104 research outputs found

    A Wasserstein distance based multiobjective evolutionary algorithm for the risk aware optimization of sensor placement

    Get PDF
    Abstract In this paper we propose a new algorithm for the identification of optimal "sensing spots", within a network, for monitoring the spread of "effects" triggered by "events". This problem is referred to as "Optimal Sensor Placement" and many real-world problems fit into this general framework. In this paper sensor placement (SP) (i.e., location of sensors at some nodes) for the early detection of contaminants in water distribution networks (WDNs) will be used as a running example. Usually, we have to manage a trade-off between different objective functions, so that we are faced with a multi objective optimization problem. (MOP). The best trade-off between the objectives can be defined in terms of Pareto optimality. In this paper we model the sensor placement problem as a multi objective optimization problem with boolean decision variables and propose a Multi Objective Evolutionary Algorithm (MOEA) for approximating and analyzing the Pareto set. The evaluation of the objective functions requires the execution of a simulation model: to organize the simulation results in a computationally efficient way we propose a data structure collecting simulation outcomes for every SP which is particularly suitable for visualization of the dynamics of contaminant concentration and evolutionary optimization. This data structure enables the definition of information spaces, in which a candidate placement can be represented as a matrix or, in probabilistic terms as a histogram. The introduction of a distance between histograms, namely the Wasserstein (WST) distance, enables to derive new genetic operators, indicators of the quality of the Pareto set and criteria to choose among the Pareto solutions. The new algorithm MOEA/WST has been tested on two benchmark water distribution networks and a real world network. Preliminary results are compared with NSGA-II and show a better performance, in terms of hypervolume and coverage, in particular for relatively large networks and low generation counts

    Optimal Placement of Water Quality Monitoring Stations in Sewer Systems: An Information Theory Approach

    Get PDF
    A core problem associated with the water quality monitoring in the sewer system is the optimal placement of a limited number of monitoring sites. A methodology is provided for optimally design water quality monitoring stations in sewer networks. The methodology is based on information theory, formulated as a multi-objective optimization problem and solved using NSGA-II. Computer code is written to estimate two entropy quantities, namely Joint Entropy, a measure of information content, and Total Correlation, a measure of redundancy, which are maximized and minimized, respectively. The test on a real sewer network suggests the effectiveness of the proposed methodology

    Greedy algorithms for sensor location in sewer systems

    Get PDF
    Wastewater quality monitoring is receiving growing interest with the necessity of developing new strategies for controlling accidental and intentional illicit intrusions. In designing a monitoring network, a crucial aspect is represented by the sensors’ location. In this study, a methodology for the optimal placement of wastewater monitoring sensors in sewer systems is presented. The sensor location is formulated as an optimization problem solved using greedy algorithms (GRs). The StormWater Management Model (SWMM) was used to perform hydraulic and water-quality simulations. Six different procedures characterized by different fitness functions are presented and compared. The performances of the procedures are tested on a real sewer system, demonstrating the suitability of GRs for the sensor-placement problem. The results show a robustness of the methodology with respect to the detection concentration parameter, and they suggest that procedures with multiple objectives into a single fitness function give better results. A further comparison is performed using previously developed multi-objective procedures with multiple fitness functions solved using a genetic algorithm (GA), indicating better performances of the GR. The existing monitoring network, realized without the application of any sensor design, is always suboptimal

    A New Evolutionary Approach to Optimal Sensor Placement in Water Distribution Networks

    Get PDF
    The sensor placement problem is modeled as a multi-objective optimization problem with Boolean decision variables. A new multi objective evolutionary algorithm (MOEA) is proposed for approximating and analyzing the set of Pareto optimal solutions. The evaluation of the objective functions requires the execution of a hydraulic simulation model of the network. To organize the simulation results a data structure is proposed which enables the dynamic representation of a sensor placement and its fitness as a heatmap. This allows the definition of information spaces, in which the fitness of a placement can be represented as a matrix or, in probabilistic terms as a histogram. The key element in the new algorithm is this probabilistic representation which is embedded in a space endowed with a metric based on a specific notion of distance. Among several distances between probability distributions the Wasserstein (WST) distance has been selected: WST has enabled to derive new genetic operators, indicators of the quality of the Pareto set and criteria to choose among the Pareto solutions. The new algorithm has been tested on a benchmark water distribution network with two objective functions showing an improvement over NSGA-II, in particular for low generation counts, making it a good candidate for expensive black-box multi-objective optimizatio

    Optimal number of pressure sensors for real-time monitoring of distribution networks by using the hypervolume indicator

    Get PDF
    This article proposes a novel methodology to determine the optimal number of pressure sensors for the real-time monitoring of water distribution networks based on a quality hypervolume indicator. The proposed methodology solves the optimization problem for different numbers of pressure sensors, assesses the gain of installing each set of sensors by means of the hypervolume indicator and determines the optimal number of sensors by the variation of the hypervolume indicator. The methodology was applied to a real case study. Several robustness analyses were carried out. The results demonstrate that the methodology is hardly influenced by the method parameters and that a reasonable estimation of the optimal number of sensors can be easily achieved.info:eu-repo/semantics/publishedVersio

    Rule-based Decision Support System For Sensor Deployment In Drinking Water Networks

    Get PDF
    Drinking water distribution systems are inherently vulnerable to malicious contaminant events with environmental health concerns such as total trihalomethanes (TTHMs), lead, and chlorine residual. In response to the needs for long-term monitoring, one of the most significant challenges currently facing the water industry is to investigate the sensor placement strategies with modern concepts of and approaches to risk management. This study develops a Rule-based Decision Support System (RBDSS) to generate sensor deployment strategies with no computational burden as we oftentimes encountered via large-scale optimization analyses. Three rules were derived to address the efficacy and efficiency characteristics and they include: 1) intensity, 2) accessibility, and 3) complexity rules. To retrieve the information of population exposure, the well-calibrated EPANET model was applied for the purpose of demonstration of vulnerability assessment. Graph theory was applied to retrieve the implication of complexity rule eliminating the need to deal with temporal variability. In case study 1, implementation potential was assessed by using a small-scale drinking water network in rural Kentucky, the United States with the sensitivity analysis. The RBDSS was also applied to two networks, a small-scale and large-scale network, in “The Battle of the Water Sensor Network” (BWSN) in order to compare its performances with the other models. In case study 2, the RBDSS has been modified by implementing four objective indexes, the expected time of detection (Z1), the expected population affected prior to detection (Z2), the expected consumption of contaminant water prior to detection, and the detection likelihood (Z4), are being used to evaluate RBDSS’s performance and compare to other models in Network 1 analysis in BWSN. Lastly, the implementation of iv weighted optimization is applied to the large water distribution analysis in case study 3, Network 2 in BWSN

    Water quality sensor placement: a multi-objective and multi-criteria approach

    Full text link
    [EN] To satisfy their main goal, namely providing quality water to consumers, water distribution networks (WDNs) need to be suitably monitored. Only well designed and reliable monitoring data enables WDN managers to make sound decisions on their systems. In this belief, water utilities worldwide have invested in monitoring and data acquisition systems. However, good monitoring needs optimal sensor placement and presents a multi-objective problem where cost and quality are conflicting objectives (among others). In this paper, we address the solution to this multi-objective problem by integrating quality simulations using EPANET-MSX, with two optimization techniques. First, multi-objective optimization is used to build a Pareto front of non-dominated solutions relating contamination detection time and detection probability with cost. To assist decision makers with the selection of an optimal solution that provides the best trade-off for their utility, a multi-criteria decision-making technique is then used with a twofold objective: 1) to cluster Pareto solutions according to network sensitivity and entropy as evaluation parameters; and 2) to rank the solutions within each cluster to provide deeper insight into the problem when considering the utility perspectives.The clustering process, which considers features related to water utility needs and available information, helps decision makers select reliable and useful solutions from the Pareto front. Thus, while several works on sensor placement stop at multi-objective optimization, this work goes a step further and provides a reduced and simplified Pareto front where optimal solutions are highlighted. The proposed methodology uses the NSGA-II algorithm to solve the optimization problem, and clustering is performed through ELECTRE TRI. The developed methodology is applied to a very well-known benchmarking WDN, for which the usefulness of the approach is shown. The final results, which correspond to four optimal solution clusters, are useful for decision makers during the planning and development of projects on networks of quality sensors. The obtained clusters exhibit distinctive features, opening ways for a final project to prioritize the most convenient solution, with the assurance of implementing a Pareto-optimal solution.Brentan, B.; Carpitella, S.; Barros, D.; Meirelles, G.; Certa, A.; Izquierdo Sebastián, J. (2021). Water quality sensor placement: a multi-objective and multi-criteria approach. Water Resources Management. 35(1):225-241. https://doi.org/10.1007/s11269-020-02720-3S225241351Barak S, Mokfi T (2019) Evaluation and selection of clustering methods using a hybrid group mcdm. Expert Syst Appl 138:112817Berry JW, Fleischer L, Hart WE, Phillips CA, Watson JP (2005) Sensor placement in municipal water networks. J Water Resour Plan Manag 131 (3):237–243Bouyssou D, Marchant T (2015) On the relations between electre tri-b and electre tri-c and on a new variant of electre tri-b. Eur J Oper Res 242(1):201–211Brentan B, Carpitella S, Izquierdo J, Luvizotto E Jr, Meirelles G (2019) A multi-objective and multi-criteria approach for district metered area design: water operation and quality analysis. In: International conference on mathematical modeling in engineering & human behaviour, vol 2019, pp 110–117Brito AJ, de Almeida AT, Mota CM (2010) A multicriteria model for risk sorting of natural gas pipelines based on electre tri integrating utility theory. Eur J Oper Res 200(3):812–821Broad DR, Maier HR, Dandy GC, Nixon JB (2008) Optimal design of water distribution systems including water quality and system uncertainty. In: Water distribution systems analysis symposium, vol 2006, pp 1–17Candelieri A, Conti D, Archetti F (2014) A graph based analysis of leak localization in urban water networks. Procedia Eng 70:228–237Carpitella S, Brentan B, Montalvo I, Izquierdo J, Certa A (2018a) Multi-objective and multi-criteria analysis for optimal pump scheduling in water systems. EPiC Series Eng 3:364–371Carpitella S, Certa A, Izquierdo J, La Fata CM (2018b) k-out-of-n systems: an exact formula for the stationary availability and multi-objective configuration design based on mathematical programming and topsis. J Comput Appl Math 330:1007–1015Carpitella S, Ocaña-Levario SJ, Benítez J, Certa A, Izquierdo J (2018c) A hybrid multi-criteria approach to gpr image mining applied to water supply system maintenance. J Appl Geophy 159:754–764Certa A, Enea M, Galante GM, La Fata CM (2017) Electre tri-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Comput Indust Eng 108:100–110Cheung P, Piller O, Propato M (2005) Optimal location of water quality sensors in supply systems by multiobjective genetic algorithms. In: Eight international conference on computing and control in the water industry CCWI05, vol 1, p 2Christodoulou SE, Gagatsis A, Xanthos S, Kranioti S, Agathokleous A, Fragiadakis M (2013) Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resour Manag 27 (13):4443–4468Corrente S, Greco S, Słowiński R (2016) Multiple criteria hierarchy process for electre tri methods. Eur J Oper Res 252(1):191–203Costa AS, Govindan K, Figueira JR (2018) Supplier classification in emerging economies using the electre tri-nc method: a case study considering sustainability aspects. J Clean Prod 201:925–947De Schaetzen W, Walters G, Savic D (2000) Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water 2(2):141–152de Winter C, Palleti VR, Worm D, Kooij R (2019) Optimal placement of imperfect water quality sensors in water distribution networks. Comput Chem Eng 121:200–211Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6 (2):182–197Dias LC, Antunes CH, Dantas G, de Castro N, Zamboni L (2018) A multi-criteria approach to sort and rank policies based on delphi qualitative assessments and electre tri: the case of smart grids in brazil. Omega 76:100–111Eliades DG, Kyriakou M, Vrachimis S, Polycarpou MM (2016) Epanet-matlab toolkit: An open-source software for interfacing epanet with matlab. In: Proceedings of the 14th international conference on computing and control for the water industry, CCWIFernandez E, Navarro J (2011) A new approach to multi-criteria sorting based on fuzzy outranking relations: the theseus method. Eur J Oper Res 213 (2):405–413Fernández E, Figueira JR, Navarro J, Roy B (2017) Electre tri-nb: a new multiple criteria ordinal classification method. Eur J Oper Res 263 (1):214–224Figueira JR, Greco S, Roy B, Słowiński R (2010) Electre methods: main features and recent developments. In: Handbook of multicriteria analysis. Springer, New York, pp 51–89Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of electre methods and their recent extensions. J Multi-Criteria Dec Anal 20 (1-2):61–85Francés-Chust J, Brentan BM, Carpitella S, Izquierdo J, Montalvo I (2020) Optimal placement of pressure sensors using fuzzy dematel-based sensor influence. Water 12(2):493Gandy M (2004) Rethinking urban metabolism: water, space and the modern city. City 8(3):363–379Giudicianni C, Herrera M, Di Nardo A, Greco R, Creaco E, Scala A (2020) Topological placement of quality sensors in water-distribution networks without the recourse to hydraulic modeling. J Water Resour Plan Manag 146 (6):04020030Hart WE, Murray R (2010) Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. J Water Resour Plan Manag 136(6):611–619Herrera M, Abraham E, Stoianov I (2016) A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour Manag 30(5):1685–1699Huang JJ, McBean EA, James W (2008) Multi-objective optimization for monitoring sensor placement in water distribution systems. In: Water distribution systems analysis symposium, vol 2006, pp 1–14Kapelan ZS, Savic DA, Walters GA (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481–492Lee JH (2013) Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy 15(9):3419–3434Liu Z, Ming X (2019) A methodological framework with rough-entropy-electre tri to classify failure modes for co-implementation of smart pss. Adv Eng Inform 42:100968Marchi A, Salomons E, Ostfeld A, Kapelan Z, Simpson AR, Zecchin AC, Maier HR, Wu ZY, Elsayed SM, Song Y et al (2013) Battle of the water networks ii. J Water Resour Plan Manag 140(7):04014009Mohammed A, Harris I, Soroka A, Nujoom R (2019) A hybrid mcdm-fuzzy multi-objective programming approach for a g-resilient supply chain network design. Comput Indust Eng 127:297–312Montalvo I, Izquierdo J, Pérez-garcía R, Herrera M (2014) Water distribution system computer-aided design by agent swarm optimization. Comput-Aided Civ Inf Eng 29(6):433–448Mousseau V, Slowinski R, Zielniewicz P (2000) A user-oriented implementation of the electre-tri method integrating preference elicitation support. Comput Opera Res 27(7-8):757–777Nafi A, Crastes E, Sadiq R, Gilbert D, Piller O (2018) Intentional contamination of water distribution networks: developing indicators for sensitivity and vulnerability assessments. Stoch Environ Res Risk Assess 32(2):527–544Neto JGD, Machado MAS, Gomes LFAM, Caldeira AM, Sallum FSV (2017) Investments in a new technological infrastructure: Decision making using the electre-tri methodology. Procedia Comput Sci 122:194–199Ohar Z, Lahav O, Ostfeld A (2015) Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Water Res 73:193–203Oliker N, Ostfeld A (2015) Network hydraulics inclusion in water quality event detection using multiple sensor stations data. Water Res 80:47–58Ostfeld A, Salomons E (2005) Optimal early warning monitoring system layout for water networks security: Inclusion of sensors sensitivities and response delays. Civ Eng Environ Syst 22(3):151–169Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson JP, Dorini G, Jonkergouw P, Kapelan Z et al (2008) The battle of the water sensor networks (bwsn): A design challenge for engineers and algorithms. J Water Resour Plan Manag 134(6):556–568Quiñones-Grueiro M, Verde C, Llanes-santiago O (2019) Multi-objective sensor placement for leakage detection and localization in water distribution networks. In: 2019 4th conference on control and fault tolerant systems (SysTol), IEEE, pp 129–134Ramezanian R (2019) Estimation of the profiles in posteriori electre tri: A mathematical programming model. Comput Indust Eng 128:47–59Rathi S, Gupta R, Kamble S, Sargaonkar A (2016) Risk based analysis for contamination event selection and optimal sensor placement for intermittent water distribution network security. Water Resour Manag 30(8):2671–2685Reginaldo F (2015) Portfolio management in Brazil and a proposal for evaluation and balancing of portfolio projects with electre tri and iris. Procedia Comput Sci 55:1265–1274Roy B (1968) Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle 2(8):57–75Roy B (1990) The outranking approach and the foundations of electre methods. In: Readings in multiple criteria decision aid. Springer, New York, pp 155–183Sánchez-Lozano J, García-cascales M, Lamata M (2016) Comparative topsis-electre tri methods for optimal sites for photovoltaic solar farms. case study in spain. J Clean Prod 127:387–398Seiti H, Hafezalkotob A, Najafi SE, Khalaj M (2019) Developing a novel risk-based mcdm approach based on d numbers and fuzzy information axiom and its applications in preventive maintenance planning. Appl Soft Comput: 105559Shang F, Uber JG, Rossman LA et al (2008) Epanet multi-species extension user’s manual. risk reduction engineering laboratory us environmental protection agency. Cincinnati, OhioShannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423Štirbanović Z, Stanujkić D, Miljanović I, Milanović D (2019) Application of mcdm methods for flotation machine selection. Miner Eng 137:140–146Wang H, Jiang Z, Zhang H, Wang Y, Yang Y, Li Y (2019) An integrated mcdm approach considering demands-matching for reverse logistics. J Clean Prod 208:199–210Wéber R, Hős C (2020) Efficient technique for pipe roughness calibration and sensor placement for water distribution systems. J. Water Resour Plan Manag 146(1):04019070Weickgenannt M, Kapelan Z, Blokker M, Savic DA (2010) Risk-based sensor placement for contaminant detection in water distribution systems. J Water Resour Plan Manag 136(6):629–63

    Optimal Sensor Placement in a Partitioned Water Distribution Network for the Water Protection from Contamination

    Get PDF
    Water network protection from accidental and intentional contamination is one of the most critical issues for preserving the citizen health. Recently, some techniques have been proposed in the literature to define the optimal sensor placement. On the other hand, through the definition of permanent DMAs (District Meter Areas), water network partitioning allows significant reduction in the number of exposed users through the full isolation of DMA. In this paper, the optimal sensor placement is coupled with water network partitioning in order to define the best location of isolation valves and control stations, to be closed and installed respectively. The proposed procedure is based on different procedures, and it was tested on a real water network, showing that it is possible both to mitigate the impact of a water contamination and simplify the sensor placement through the water network partitioning

    Impact of diffusion and dispersion of contaminants in water distribution networks modelling and monitoring

    Get PDF
    Abstract In recent years, there has been a need to seek adequate preventive measures to deal with contamination in water distribution networks that may be related to the accidental contamination and the deliberate injection of toxic agents. Therefore, it is very important to create a sensor system that detects contamination events in real time, maintains the reliability and efficiency of measurements, and limits the cost of the instrumentation. To this aim, two problems have to be faced: practical difficulties connected to the experimental verification of the optimal sensor configuration efficiency on real operating systems and challenges related to the reliability of the network modelling approaches, which usually neglect the dispersion and diffusion phenomena. The present study applies a numerical optimization approach using the NSGA-II genetic algorithm that was coupled with a new diffusive-dispersive hydraulic simulator. The results are compared with those of an experimental campaign on a laboratory network (Enna, Italy) equipped with a real-time water quality monitoring system and those of a full-scale real distribution network (Zandvoort, Netherlands). The results showed the importance of diffusive processes when flow velocity in the network is low. Neglecting diffusion can negatively influence the water quality sensor positioning, leading to inefficient monitoring networks

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms
    • …
    corecore