10 research outputs found

    Energy Efficient Power Allocation In Cognitive Radio Network

    Get PDF
    Energy efficient wireless cellular networks have been the subject of intense research in recent years. Green radio networks are the demand of new era of communication system. In order to improve the energy of cognitive radio network, the technique for power allocation in transmission link is proposed in this paper. Recently, many technological and network issues like interference and resource allocation or power optimization in cognitive radio network have been studied but only in terms of spectrum sensing. Different from the other work, the optimization of power in order to maximize the energy with consideration of imperfect spectrum sensing is proposed. Simulation result shows that for every value of power levels energy will be improved

    Performance assessment of an optimization strategy proposed for power systems

    Get PDF
    In the present article, the selection process of the topology of an artificial neural network (ANN) as well as its configuration are exposed. The ANN was adapted to work with the Newton Raphson (NR) method for the calculation of power flow and voltage optimization in the PQ nodes of a 10-node power system represented by the IEEE 1250 standard system. The purpose is to assess and compare its results with the ones obtained by implementing ant colony and genetic algorithms in the optimization of the same system. As a result, it is stated that the voltages in all system nodes surpass 0,99 p.u., thus representing a 20% increase in the optimal scenario, where the algorithm took 30 seconds, of which 9 seconds were used in the training and validation processes of the ANN

    Sensing and Sharing Schemes for Spectral Efficiency of Cognitive Radios

    Get PDF
    Increase in data traffic, number of users and their requirements laid to a necessity of more bandwidth. Cognitive radio is one of the emerging technology which addresses the spectrum scarcity issue. In this work we study the advantage of having collaboration between cognitive enabled small cell network and primary macrocell. Different from the existing works at spectrum sensing stage we are applying enhanced spectrum sensing to avoid probability of false alarms and missed detections which has impact on spectral efficiency. Later power control optimization for secondary users known as Hybrid spectrum sharing is used for further improvement of spectral efficiency. Furthermore, the failed packets of Primary users are taken care by high ranked relays which in turn decreases the average Primary user packet delay by 20% when compared between assisted Secondary user method and non-assisted Secondary user method.

    Beam Selection and Discrete Power Allocation in Opportunistic Cognitive Radio Systems with Limited Feedback Using ESPAR Antennas

    Get PDF
    We consider an opportunistic cognitive radio (CR) system consisting of a primary user (PU), secondary transmitter (SUtx), and secondary receiver (SUrx), where SUtx is equipped with an electrically steerable parasitic array radiator (ESPAR) antenna with the capability of choosing one beam among M beams for sensing and communication, and there is a limited feedback channel from SUrx to SUtx. Taking a holistic approach, we develop a framework for integrated sector-based spectrum sensing and sector-based data communication. Upon sensing the channel busy, SUtx determines the beam corresponding to PU's orientation. Upon sensing the channel idle, SUtx transmits data to SUrx, using the selected beam corresponding to the strongest channel between SUtx and SUrx. We formulate a constrained optimization problem, where SUtx-SUrx link ergodic capacity is maximized, subject to average transmit and interference power constraints, and the optimization variables are sensing duration, thresholds of channel quantizer at SUrx, and transmit power levels at SUtx. Since this problem is non-convex we develop a suboptimal computationally efficient iterative algorithm to find the solution. Our results demonstrate that our CR system yields a significantly higher capacity, and lower outage and symbol error probabilities, compared with a CR system that its SUtx has an omni-directional antenna.Comment: This paper has been submitted to IEEE Transactions on Cognitive Communications and Networkin

    Energy Efficiency Optimization for CoMP-SWIPT Heterogeneous Networks

    Get PDF
    In this paper, a fundamental study of energy efficiency (EE) optimization for coordinated multi-point (CoMP)- simultaneous wireless information and power transfer (SWIPT) heterogeneous networks (HetNets) is provided. We aim to optimize the EE whilst satisfying certain quality-of-service (QoS) requirements in regard to transmission rate and energy harvesting at both the macro-cell and small-cells. The corresponding joint beamforming and power allocation in the presence of intra- and inter-cell interference constitutes a EE maximization problem that is non-convex, and hence very challenging to solve. In order to solve this problem, we propose to separate the beamforming design and power allocation processes. First, we adopt linear zero-forcing (ZF) beamforming to suppress the multi-user interference from both the energy harvesting users (EH-UEs) as well as the information decoding users (ID-UEs), thus transforming the HetNet under consideration to a virtual point-to-point system. An efficient power allocation algorithm is then developed to maximize the corresponding EE. On the other hand, the ZF strategy does not utilize the notion that interference benefits the EH-UEs. As a result, we propose a partial zeroforcing (PZF) approach by differentiating the EH-UEs and IDUEs in order to further improve the EE. Our findings show that the EE can be significantly improved through the integration of CoMP-SWIPT in HetNets
    corecore