1 (m) 0.1 (m)

Fmax maximum isometric force 2000 (N) 2000 (N)

Lopt optimum length 0.111 (m) 0.111 (m)

Vmax maximum shortening velocity 212(Lopts
21) 212(Lopts

21)

t excitation-contraction coupling 1 (ms) 1 (ms)

Dp feedback time delay 1 (ms) 1 (ms)

STIM0 constant value 0.01 0.01

G gain of muscle feedback 0.624/Fmax 0.936/Fmax

w width of bell-shaped 0.2 (m) 0.2 (m)

c constant value ln(0.05) ln(0.05)

N eccentric force enhancement 1.5 1.5

k curvature constant 5 5

r muscle pennation angle 0.5 0.5
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torque profile. Figure 4c,d shows the horizontal and vertical components of the GRF. The results from the

horizontal GRF depict similarity to what is observed in humans. The small positive peak force at

the onset of walking cycle in human data shows the impact effect of touchdown which is missing in

our models because the legs are massless. This simplification could also result in shorter swing phase

in SLIP-based models compared to human walking. These differences could also be attributed to the

absence of foot in the BTSLIP model, but still the patterns and the GRF magnitudes are comparable.
3.2. Robustness against external perturbations
To investigate the robustness of the model along with the employed control approach in face of external

disturbances, we perturbed the system by a sudden push on the upper body. For emulating this impact,

the trunk angular velocity ( _f) is largely magnified (to 2508), instantaneously. The results of comparing

the preflex, the FMCH, the nmF and the adaptive nmF control methods, are displayed in figure 5. The

orientation of the trunk with respect to the horizontal axis and its angular velocity are depicted in

figure 5a and 5b, respectively. In the preflex control, after the perturbation, the trunk is leaning

forward and its angle is deviating from the vertical orientation. This situation is perpetuated for

almost 7 s until both legs lose contact with the ground and accordingly the model loses its stability.

In the FMCH model, large oscillations in the trunk orientation are induced due to the perturbation

occurrence. Yet, as seen in the figures, this model is able to recover from the perturbation and

continues walking. In the nmF model, the trunk angle tends to return to the upright posture more

quickly and it takes less than 2 s for this model to return to its previous orientation pattern. This is a

significant improvement in terms of perturbation recovery compared to the aforementioned models.

Adaptation of the control gains with discrete LQR also enables the body to keep upright posture after

perturbation occurrence with a settling time similar to nmF, without considerable oscillations. The

feedback gains for both nmF and adaptive nmF models in course of convergence to the steady

walking are illustrated in figure 5c. This figure shows that following the onset of perturbation, the



80 85 90 95 100

–40

–20

0ḟ 
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muscle gains are adjusted and then settled quickly to their previous values. Finally, figure 5d displays the

consumed energy J at each stride for all models. Here, the consumed energy in one stride (with duration

T) is computed from multiplication of hip torque ti and hip angle whi
, (i ¼ 1, 2) as follows:

J ¼
ðT

0

j _wh1
(t)t1(t)j þ j _wh2

(t)t2(t)jdt, (3:1)

in which the absolute value function is used to sum up the magnitude of power from the positive and

negative works. Thanks to the inherent characteristics of nmF model, less power and consequently energy

is consumed during rejecting the disturbance and converging to a stable walking gait compared to the

FMCH model. The results for the adaptive nmF model also show that adjusting reflex gains according to

the LQR controller output has effectively helped reduce the consumed energy after perturbations.

To better understand the dynamic behaviour in reaction to perturbations, the phase portrait (with f

and _f being the state variables) is displayed in figure 6 for all models except preflex control, which is

unstable after perturbation. Starting from similar initial conditions, the states in the (adaptive) nmF

model converge to the stable limit cycle much faster than those of the FMCH model. Since a

compromise between efficiency and performance can be set by tuning R and Q in the LQR method

(adaptive nmF), increasing efficiency (figure 5d ) results in lower performance (higher deviation from

the limit cycle, figure 6) compared to nmF, which is not significant.
3.3. Efficiency and performance in adaptive nmF
The constraints and potentials of the proposed adaptive method can be verified by investigating the

effect of weighting R and Q on the efficiency and performance of locomotion. By now, we always set

these matrices to identity matrix I. Here, we repeat the perturbation recovery simulations for three

different cases: (i) Q ¼ 100I, R ¼ I, (ii) Q ¼ R ¼ I and (iii) Q ¼ I, R ¼ 100I. The results obtained from

this simulation are illustrated in figure 7. The effects of selecting different pairs of (Q, R) on the

orientation of trunk and its angular velocity are depicted in figure 7a and 7b, respectively. The highest

performance with the fastest regulation to steady state after perturbation is achieved in case (i), in

which Q is larger than R. Also, by calculating the peak power and energy consumption at the hip

joint as shown in figure 7c and 7d, respectively, it can be observed that case (i) has the highest of

both. Putting more weight on the R matrix as in case (iii) yields the lowest control effort (energy and

peak power) while having the largest oscillations after perturbations.
3.4. Basin of attraction
Robustness against perturbations among different methods are compared in figures 5 and 6, by

investigating the response to a sample perturbation. For a more comprehensive and descriptive
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comparison, the basin of attraction—identified by a range of initial trunk angles and angular velocities

in which a model can predict stable walking—is used. For computing the basin of attraction, we

perturbed both the trunk angle (from 60 to 1208 with a resolution of 18) and its velocity (from 2200

to 1508 s21 with a resolution of 0.1 rad s21). Then, those sets of initial conditions in the space (f, _f) for

which models can maintain stable walking are considered as the basin of attraction for that model.

The results displayed in figure 8 reveal that the size of basin of attraction in the nmF model is

approximately twice that of the FMCH model. Also, this figure shows that the adaptive nmF model

has the largest basin of attraction, as expected. Expansion of the basin of attraction from top-left to

bottom-right is clearly observable using neuromuscular model and high-level gain adaptation. These

results show that our bioinspired neuromuscular models (e.g. nmF) are considerably less sensitive to

the initial conditions (or probable perturbations) compared to the biomechanical models (e.g. FMCH).
4. Discussion
There is a long debate about the applicability of conceptual models [1,3] on legged locomotion [2]. It is

still challenging to translate biological movements into robotic systems. In order to achieve this goal, it is

important to learn from biology without getting stuck in details of modelling the system’s design and

control. For this, mechanical template models [1] can help better understand the basic principles of

legged locomotion. These models can then be extended to anchor models such that they can be

implemented on robots or be verified in biological gait experiments. One of such template models is

based on the virtual pivot point (VPP) concept [11], which is selected for posture control in this

paper. Previously, we used the FMCH model [12] as a representation of the VPP concept. However,

on a structural level, this control model does not describe how such kind of feedback-augmented

passive template models can be realized in the human body by neuromuscular control. Here, we

demonstrated the functional coherence of force modulated compliant hip (FMCH) and positive leg

force feedback on hip muscles (nmF). With this, we can transfer the (mechanical) template control
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structure directly to the neuromuscular control structure. This highlights that in this context, the muscle

function can be simplified to an adjustable mechanical spring sharing the same control approach

(positive leg force feedback) for postural balance. With this, a descriptive theory of FMCH can be

translated to a synthetic theory of designing neuromuscular models for biological movements.

In addition to the muscles’ intrinsic properties as part of the biological actuation system, their

interplay in the musculoskeletal system can be beneficial for motor control. The contribution of

biarticular muscles with well-defined parameters (e.g. lever arm ratio) in control of GRF direction was

shown in human perturbed standing [35] and walking experiments [36]. Using GRF direction control

with biarticular muscles, the VPP can be obtained by adjustment of muscle stiffness based on the leg

force feedback [35]. Here, it was shown that considering 2:1 as the ratio of hip to knee lever arms of

biarticular thigh muscles (modelled by springs), the segmented leg model can be simplified into the

FMCH model [35]. Hence, in our model, the hip muscles are mimicking RF and HAM muscles in

the human body. To validate these theoretical findings for robotic applications, we previously

demonstrated that biarticular muscles outperform monoarticular ones in control of GRF direction by

comparing them in the humanoid legged robot BioBiped3 [24]. These achievements show how the

human musculoskeletal body design facilitates posture control and how it can be easily implemented

on a biped robot.

From the neuro-mechanical point of view, our proposed neuromuscular model predicts the

emergence of the VPP. To demonstrate that, the GRFs were plotted with respect to the coordinate

system centred at body CoM and aligned with trunk orientation in figure 9 for FMCH, nmF and

adaptive nmF models. In this figure, the estimated locations of VPP and CoM are also displayed with

red and green circles, respectively. The existence of an emerging intersection point shows that the

addition of muscle properties (e.g. damping effect represented by force–velocity relation) does not

result in deviating from the previous FMCH balance control concept. Moreover, it supports that

human muscles are able to control the upper body in a way that the VP concept holds. Hence, this

phenomenon is not just an observation, but a control principle.

Three different levels of design and control were addressed in this paper: (i) biomechanical design

(ii) neuromuscular control (inner loop) and (iii) event-based control (outer loop). The nmF and

adaptive nmF models were developed to focus on the second and third mentioned levels. Higher

performance and robustness could be achieved by tuning of the muscle mechanical properties and the

control parameters (reflex gains). This shows that in addition to the reflex control based on the sensor-

motor maps [37], higher level responses to perturbations can considerably enhance the locomotion

robustness. As shown in figure 8, the evolution of the models results in considerable enlargement of

the basin of attraction, meaning increase in robustness against postural perturbations. A similar

control hierarchy was observed in perturbation recovery when a small step inferred via visual scene is

reflected in a decreasing erector spinae stimulation and a forward trunk rotation [38]. Furthermore, it
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was shown that the motor cortex (MCx) issues voluntary motor commands and mediates reflex-like

responses to stretch upper limb muscles [39]. Damaged MCx or corticospinal tract results in severe

walking deficits in humans, e.g. foot drop [40,41]. Therefore, high-level event-based control of the

reflex gains in the proposed posture control is also supported by evidence in biological locomotor

systems. Our proposed LQR controller enables a compromise between efficiency and robustness.

Figure 7 shows how a trade-off between R and Q could be made based on the importance of energy

efficiency and tracking performance or robustness against perturbations. Such a parameter setting in

the higher level control might reflect human-specific behaviours and habits in daily life. Although the

cost function in LQR includes consumed energy it can also address peak power, as can be seen in

figure 7c.

In addition to the aforementioned findings, we have previously employed the nmF model to describe

gait asymmetries in stroke patients.3 This model predicted that the observed gait asymmetry was not

caused by deficits in the balance control, but was rather due to changes in stance and swing leg

control which is in line with findings in [42]. Such insights can help design function-specific

approaches to assist human locomotion, e.g. using exoskeletons. In some studies on neuromuscular

system behaviour after stroke, the muscle properties (volume [42], activation [43]) were analysed,

while in others the effects on locomotor subfunctions were investigated [44,45]. However, the huge

number of parameters in a detailed complex walking model makes understanding of the general

concepts of impaired gaits quite difficult. These concepts become more visible in a more abstract level

using the proposed template-based biomechanical models. For example, in a detailed model

developed in OpenSim (https://simtk.org/projects/hemigait), 23 d.f. and 54 muscle actuators are

considered and each muscle comprises many different parameters. Extracting high-level concepts from

these numerous parameters is almost impossible unless there exists an abstract model to explain

variations in walking and not in each muscle property. As there is no similar architecture (e.g. muscle-

like actuators) in exoskeletons, understanding the underlying mechanisms for asymmetry in stroke

walking based on the locomotor subfunction concept can help design and control assistive devices. In

[46], we showed that implementation of the FMCH concept on a lower-extremity powered exoskeleton

(LOPES II) supports this control approach for assisting (reducing metabolic cost) healthy subjects. In

future, similar methods can be implemented on assistive devices for rehabilitation training with patients.

In summary, the key advantages of our newly developed neuromuscular model can be categorized as

follows: (i) presenting a neuromechanical model to start the journey from template to anchors,

(ii) presenting a proof of concept to show that by considering physiological body properties (muscle

mechanics and neural control) FMCH can be translated into the human locomotor system,

(iii) demonstrating the stiffness modulation as described in FMCH in the neuromuscular system,

(iv) introducing LQR as an adaptation method for higher control level which can increase robustness and
3The results are not described in this paper, but reported in ‘Report on neuro-mechanical modelling of neurologically impaired gait’

(Deliverable 7.4) which is publicly available in http://www.balance-fp7.eu/private_area/archivo.php?archivo=34.

https://simtk.org/projects/hemigait
https://simtk.org/projects/hemigait
http://www.balance-fp7.eu/private_area/archivo.php?archivo=34
http://www.balance-fp7.eu/private_area/archivo.php?archivo=34
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efficiency. The modulation of reflex gain is also observed in human locomotion and can be represented in

future models by reflex networks with higher topological levels (e.g. neural networks modulating reflex gains).

Our future work involves establishing a more elaborate model for human locomotion as in an

extended nmF model with segmented legs. In order to develop assistive devices with higher quality

inspired by biological gaits, the concepts need to be implemented on more detailed models and

robots. These extended models will help to get a better match to gait kinematics and kinetics, e.g.

with respect to contact time and push-off mechanics. Our model predicted larger duty factors (stance

period over gait cycle duration) than what was observed experimentally, due to the inheritance of the

VPP concept [11]. For instance, a matching FMCH-based control could also be present at the ankle

joint. In fact, the concerted action of different leg joints and even of the upper body could together

contribute to the postural balance which can be represented by the VPP [47]. Such an extension of the

model could help to better understand the interplay between ankle and hip strategies for balance

control in both normal and pathological gaits.
R.Soc.open
sci.6:181911
5. Conclusion
In this study, balance control in a neuromuscular bipedal TSLIP model, which represents a template for

human walking, is achieved through activating hip muscles (RF and HAM) proportional to the leg force

feedback. We demonstrated that this positive feedback of leg force as muscle activation signals is

sufficient for ensuring a stable walking gait and also supports the VP concept that is observed in

humans. Moreover, we showed that the model by itself is able to increase the range of tolerable

disturbances and convergence speed to steady-state walking motion after perturbation. This is

attributed to the mechanical function of hip muscles. To further enlarge the domain of attraction and

consequently increase robustness, we used a discrete LQR controller designed using the Poincaré map.

These results can be interpreted as the outer-loop control. Such a higher level of control can also be

found in the neural system like corticospinal layer. This aligns with findings in human walking

experiments [38–41].

Both BTSLIP and FMCH are mechanical conceptual models which fail to describe the neuromuscular

structure of the human body. In order to validate the value of the predictions made by these models, we

need to test them in a more human-like body structure. The nmF model is an attempt to overcome this

limitation by representing a pair of thigh muscles and its neural control. In our study, the primary

outcome is not to show any advantages of the nmF model compared to the other two conceptual

models. Instead, we prove that the concepts hold for a more human-like structure of the model (the

idea of an anchor in relation to a template, [1]). With the nmF model, we can now investigate in more

detail which structural and functional conditions (e.g. muscle properties and arrangements) are

required for a given motor task (e.g. walking). This study is a step towards anchoring a conceptual

model. The FMCH model approach with adjustable compliance is a mechanically plausible

implementation of the bioinspired VPP concept. However, it is not a biologically plausible realization

of the posture control concept. Here, we tried to show that by considering muscle properties, the

concept is also biologically plausible and can result in control enhancement. In addition, the proposed

adaptive nmF could be considered as a new method to model a higher level of control, e.g. from the

spinal cord or the brain in humans. Such an adaptation increases the robustness of the gait against

perturbations. This could also open a new door in developing hierarchical neural controls, e.g. by

implementing reflex-based and central pattern generators at different control layers.
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