4 research outputs found

    Glasses for the blind using ping ultrasonic, ATMEGA8535 and ISD25120

    Get PDF
    For doing their activities, blind people need tools. The idea for designing this device is for helping the blind person. This device is a glasses specially for blind person which gives information in the form of voices through an earphone if there is an obstacle in the range of 0–58 cm. The device is using PING ultrasonic sensor, ATMEGA8535 microcontroller, and ISD25120 for recording and saving the voices. After designing and making the device, we tested the device to take the data. We use three PING ultrasonic sensors which are put at the sides of the glasses. The device will give eight different kinds of voices through the earphone. The voices depend upon the output of the PING ultrasonic sensors

    Enabling the Adoption of Wearable Computers in Enterprises - Results of Analyzing Influencing Factors and Challenges in the Industrial Sector

    Get PDF
    Wearable computers like smart glasses or smartwatches enable the use of information systems in application scenarios in which information technology has rarely been used until now. The reason for this is, that users are able to interact with the devices hands-free, e.g. by using voice commands. A hands-free use is in particular relevant for enterprises in the industrial sector, as industrial workers often need to perform tasks manually, e.g. in manufacturing or maintenance. However, the technology is currently not used widely in enterprises. Thus, the aim of our research is to identify influencing factors and related challenges of using wearable computers in order to analyze how its adoption can be increased. Based on an empirical interview study within the industrial sector, we identified 11 influencing factors and 25 related challenges which affect the adoption of wearable computers

    EdgeGlass: Exploring Tapping Performance on Smart Glasses while Sitting and Walking

    Get PDF
    Department of Human Factors EngineeringCurrently, smart glasses allow only touch sensing area which supports front mounted touch pads. However, touches on top, front and bottom sides of glass mounted touchpad is not yet explored. We made a customized touch sensor (length: 5-6 cm, height: 1 cm, width: 0.5 cm) featuring the sensing on its top, front, and bottom surfaces. For doing that, we have used capacitive touch sensing technology (MPR121 chips) with an electrode size of ~4.5 mm square, which is typical in the modern touchscreens. We have created a hardware system which consists of a total of 48 separate touch sensors. We investigated the interaction technique by it for both the sitting and walking situation, using a single finger sequential tapping and a pair finger simultaneous tapping. We have divided each side into three equal target areas and this separation made a total of 36 combinations. Our quantitative result showed that pair finger simultaneous tapping touches were faster, less error-prone in walking condition, compared to single finger sequential tapping into walking condition. Whereas, single finger sequence tapping touches were slower, but less error-prone in sitting condition, compared to pair simultaneous tapping in sitting condition. However, single finger sequential tapping touches were slower, much less error-prone in sitting condition compared to walking. Interestingly, double finger tapping touches had similar performance result in terms of both, error rate and completion time, in both sitting and walking conditions. Mental, physical, performance, effort did not have any effect on any temporal tapping???s and body poses experience of workload. In case of the parameter of temporal demand, for single finger sequential tapping mean temporal (time pressure) workload demand was higher than pair finger simultaneous tapping but body poses did not affect temporal (time pressure) workload for both of the sequential and simultaneous tapping type. In case of the parameter of frustration, the result suggested that mean frustration workload was higher for single finger sequential tapping experienced by the participants compared to pair finger simultaneous tapping and among body poses, walking experienced higher frustration mean workload than sitting. The subjective measure of overall workload during the performance study showed no significant difference between both independent variable: body pose (sitting and walking) and temporal tapping (single finger sequential tapping and pair finger simultaneous tapping).ope

    Sensor design and interaction techniques for gestural input to smart glasses and mobile devices

    No full text
    corecore