27 research outputs found

    Free-induction-decay magnetometer based on a microfabricated Cs vapor cell

    Get PDF
    We describe an optically pumped Cs magnetometer containing a 1.5 mm thick microfabricated vapor cell with nitrogen buffer gas operating in a free-induction-decay (FID) configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarize the atomic sample however, synchronous modulation of the light field actively drives the precession and maximizes the induced spin coherence. Both amplitude and frequency modulation have been implemented with noise floors of 3 pT / √ Hz and 16 pT / √ Hz respectively within the Nyquist limited bandwidth of 500 Hz

    How to build a magnetometer with thermal atomic vapor: A tutorial

    Full text link
    This article is designed as a step-by-step guide to optically pumped magnetometers based on alkali atomic vapor cells. We begin with a general introduction to atomic magneto-optical response, as well as expected magnetometer performance merits and how they are affected by main sources of noise. This is followed by a brief comparison of different magnetometer realizations and an overview of current research, with the aim of helping readers to identify the most suitable magnetometer type for specific applications. Next, we discuss some practical considerations for experimental implementations, using the case of an MzM_z magnetometer as an example of the design process. Finally, an interactive workbook with real magnetometer data is provided to illustrate magnetometer-performance analysis.Comment: 52 pages, 9 figures, 3 tables. Submitted to New Journal of Physics as an invited review/tutorial for the special issue "Focus on Hot Atomic Vapors". Minor content and language errors corrected in v

    Study and Realization of a Miniature Isotropic Helium Magnetometer

    Get PDF
    No abstract available.Pas de résumé disponibl

    Ultimate parameters of an all-optical MX resonance in Cs in ultra-weak magnetic field

    Full text link
    We present the results of studying the parameters of the magnetic MX resonance in an all-optical sensor built according to the two-beam Bell-Bloom scheme in nonzero ultra-weak magnetic fields in which the effects of spin-exchange broadening suppression are partially manifested. We report on the features of the resonance under these conditions. We also optimize the resonance parameters to achieve maximum sensitivity in magnetoencephalographic sensors. We demonstrate an improvement in the ultimate achievable sensitivity of an all-optical MX sensor by a factor of four or more, which in our experiment corresponds to a decrease from 13 to 3 fT/Hz1/2 in a volume of 0.13 cm3. We also report the effect of incomplete suppression of spin-exchange broadening under conditions of strong transverse modulated optical pumping, and propose a semi-empirical model to describe it

    Chip-scale atomic magnetometer based on free-induction-decay

    Get PDF
    This thesis describes the implementation of an optically pumped caesium magnetometer containing a 1:5mm thick microfabricated vapour cell with nitrogen buffer gas, operating in a free-induction-decay configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarise the atomic sample;however, synchronous modulation of the light field actively drives the precession and maximises the induced spin coherence. Both amplitude- and frequency-modulation have been adopted producing noise floors of 3.4 pT / √Hz and 15.6 pT/√Hz, respectively,within a Nyquist limited bandwidth of 500 Hz in a bias field comparable to the Earth's (~50 ÎŒT). We investigate the magnetometers capability in reproducing time-varying magnetic signals under these conditions, including the reconstruction of a 100 pT perturbation using signal averaging.Additionally, we discuss a novel detection mode based on free-induction-decay that observes the spin precession dynamics in-the-dark using Ramsey-like pulses. This aids in suppressing the systematic effects originating from the light-atom interaction during readout, thus vastly improving the accuracy of the magnetometer whilst maintaining a sensitivity that is competitive with previous implementations. This detection technique was implemented further to measure the spin relaxation properties intrinsic to the sensor head, useful in determining the optimal buffer pressure that extends the spin lifetime and improves the sensor's sensitivity performance.This thesis describes the implementation of an optically pumped caesium magnetometer containing a 1:5mm thick microfabricated vapour cell with nitrogen buffer gas, operating in a free-induction-decay configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarise the atomic sample;however, synchronous modulation of the light field actively drives the precession and maximises the induced spin coherence. Both amplitude- and frequency-modulation have been adopted producing noise floors of 3.4 pT / √Hz and 15.6 pT/√Hz, respectively,within a Nyquist limited bandwidth of 500 Hz in a bias field comparable to the Earth's (~50 ÎŒT). We investigate the magnetometers capability in reproducing time-varying magnetic signals under these conditions, including the reconstruction of a 100 pT perturbation using signal averaging.Additionally, we discuss a novel detection mode based on free-induction-decay that observes the spin precession dynamics in-the-dark using Ramsey-like pulses. This aids in suppressing the systematic effects originating from the light-atom interaction during readout, thus vastly improving the accuracy of the magnetometer whilst maintaining a sensitivity that is competitive with previous implementations. This detection technique was implemented further to measure the spin relaxation properties intrinsic to the sensor head, useful in determining the optimal buffer pressure that extends the spin lifetime and improves the sensor's sensitivity performance

    Analysis of atomic magnetometry using metasurface optics for balanced polarimetry

    Full text link
    Atomic magnetometry is one of the most sensitive field-measurement techniques for biological, geo-surveying, and navigation applications. An essential process in atomic magnetometry is measurement of optical polarization rotation of a near-resonant beam due to its interaction with atomic spins under an external magnetic field. In this work, we present the design and analysis of a silicon-metasurface-based polarization beam splitter that have been tailored for operation in a rubidium magnetometer. The metasurface polarization beam splitter operates at a wavelength of 795 nm and has a transmission efficiency > 83% and a polarization extinction ratio > 20 dB. We show that these performance specifications are compatible with magnetometer operation in miniaturized vapor cells with subpicotesla-level sensitivity and discuss the prospect of realizing compact, high-sensitivity atomic magnetometers with nanophotonic component integration

    Multichannel optical atomic magnetometer operating in unshielded environment

    Full text link
    A multi-channel atomic magnetometer operating in an unshielded environment is described and characterised. The magnetometer is based on D1 optical pumping and D2 polarimetry of Cs vapour contained in gas-buffered cells. Several technical implementations are described and discussed in detail. The demonstrated sensitivity of the setup is 100fT/Hz^1/2 when operating in the difference mode.Comment: 9 pages, 5 figures, appearing in Appl.Phys.

    Waveform reconstruction with a Cs based free-induction-decay magnetometer

    Get PDF
    We demonstrate an optically pumped magnetometer (OPM) operated in a free-induction-decay (FID) configuration that is capable of tracking oscillating magnetic signals in the presence of a 50 uT static field. Excellent waveform reconstruction is demonstrated for low frequency modulations with respect to the Nyquist limited bandwidth. A 100 pT oscillation was successfully reconstructed using signal averaging, and an optimum sensitivity of 3.9 pT/sqrt{Hz} was measured from the spectrum of the residuals relative to the sinusoidal fit. The impact of the pump-probe repetition rate and spin depolarization on the frequency response of the sensor is investigated in detail using miniaturized vapor cell technology, with the (-3 dB) bandwidths residing beyond the Nyquist limit in each case. We also discuss technical limitations associated with the magnetometer when exposed to oscillating fields of sufficiently high amplitude or frequency. This is discussed in the context of potential distortions arising in the reproduced signals, induced by frequency-modulation (FM) and aliasing artefacts
    corecore