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Abstract

Cognitive radio enabled small cell network is an emerging technology to address the exponential

increase of mobile traffic demand in the next generation mobile communications. Recently, many

technological issues such as resource allocation and interference mitigation pertaining to cognitive small

cell network have been studied, but most studies focus on maximizing spectral efficiency. Different

from the existing works, we investigate the power control and sensing time optimization problem in

a cognitive small cell network, where the cross-tier interference mitigation, imperfect hybrid spectrum

sensing, and energy efficiency are considered. The optimization of energy efficient sensing time and

power allocation is formulated as a non-convex optimization problem. We solve the proposed problem

in an asymptotically optimal manner. An iterative power control algorithm and a near optimal sensing

time scheme are developed by considering imperfect hybrid spectrum sensing, cross-tier interference

mitigation, minimum data rate requirement and energy efficiency. Simulation results are presented to
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verify the effectiveness of the proposed algorithms for energy efficient resource allocation in the cognitive

small cell network.

Index Terms

Cognitive small cell, OFDMA, power control, resource allocation, sensing time optimization.

I. INTRODUCTION

Demand for mobile data traffic is increasing exponentially due to the wide usage of smart

mobile devices and data-centric applications in mobile Internet. As a promising technology in

the fifth-generation (5G) mobile communications, small cell can offload heavy traffics from

primary macrocells by shortening the distance between basestation and users. Since small cell

can effectively improve the coverage and spatial reuse of spectrum by deploying low-power

access points, it is not surprising that small cell has attracted much research interests in both

industry and academia. However, the benefits of small cell deployments come with a number

of fundamental challenges, which include spectrum access, resource allocation and interference

mitigation [1]–[7].

Cognitive radio is also an emerging technology to improve the efficiency of spectrum access

in the 5G networks [8]. The cognitive capabilities can improve the spectrum efficiency, radio re-

source utilization, and interference mitigation by efficient spectrum sensing, interference sensing,

and adaptive transmission. Therefore, a cognitive radio enabled small cell network can further

improve the system performance with co-existence of a macrocell network [9]. There are three

ways for cognitive small cell to access the spectrum potentially used by primary macrocell: 1)

spectrum sharing, where cognitive small cell can share the spectrum with primary macrocell;

2) opportunistic spectrum access, where cognitive small cell can opportunistically access the

spectrum that is detected to be idle; 3) hybrid spectrum sensing, where cognitive small cell senses

the channel status and optimizes the power allocation based on the spectrum sensing result. In

this paper, cognitive radio enabled small cell architecture is designed to opportunistically access

the spectrum via cognitive small basestation (CSBS).

Orthogonal frequency division multiple access (OFDMA) working jointly with cognitive

small cell can improve spectrum efficiency and energy efficiency via resource allocation and
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interference mitigation [10]. In [11], the authors investigated the resource allocation problems

based on multistage stochastic programming for stringent quality of service (QoS) requirements

of real-time streaming scalable videos in cognitive small cell networks. The issues on spectrum

sensing and interference mitigation were studied in [12], where an interference coordination

approach was adopted. Opportunistic cooperation between cognitive small cell users and primary

macrocell users was proposed for cognitive small cell networks based on a generalized Lyapunov

optimization technique [13]. In [14], a spectrum-sharing scheme between primary macrocell and

secondary small cell was investigated, and bounds on maximum intensity of simultaneously

transmitting cognitive small cell that satisfies a given per-tier outage constraint in these schemes

were theoretically derived using a stochastic geometry model. In [15], interferences due to

different interfering sources were analyzed within cognitive-empowered small cell networks,

and a stochastic dual control approach was introduced for dynamic sensing coordination and

interference mitigation without involving global and centralized control efforts. Moreover, energy

efficient resource allocation has also been investigated for cognitive radio and small cell. In

[16], the energy efficiency aspect of spectrum sharing and power allocation was studied using a

Stackelberg game in heterogeneous cognitive radio networks with femtocells. While in [17], Nash

equilibrium of a power adaptation game was derived to reduce energy consumption. Moreover,

interference temperature limits, originated from the cognitive radio, were used in [18] to mitigate

cross-tier interferences between macrocell and small cell.

However, among those existing works, consideration of both sensing time optimization and

power control in cognitive small cell has not been well investigated. Although some works [19]

have been performed for optimization of sensing time and power allocation in cognitive small cell

networks, these work mainly focused on throughput maximization rather than energy efficiency.

Moreover, most of the existing works do not consider the hybrid spectrum sensing based cognitive

small cell. To the best of the authors’ knowledge, the problem of sensing time and power

control in cognitive small cell considering cross-tier interference mitigation, energy efficiency,

and imperfect hybrid spectrum sensing has not been investigated. A preliminary investigation on

this research problem was published in [20], and this work extends [20] in the following ways:

(1) the maximum tolerable interference level for primary macrocell is now considered; (2) we
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take into account the minimum transmit data rate constraint in order to guarantee the quality of

service (QoS) for small cell; (3) the detailed optimization algorithm of sensing time is presented

now; (4) simulation results under multiple angles are provided to verify the proposed methods. In

this paper, we study optimization of sensing time and power control in OFDMA based cognitive

small cell by considering energy efficiency, QoS requirement, cross-tier interference limitation

and imperfect hybrid spectrum sensing. The main contributions of this paper can be summarized

as follows.

• Design a novel energy efficient OFDMA cognitive small cell optimization framework: This

is a new approach by considering energy efficiency maximization, cross-tier interference

mitigation, imperfect hybrid spectrum sensing, and user QoS requirements in the design

of OFDMA cognitive small cell optimization framework. We formulate a sensing time and

power control problem in cognitive small cell as a non-convex optimization problem.

• Make use of imperfect hybrid spectrum sensing and cross-tier interference temperature limit:

The hybrid spectrum sensing, which combines spectrum sharing access and opportunistic

spectrum access, is considered in the optimization problem. The power control policy

is adaptive to the spectrum detection result of the subchannel state. Moreover, cross-tier

interference temperature limit is also taken into consideration in the design of the resource

allocation optimization in order to mitigate the interference from cognitive small cell to

primary macrocell.

• Develop an energy efficient power control algorithm with multiple constraints: Given a

sensing time, the power control optimization problem in fractional form is transformed

into subtractive form. We propose an energy efficient power control algorithm to solve

the transformed optimization problem. A minimum QoS requirement is employed to pro-

vide reliable transmission for cognitive small cell. Energy efficiency is taken into account

in the design of power control and sensing time optimization problem. The non-convex

optimization problem is then solved in an alternating optimal manner.

The rest of the paper is organized as follows. Section II presents the system model and the

problem formulation. Section III provides energy efficient resource optimization in cognitive

small cell with imperfect hybrid spectrum sensing. In Section IV, performance of the proposed

August 18, 2016 DRAFT



5

algorithms is evaluated by simulations. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an OFDMA cognitive small cell network where a co-channel cognitive small

cell is overlaid on a primary macrocell. We focus on resource allocation in the downlink of

the cognitive small cell. The OFDMA system has a bandwidth of B, which is divided into N

subchannels. The channel fading of each subcarrier is assumed the same within a subchannel,

but may vary across different subchannels. The channel model for each subchannel includes

path loss and frequency-nonselective Rayleigh fading. Note that we focus on resource allocation

in the downlink of cognitive small cell. Before small cell accesses the spectrum licensed to

primary macrocell, CSBS performs spectrum sensing to determine the occupation status of the

subchannels. In each time frame, the cognitive small cell can sense N subchannels by energy

detection based spectrum sensing. The CSBS adapts the transmit power based on the spectrum

sensing result. The Ho
n is the hypothesis that the nth subchannel is occupied by the primary

macrocell. The H̃o
n represents the spectrum sensing result that the nth subchannel is occupied

by primary macrocell. The Hv
n is the hypothesis that the nth subchannel is not occupied by

primary macrocell. The H̃v
n represents the spectrum sensing result that the nth subchannel is

not occupied by primary macrocell. The probabilities of the false alarm and mis-detection on

subchannel n are qfn and qmn , respectively. We assume that the user signal of primary macrocell is

a complex-valued phase shift keying (PSK) signal, and the noise at CSBS is circularly symmetric

complex Gaussian (CSCG) with mean zero and variance σ2. According to [21], the probability

of mis-detection qmn can be approximated by

qmn (εn, τ) = 1−Q

(
(
εn
σ2

− γn − 1)

√
τf

2γn + 1

)
(1)

where εn is a chosen threshold of energy detector on subchannel n; τ is the spectrum sensing

time; γn is the received signal-to-noise ratio (SNR) of the primary macrocell user measured at

the CSBS on subchannel n; f is the sampling frequency; the standard Gaussian Q-function is

defined as

Q(x) =
1√
2π

∫ ∞

x

exp(−t2/2)dt. (2)
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The probability of false alarm qfn can be approximated by [21]

qfn(εn, τ) = Q(( εn
σ2 − 1)

√
τf)

= Q(
√
2γn + 1(Q−1(q̂dn) +

√
τfγn)

(3)

where q̂dn is the target probability of detection.

The frame structure of cognitive small cell network is shown in Fig. 1. As can be seen from

Fig. 1, a spectrum sensing duration/time τ is inserted in the beginning of each frame. The CSBS

adapts its transmit power based on the spectrum sensing decision made in the beginning of each

frame. If the subchannel n detected to be idle (H̃v
n), cognitive small cell can transmit high power

P v
s,n; if the subchannel n detected to be occupied (H̃o

n), cognitive small cell can transmit low

power P o
s,n in order to mitigate the interference caused to primary macrocell. This approach is

called hybrid spectrum sensing, and it is different from the opportunistic spectrum access and the

spectrum sharing approach. Based on Shannon’s capacity formula, when the spectrum sensing

result is idle, the achievable capacity on subchannel n in small cell is given by

Rv,n = log2(1 +
gss,n · P v

s,n

σ2
) (4)

where gss,n is the channel gain of subchannel n between small cell user and CSBS. If the

spectrum sensing result is active/occupied, the achievable capacity on subchannel n in small cell

is given by

Ro,n = log2(1 +
gss,n · P o

s,n

gms,n · P o
m,n + σ2

) (5)

where gms,n is the channel gain of subchannel n between macrocell basestation (MBS) and

CSBS; P o
m,n is the transmit power of MBS on subchannel n.

In a cognitive heterogeneous network, which typically consists of a cognitive small cell and

primary macrocell, imperfect spectrum sensing of CSBS can cause severe co-channel interference

to the primary macrocell, and thus degrade the performance of the heterogeneous cognitive small

cell networks. Since it is the CSBS that determines whether a subchannel is occupied by primary

macrocell or not, four different cases are to be considered as follows.

• Case 1: subchannel n is vacant in primary macrocell, and the spectrum sensing decision

made by CSBS is vacant;
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• Case 2: subchannel n is vacant in primary macrocell, but the spectrum sensing decision

made by CSBS is occupied;

• Case 3: subchannel n is occupied in primary macrocell, but the spectrum sensing decision

made by CSBS is vacant;

• Case 4: subchannel n is occupied in primary macrocell, and the spectrum sensing decision

made by CSBS is occupied.

For the first and fourth cases, the CSBS makes the correct decisions. On the other hand, the

second case is mis-detection, and the third case is false alarm. Therefore, we can calculate the

achievable capacities on subchannel n in small cell for the four different cases as

R1,n = log2(1 +
gss,n · P v

s,n

σ2
), (6)

R2,n = log2(1 +
gss,n · P o

s,n

σ2
), (7)

R3,n = log2(1 +
gss,n · P v

s,n

gms,n · Pm,n + σ2
), (8)

R4,n = log2(1 +
gss,n · P o

s,n

gms,n · Pm,n + σ2
). (9)

Our objective is to maximize energy efficiency of cognitive small cell networks by optimizing

sensing time and power allocation. The energy efficiencies of those four cases are defined as

follows

η1,n =
R1,n

P v
s,n + Pc

, (10)

η2,n =
R2,n

P o
s,n + Pc

, (11)

η3,n =
R3,n

P v
s,n + Pc

, (12)

η4,n =
R4,n

P o
s,n + Pc

(13)

where Pc is the constant circuit power consumption which includes lowpass filter, mixer for

modulation, frequency synthesizer, and digital-to-analog converter [23], and Pc is assumed to be

independent of the transmitted power [24].

August 18, 2016 DRAFT



8

The average energy efficiency of subchannel n in our hybrid spectrum sensing scheme is

ηn = P (Hv
n)(1− qfn(εn, τ))η1,n + P (Hv

n)q
f
n(εn, τ)η2,n

+ P (Ho
n)q

m
n (εn, τ)η3,n + P (Ho

n)(1− qmn (εn, τ))η4,n
(14)

where P (Hv
n) and P (Ho

n) are the probabilities of vacant status and occupied status of subchannel

n, respectively.

Let us first investigate the constraints in the proposed optimization framework. Since the

resource allocation is performed in CSBS, the transmit power of CSBS on subchannel n is

constrained by

N∑
n=1

 P (Hv
n)(1− qfn(εn, τ))P

v
s,n + P (Hv

n)q
f
n(εn, τ)P

o
s,n

+P (Ho
n)q

m
n (εn, τ)P

v
s,n + P (Ho

n)(1− qmn (εn, τ))P
o
s,n

T − τ

T
≤ Pmax (15)

where Pmax is the maximum average transmit power of CSBS.

Since primary macrocells play a fundamental role in providing cellular coverage, macrocell

users’ QoS should not be affected by cognitive small cell’s deployment. Therefore, to implement

cross-tier interference protection, we impose an average interference power limit to constrain the

cross-tier interference suffered by macrocell. Let I thn denote the maximum tolerable interference

level on subchannel n for the macrocell user. We have

P (Ho
n) · gsm,n

[
qmn (εn, τ)P

v
s,n + (1− qmn (εn, τ))P

o
s,n

]T − τ

T
≤ I thn , n = 1, ..., N (16)

where gsm,n is the channel power gain from small cell to macrocell user on subchannel n.

In order to guarantee the QoS for small cell, we introduce a minimum transmit data rate

constraint
P (Hv

n)(1− qfn(εn, τ))R1,n + P (Hv
n)q

f
n(εn, τ)R2,n

+P (Ho
n)q

m
n (εn, τ)R3,n + P (Ho

n)(1− qmn (εn, τ))R4,n ≥ Rmin

(17)

where Rmin is the minimum transmit data rate requirement of each subchannel.

For a target detection probability of q̂dn on subchannel n, substituting q̂dn into (1), we get

(
εn
σ2

− γn − 1)

√
τf

2γn + 1
= Q−1

(
q̂dn
)
. (18)

Therefore, for a given sensing time τ̂ , the detection threshold εn can be determined as

εn =

(√
2γn + 1

τ̂ f
Q−1

(
q̂dn
)
+ γn + 1

)
σ2, n = 1, ..., N. (19)
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B. Problem Formulation

In this paper, our aim is to maximize the cognitive small cell’s energy efficiency while

protecting QoS of the primary macrocell users. We assume that the cross-tier interference power

limit is sent by a primary MBS periodically. This process requires little overhead in the primary

macrocell. In this case, the sensing time optimization and power control in primary macrocell

are not part of our optimization. Thus, the corresponding sensing time optimization and power

allocation problem for downlink CSBS can be mathematically formulated as

max
{τ,Pv

s ,P
o
s}

N∑
n=1

T − τ

T
ηn
(
τ, P v

s,n, P
o
s,n

)
(20)

s.t. C1 :
N∑

n=1

 P (Hv
n)(1− qfn(εn, τ))P

v
s,n + P (Hv

n)q
f
n(εn, τ)P

o
s,n

+P (Ho
n)q

m
n (εn, τ)P

v
s,n + P (Ho

n)(1− qmn (εn, τ))P
o
s,n

T − τ

T
≤ Pmax

C2 : P (Ho
n) · gsm,n

[
qmn (εn, τ)P

v
s,n + (1− qmn (εn, τ))P

o
s,n

]T − τ

T
≤ I thn ,∀n

C3 :
P (Hv

n)(1− qfn(εn, τ))R1,n + P (Hv
n)q

f
n(εn, τ)R2,n

+P (Ho
n)q

m
n (εn, τ)R3,n + P (Ho

n)(1− qmn (εn, τ))R4,n ≥ Rmin, ∀n

C4 : P v
s,n ≥ 0, P o

s,n ≥ 0, ∀n

C5 : 0 ≤ τ ≤ T

(21)

where Pv
s = [pvs,n]1×N and Po

s = [pos,n]1×N are the power allocation vectors of the N subchannels

in cognitive small cell. Constraint C1 limits the maximum transmit power of each CSBS to

Pmax; C2 sets the tolerable interference power level on each subchannel of the macrocell user

on subchannel n; C3 represents minimum QoS requirement of each subchannel; C4 represents

the non-negative power constraint of the transmit power on each subchannel; C5 expresses the

constraint of sensing time in each frame.

Note that the optimization problem in (20) under the constraints of (21) is non-convex with

respect to {τ,Pv
s ,P

o
s}. Therefore, we first investigate the problem of energy efficient power

control given the sensing time τ̂ .
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III. ENERGY EFFICIENT RESOURCE OPTIMIZATION IN ONE COGNITIVE SMALL CELL

A. Transformation of the Optimization Problem

Given the sensing time τ̂ , the problem of power control in (20) under the constraints of (21)

can be classified as a non-linear fractional programming problem. Since the joint optimization

problem of Pv
s and Po

s in (20) can be decoupled into two separate subproblems, namely one

for Pv
s and the other for Po

s. We first try to deal with the subproblem related to Pv
s . Due to

the independence of subchannels in (20), we define a non-negative variable η∗
13,n

for the sum of

average energy efficiencies on subchannel n in Case 1 and Case 3 as

η∗
13,n

=
P (Hv

n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃
v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)

P̃ v
s,n + Pc

(22)

where P̃ v
s,n is the optimal solution to the problem of (20) under the constraints of (21). We

introduce the Theorem 1 as follows:

Theorem 1: η∗
13,n

is achieved if and only if

max
P v
s,n

{
P (Hv

n)(1− qfn(εn, τ̂))R1,n(τ̂ , P
v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η∗13,n(P

v
s,n + Pc)

}
= P (Hv

n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃
v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)− η∗13,n(P̃

v
s,n + Pc) = 0

(23)

where the P v
s,n in (23) is one of the feasible solutions in optimization problem (20) under the

constraints of (21).

Proof : 1) Suppose that η∗
13,n

is the optimal solution of (22), the following inequality can be

obtained

η∗13,n =
P (Hv

n)(1−qfn(εn,τ̂))R1,n(τ̂ ,P̃ v
s,n)+P (Ho

n)q
m
n (εn,τ̂)R3,n(τ̂ ,P̃ v

s,n)

P̃ v
s,n+Pc

≥
P (Hv

n)(1−qfn(εn,τ̂))R1,n(τ̂ ,P v
s,n)+P (Ho

n)q
m
n (εn,τ̂)R3,n(τ̂ ,P v

s,n)

P v
s,n+Pc

.
(24)

Hence, we have P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)− η∗13,n

(
P̃ v
s,n + Pc

)
= 0

P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η∗13,n

(
P v
s,n + Pc

)
≤ 0.

(25)

Therefore, we can conclude that max
P v
s,n

 P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n)

+P (Ho
n)q

m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η∗13,n(P

v
s,n + Pc)

 =

0. That is, eq. (23) is achieved.
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2) Suppose that P̃ v
s,n is a solution to the problem of (23). The definition of (23) implies that

P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η∗13,n

(
P v
s,n + Pc

)
≤ P (Hv

n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃
v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)− η∗13,n

(
P̃ v
s,n + Pc

)
= 0

(26)

or P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η∗13,n

(
P v
s,n + Pc

)
≤ 0

P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)− η∗13,n

(
P̃ v
s,n + Pc

)
= 0.

Therefore,

P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P̃

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P̃

v
s,n)

P̃ v
s,n + Pc

= η∗13,n (27)

and
P (Hv

n)(1− qfn(εn, τ̂))R1,n(τ̂ , P
v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)

P v
s,n + Pc

≤ η∗13,n. (28)

According to Theorem 1, the optimization problem of (23) under the constraints of (21) has

the same solution of the optimization problem of (22) under the constraints of (21). Similarly, the

objective function with respect to Po
s in fractional form can also be transformed to a subtractive

form by introducing a non-negative variable η∗
24,n

.

B. Iterative Energy Efficiency Maximization Algorithm

To solve the transformed optimization problem in the subtractive form under the constraints

of (20), we propose Algorithm 1.

As shown in Algorithm 1, in each iteration of the outer loop, the lth inner loop power control

problem is given as

max
{Pv

s ,P
o
s}


N∑

n=1

T−τ̂
T

{P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)

+P (Hv
n)q

f
n(εn, τ̂)R2,n(τ̂ , P

o
s,n) + P (Ho

n)(1− qmn (εn, τ̂))R4,n(τ̂ , P
o
s,n)

−η13,n(l)(P
v
s,n + Pc)− η24,n(l)(P

o
s,n + Pc)}

 (29)

s.t. C1− C4. (30)

Since the optimization problem of (29) under the constraints of (30) is convex with respect

to Pv
s and Po

s. The Lagrangian function is given by
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L(Pv
s ,P

o
s, λ,µ,ν) = N∑

n=1

T−τ̂
T

 (P (Hv
n)(1− qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n)− η13,n(l)P

v
s,n

+P (Hv
n)q

f
n(εn, τ̂)R2,n(τ̂ , P

o
s,n) + P (Ho

n)(1− qmn (εn, τ̂))R4,n(τ̂ , P
o
s,n)− η24,n(l)P

o
s,n


−λ

 N∑
n=1

 P (Hv
n)(1− qfn(εn, τ̂))P

v
s,n + P (Hv

n)q
f
n(εn, τ̂)P

o
s,n+

P (Ho
n)q

m
n (εn, τ̂)P

v
s,n + P (Ho

n)(1− qmn (εn, τ̂))P
o
s,n

T−τ̂
T

− Pmax


−

N∑
n=1

µn

{[
N∑

n=1

P (Ho
n)gsm,n(q

m
n (εn, τ̂)P

v
s,n + (1− qmn (εn, τ̂))P

o
s,n)

]
T−τ̂
T

− I thn

}
+

N∑
n=1

νn


 P (Hv

n)(1− qfn(εn, τ))R1,n + P (Hv
n)q

f
n(εn, τ)R2,n

+P (Ho
n)q

m
n (εn, τ)R3,n + P (Ho

n)(1− qmn (εn, τ))R4,n

−Rmin


(31)

where λ, µn and νn are the Lagrangian multipliers (also called dual variables) vectors for the

constraints C1, C2 and C3 in (21), respectively. Thus, the Lagrangian dual function is defined

as

g(λ,µ,ν) = max
Pv

s ,P
o
s

L(Pv
s ,P

o
s, λ,µ,ν). (32)

The dual problem can be expressed as

min
λ,µ,ν≥0

g(λ,µ,ν). (33)

Using Lagrangian function and the Karush-Kuhn-Tucker (KKT) conditions, we can obtain the

near optimal solution of P̃ v
s,n on subchannel n as

P̃ v
s,n =

[
Av,n +

√
Bv,n

2

]+
(34)

where [x]+ = max{x, 0}, and

Av,n = (1+νn)(P (Hv
n)(1−qfn(εn,τ̂))+P (Ho

n)q
m
n (εn,τ̂))

ln 2(η13,n(l)+λ(P (Hv
n)(1−qfn(εn,τ̂))+P (Ho

n)q
m
n (εn,τ̂))+µngsm,nP (Ho

n)q
m
n (εn,τ̂))

− 2σ2+gms,nP o
m,n

gss,n

, (35)

Bv,n = A2
v,n

− 4
gss,n

·
{

σ4+σ2gms,nP o
m,n

gss,n
− (1+νn)[P (Hv

n)(1−qfn(εn,τ̂)(σ
2+gms,nP o

m,n)+P (Ho
n)q

m
n (εn,τ̂)σ2]

ln 2(η13,n(l)+λ(P (Hv
n)(1−qfn(εn,τ̂)+P (Ho

n)q
m
n (εn,τ̂))+µngsm,nP (Ho

n)q
m
n (εn,τ̂))

}
.

(36)
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Similar to P̃ v
s,n, we can obtain the near optimal solution of P̃ o

s,n on subchannel n as

P̃ o
s,n =

[
Ao,n +

√
Bo,n

2

]+
(37)

where

Ao,n = (1+νn)(P (Hv
n)q

f
n(εn,τ̂)+P (Ho

n)(1−qmn (εn,τ̂)))

ln 2(η24,n(l)+λ(P (Hv
n)q

f
n(εn,τ̂)+P (Ho

n)(1−qmn (εn,τ̂)))+µngsm,nP (Ho
n)(1−qmn (εn,τ̂)))

− 2σ2+gms,nP o
m,n

gss,n

, (38)

Bo,n = A2
o,n

− 4
gss,n

·
{

σ4+σ2gms,nP o
m,n

gss,n
− (1+νn)[P (Hv

n)q
f
n(εn,τ̂)(σ

2+gms,nP o
m,n)+P (Ho

n)(1−qmn (εn,τ̂))σ2]

ln 2(η13,n(l)+λ(P (Hv
n)q

f
n(εn,τ̂)+P (Ho

n)(1−qmn (εn,τ̂)))+µngsm,nP (Ho
n)(1−qmn (εn,τ̂)))

}
.

(39)

Either the ellipsoid or the subgradient method can be adopted in updating the dual variables

[26]. Here, we choose the subgradient method to update the dual variables, and the update

formulas are

λl+1 = λl − ϑl
1

Pmax −
N∑

n=1

 P (Hv
n)(1− qfn(εn, τ))P

v
s,n + P (Hv

n)q
f
n(εn, τ)P

o
s,n+

P (Ho
n)q

m
n (εn, τ)P

v
s,n + P (Ho

n)(1− qmn (εn, τ))P
o
s,n

T − τ

T


(40)

µl+1
n = µl

n − ϑl
2

(
I thn − P (Ho

n) · gsm,n

[
qmn (εn, τ)P

v
s,n + (1− qmn (εn, τ))P

o
s,n

] T − τ

T

)
, ∀n (41)

νl+1
n = νl

n − ϑl
3

 P (Hv
n)(1− qfn(εn, τ))R1,n + P (Hv

n)q
f
n(εn, τ)R2,n+

P (Ho
n)q

m
n (εn, τ)R3,n + P (Ho

n)(1− qmn (εn, τ)R4,n

 T−τ
T

−Rmin

 ,∀n

(42)

where ϑl
1, ϑ

l
2 and ϑl

3 denote the step size of iteration l (l ∈ {1, 2, ..., Lmax})for λ, µ, ν respec-

tively, and Lmax is the maximum number of iterations. Meanwhile, the step size must meet the

following conditions
∞∑
l=1

ϑl
i = ∞, lim

l→∞
ϑl
i = 0, ∀i ∈ {1, 2, 3} . (43)

Algorithm 1 is proposed to optimize the power P v
s,n and P o

s,n of (20) given the sensing time τ̂ .

In Algorithm 1, the process of power control is decomposed to inner loop problem and outer

loop problem. In each iteration, the η∗13,n (l) and η∗24,n (l) can be found through outer loop, the

inner loop control problem is solved by outer loop results η∗13,n (l) and η∗24,n (l), the Lagrangian

method and eqs. (34), (37).
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Algorithm 1 Proposed Energy-Efficient Power Control Algorithm
1: Initialize the maximum number of iterations Lmax and convergence tolerance εη;

2: Set η13,n(1) = 0, η24,n(1) = 0, l = 0;

3: Initialize power allocation with an equal power distribution and begin the outer loop;

4: for n = 1 to N do

5: repeat

6: a) The inner loop power control problem is solved with outer loop results η∗13,n (l),

η∗24,n (l), the Lagrangian method and eqs. (34), (37);

7: b) Then, we can obtain the power control solution P v
s,n(l) and P o

s,n(l);

8: if (P (Hv
n)(1 − qfn(εn, τ̂))R1,n(τ̂ , P

v
s,n(l)) + P (Ho

n)q
m
n (εn, τ̂)R3,n(τ̂ , P

v
s,n(l)) −

η13,n(l)(P
v
s,n(l) + Pc)) < εη then

9: Convergence= true; P̃ v
s,n = P v

s,n(l)

10: η∗
13,n

=
P (Hv

n)(1−qfn(εn,τ̂))R1,n(τ̂ ,P̃ v
s,n)+P (Ho

n)q
m
n (εn,τ̂)R3,n(τ̂ ,P̃ v

s,n)

P̃ v
s,n+Pc

11: else

12: η13,n(l + 1) =
P (Hv

n)(1−qfn(εn,τ̂))R1,n(τ̂ ,P
v
s,n(l))+P (Ho

n)q
m
n (εn,τ̂)R3,n(τ̂ ,P

v
s,n(l))

P v
s,n(l)+Pc

13: Convergence= false, l = l + 1;

14: end if

15: if (P (Hv
n)q

f
n(εn, τ̂)R2,n(τ̂ , P

o
s,n(l)) + P (Ho

n)(1 − qmn (εn, τ̂))R4,n(τ̂ , P
o
s,n(l)) −

η24,n(l)(P
o
s,n(l) + Pc)) < εη then

16: Convergence= true; P̃ o
s,n = P o

s,n(l)

17: η∗
24,n

=
P (Hv

n)q
f
n(εn,τ̂)R2,n(τ̂ ,P̃ o

s,n)+P (Ho
n)(1−qmn (εn,τ̂))R4,n(τ̂ ,P̃ o

s,n)

P̃ o
s,n+Pc

18: else

19: η24,n(l + 1) =
P (Hv

n)q
f
n(εn,τ̂)R2,n(τ̂ ,P

o
s,n(l))+P (Ho

n)(1−qmn (εn,τ̂))R4,n(τ̂ ,P
o
s,n(l))

P o
s,n(l)+Pc

20: Convergence= false, l = l + 1;

21: end if

22: until Convergence= true or l = Lmax

23: end for
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The near optimal sensing time scheme can be found in Algorithm 2 based on a one-dimensional

exhaustive search. Algorithm 2 is proposed to optimize the sensing time in (20) when we have

Algorithm 2 Near Optimal Energy-Efficient Sensing Time Scheme
1: Initialize the maximum number of iterations Lmax and convergence tolerance ετ

2: Set l = 0; Initialize τ̂(l);

3: repeat

4: Run Algorithm 1 with τ̂(l) to obtain the optimal power P̃ v
s,n and P̃ o

s,n;

5: P v
s,n(l) = P̃ v

s,n, P o
s,n(l) = P̃ o

s,n;

6: τ̂(l) = max
τ

N∑
n=1

T−τ
T

ηn
(
τ, P v

s,n(l), P
o
s,n(l)

)
;

7: if |τ̂(l)− τ̂(l − 1)| ≤ ετ then

8: Convergence= true, τ̃ = τ̂(l);

9: else

10: Convergence= false, l = l + 1;

11: end if

12: until Convergence= true or l = Lmax

obtained the optimal power through Algorithm 1. Therefore, running Algorithm 1 with τ̂(l) to

obtain the optimal power P̃ v
s,n and P̃ o

s,n have to be firstly done in Algorithm 2. Then the optimal

sensing time is found based on a one-dimensional exhaustive search.

C. Complexity Analysis

The computational complexity of the proposed algorithms is analyzed in this subsection.

Suppose the subgradient method used in Algorithm 1 needs ∆1 iterations to converge, the updates

of λ need O (1) operations, µ and ν need O (N) operations each. The method used in Algorithm

1 to calculate η∗13,n and η∗24,n on each subchannel in a small cell need ∆2 iterations to converge.

The total complexity of Algorithm 1 is thus O(N2∆1∆2). ∆1 and ∆2 can be small enough if the

initial values of λ, µ and ν are well chosen, together with suitable values of iteration step sizes.

In Algorithm 2, finding the optimal sensing time for each subchannel requires O (L) operations.

Therefore, the total computational complexity of Algorithm 2 is O (NL) for the network with
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N subchannels.

IV. ENERGY EFFICIENT RESOURCE OPTIMIZATION IN MULTIPLE COGNITIVE SMALL CELLS

A. Proposed Algorithms’ Application in Multiple Cognitive Small Cells

In this subsection, we investigate the energy efficient resource optimization in multiple cog-

nitive small cells. The aforementioned method is applied to optimize the energy efficiency

in multiple cognitive small cells network, where the interference between small cells will be

considered. In multiple cognitive small cells, to maximize the total energy efficiency with the

consideration of co-tier interference mitigation, the problem in (20) under the constraints of (21)

can be formulated as

max
{τ,Pv

ms,P
o
ms}

K∑
k=1

N∑
n=1

T − τk
T

ηk,n
(
τk, P

v
s,k,n, P

o
s,k,n

)
(44)

s.t. C1 :
N∑

n=1

 P (Hv
k,n)(1− qfk,n(εk,n, τk))P

v
s,k,n + P (Hv

k,n)q
f
k,n(εk,n, τk)P

o
s,k,n

+P (Ho
k,n)q

m
k,n(εk,n, τk)P

v
s,k,n + P (Ho

k,n)(1− qmk,n(εk,n, τk))P
o
s,k,n

T − τk
T

≤ Pmax

C2 : P (Ho
k,n) · gsmk,n

[
qmk,n(εk,n, τk)P

v
s,k,n + (1− qmk,n(εk,n, τk))P

o
s,k,n

] T − τk
T

≤ I thk,n,∀n, k

C3 :
P (Hv

k,n)(1− qfk,n(εk,n, τk))R
1
k,n + P (Hv

k,n)q
f
k,n(εk,n, τk)R

2
k,n

+P (Ho
k,n)q

m
k,n(εk,n, τk)R

3
k,n + P (Ho

k,n)(1− qmk,n(εk,n, τk))R
4
k,n ≥ Rmin

C4 :
K∑

j=1,j ̸=k

T − τk
T

gk,j,n

 P (Ho
j,n)
[
qmj,n(εj,n, τj)P

v
s,j,n + (1− qmj,n(εj,n, τj))P

o
s,j,n

]
+

P (Hv
j,n)
[
qfj,n(εj,n, τj)P

o
s,j,n + (1− qfn,j(εj,n, τj))P

v
s,j,n

]
 ≤ γth

k,n, ∀n, k

C5 : P v
s,k,n ≥ 0, P o

s,k,n ≥ 0, ∀n, k

C6 : 0 ≤ τk ≤ T, ∀k
(45)

where τ = [τ ]1×K is the sensing time vector of K cognitive small cells; N is the number of

subchannels in each small cell; Pv
ms =

[
P v
s,k,n

]
K×N

and Po
ms =

[
P o
s,k,n

]
K×N

are the power

allocation vectors of the N subchannels in K cognitive small cells. Constraint C1 limits the

maximum transmit power of each CSBS to Pmax; C2 sets the tolerable interference power

level on each subchannel of the macrocell user on subchannel n; C3 represents minimum QoS

requirement of each subchannel; C4 represents the tolerable interference power level from other
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small cells, where γth
k,n denotes the co-tier interference limits on nth subchannel in kth small

cell; C5 represents the non-negative power constraint of the transmit power on each subchannel;

C6 expresses the constraint of sensing time in each frame.

The problem in (44) under the constraints of (45) can be solved using the method proposed

in Section III. First of all, similar to the problem in (20), the problem of power control in (44)

under the constraints of (45) is decoupled into two separate subproblems respect to Pv
ms and

Po
ms respectively when the sensing time τ̂k is given. We first deal with the subproblem respect

to Pv
ms. The variable η13

∗

k,n is defined as

η13
∗

k,n =
P (Hv

k,n)(1− qfk,n(εk,n, τ̂k))R
1
k,n(τ̂k, P̃

v
s,k,n) + P (Ho

k,n)q
m
k,n(εk,n, τ̂k)R

3
k,n(τ̂k, P̃

v
s,k,n)

P̃ v
s,k,n + Pc

(46)

where η13
∗

k,n represents the sum of average energy efficiencies on the nth subchannel of the kth

small cell in Case 1 and Case 3. P̃ v
s,k,n is the optimal solution to the problem of (44) under the

constraints of (45).

Therefore, the optimization problem of (44) is transformed as optimization problem of (46)

under the constraints of (45). Subsequently, Algorithm 1 is used to solve the transformed problem,

and we can obtain the near optimal solution

P̃ v
s,k,n =

[
Av,k,n +

√
Bv,k,n

2

]+
(47)

where

Av,k,n =
(1 + νk,n)(P (Hv

k,n)(1− qfk,n(εk,n, τ̂k)) + P (Ho
k,n)q

m
k,n(εk,n, τ̂k))

ln 2(η13k,n(l) + λk,n(P (Hv
k,n)(1− qfk,n(εk,n, τ̂k)) + P (Ho

k,n)q
m
k,n(εk,n, τ̂k))

+µk,ng
sm
k,nP (Ho

k,n)q
m
k,n(εk,n, τ̂k)

−ξk,n
K∑

j=1,j ̸=k

gj,k,n

[
P (Hv

j,n)(1− qfj,n(εj,n, τ̂j)) + P (Ho
j,n)q

m
j,n(εj,n, τ̂j)

]


−
2σ2 + gms

k,n
P o
m,n

gss
k,n

(48)
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Bv,k,n = A2
v,k,n

− 4
gssk,n

·



σ4+σ2gms
k,nP

o
m,k,n

gssk,n
− (1+νk,n)[P (Hv

k,n)(1−qfk,n(εk,n,τ̂k))(σ
2+gms

k,nP
o
m,k,n)+P (Ho

k,n)q
m
k,n(εk,n,τ̂k)σ

2]

ln 2(η13k,n(l) + λk(P (Hv
k,n)(1− qfk,n(εk,n, τ̂k)) + P (Ho

k,n)q
m
k,n(εk,n, τ̂k)

+µk,ng
ms
k,nP (Ho

k,n)q
m
k,n(εk,n, τ̂k)

−ξk,n
K∑

j=1,j ̸=k

gj,k,n

[
P (Hv

j,n)(1− qfj,n(εj,n, τ̂j)) + P (Ho
j,n)q

m
j,n(εj,n, τ̂j)

]



(49)

Similar to P̃ v
s,k,n, we can obtain the near optimal solution

P̃ o
s,k,n =

[
Ao,k,n +

√
Bo,k,n

2

]+
(50)

where

Ao,k,n =
(1 + νk,n)P (Hv

k,n)q
f
k,n(εk,n, τ̂k) + P (Ho

k,n)(1− qmk,n(εk,n, τ̂k))
ln 2(η24k,n(l) + λk,nP (Hv

k,n)q
f
k,n(εk,n, τ̂k) + P (Ho

k,n)(1− qmk,n(εk,n, τ̂k))

+µk,ng
sm
k,nP (Ho

k,n)(1− qmk,n(εk,n, τ̂k))

−ξk,n
K∑

j=1,j ̸=k

gj,k,n

[
P (Hv

j,n)q
f
j,n(εj,n, τ̂j) + P (Ho

j,n)(1− qmj,n(εj,n, τ̂j))
]


−
2σ2 + gms

k,n
P o
m,n

gss
k,n

(51)

Bo,k,n = A2
o,k,n

− 4
gssk,n

·



σ4+σ2gms
k,nP

o
m,k,n

gssk,n
− (1+νk,n)[P (Hv

k,n)q
f
k,n(εk,n,τ̂k)(σ

2+gms
k,nP

o
m,k,n)+P (Ho

k,n)(1−qmk,n(εk,n,τ̂k))σ
2]

ln 2(η13k,n(l) + λk(P (Hv
k,n)q

f
k,n(εk,n, τ̂k) + P (Ho

k,n)(1− qmk,n(εk,n, τ̂k))

+µk,ng
ms
k,nP (Ho

k,n)(1− qmk,n(εk,n, τ̂k))

−ξk,n
K∑

j=1,j ̸=k

gj,k,n

[
P (Hv

j,n)q
f
j,n(εj,n, τ̂j) + P (Ho

j,n)(1− qmj,n(εj,n, τ̂j))
]




(52)

Finally, the near optimal sensing time for each small cell can be found in Algorithm 2 based on

a one-dimensional exhaustive search.
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B. Complexity Analysis

In this subsection, the computational complexity of the proposed algorithms in multiple small

cells network is analyzed. Similar to the single small cell case, suppose the subgradient method

used in Algorithm 1 needs ∆1 iterations to converge, the updates of λ need O (N) operations,

µ and ν need O (KN) operations each. The method used in Algorithm 1 to calculate η∗13,n and

η∗24,n on each subchannel in a small cell need ∆2 iterations to converge. The total complexity of

Algorithm 1 is thus O(N2K2∆1∆2). ∆1 and ∆2 can be small enough if the values of iteration

step sizes and initial values of λ, µ and ν are well chosen. In Algorithm 2, finding the optimal

sensing time for each subchannel requires O (L) operations. Therefore, the total computational

complexity of Algorithm 2 is O (KNL).

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented to evaluate the performance of the proposed

algorithms. The sampling frequency f is 6 MHz, T = 0.1 sec, N = 50, and σ2 = 1× 10−4. The

channel gains are modeled as block faded and exponentially distributed with mean of 0.1. The

transmit power on each subchannel of primary macrocell is set at 25 mW. We assume that the

QoS requirement of minimum data rate requirement is set as 0.3 bps/Hz. The target detection

probability q̂dn is set as 90% if not specified.

In Figure 2, the convergence of Algorithm 1 is evaluated with the Pmax = 15 dBm, the

cross-tier interference limit I thn = −10 dBm. As can be seen from Fig. 2, the average energy

efficiency of small cell on each subchannel converges after 9 iterations. This result, together with

the previous analysis, indicates that the proposed Algorithm 1 is practical in cognitive small cell.

Figure 3 displays the average energy efficiency of each subchannel in cognitive small cell

network when the sensing time increases from 0.0005 sec to 0.015 sec with Pmax = 5, 10, 13, 15

dBm, the cross-tier interference limit I thn = −10 dBm. The relation between sensing time and

the average energy efficiency of each subchannel is exhibited. As shown in Fig. 3, the average

energy efficiency of each subchannel in cognitive small cell first increases and then drops when

the sensing time is increased from 0.0005 sec to 0.015 sec. It is estimated that the near optimal

sensing time is between 0.002 sec and 0.004 sec. Larger value of Pmax results in higher average
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energy efficiency because a larger value of Pmax enlarges the feasible region of the variables in

the original optimization problem in (20)-(21).

Figure 4 shows the trend of average energy efficiency of each subchannel in cognitive small

cell when Pmax increases from 5 dBm to 25 dBm. The target detection probabilities q̂dn = 0.8, 0.9

and cross-tier interference limit I thn = −10 dBm in Fig. 4. As shown in Fig. 4, the average energy

efficiency of each subchannel of cognitive small cell increases when Pmax is increased from 5

dBm to 25 dBm. Because a larger value of Pmax results in a larger optimal power in (20)-(21).

We can see that a larger target detection probability results in better performance of the optimal

average energy efficiency from Fig. 4. The reason is that a larger target detection probability

makes it more accurate in detection of spectrum sensing.

Figure 5 shows the relation between cross-tier interference limit and the average energy

efficiency of each subchannel with different target detection probability. As shown in Fig. 5,

the average energy efficiency of each subchannel in cognitive small cell increases when I thn is

changed from −15 dBm to 5 dBm. Similar to Fig. 3, this is because that a larger value of I thn

can enlarges the feasible region of optimizing variable of power in (20)-(21).

Figure 6 shows the performance comparison of average spectral efficiency with different

scheme. The proposed scheme is the combination of the proposed Algorithm 1 and the proposed

near optimal sensing time scheme. Fixed sensing time scheme is the combination of the proposed

Algorithm 1 and a random selected sensing time scheme. Fixed power scheme is the combination

of equal power allocation and the proposed optimal sensing time scheme. As shown in Fig. 6,

the average spectral efficiency of each subchannel in the cognitive small cell with Pmax increases

from 5 mW to 25 mW. However, the proposed scheme outperforms the fixed sensing time scheme

and the fixed power scheme obviously.

Figure 7 provides the energy efficiency performance comparison between proposed scheme and

the other methods. In Fig. 7, the average energy efficiency of each subchannel in the cognitive

small cell is shown when Pmax increases from 8 mW to 18 mW, where the target detection

probability q̂dn = 0.9 and cross-tier interference limit I thn = −10 dBm. The proposed scheme

is the combination of the proposed Algorithm 1 and the proposed near optimal sensing time

scheme. Fixed sensing time scheme is the combination of the proposed Algorithm 1 and a
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random selected sensing time scheme. Fixed power scheme is the combination of equal power

allocation and the proposed optimal sensing time scheme. As shown in Fig. 7, the proposed

scheme can achieve 15% higher energy efficiency than the fixed sensing time scheme. Fixed

power scheme has the lowest curve, because of equal power allocation.

Figure 8 shows the relation between cross-tier interference limit and the optimal sensing time.

As shown in Fig. 8, the near optimal sensing time decreases with an increase of I thn . Because

when using KKT conditions related to C2, larger I thn results in larger optimized sensing time.

Moreover, a larger value of Pmax results in smaller optimized sensing time.

Figure 9 shows the relation between the sensing time and average energy efficiency of each

subchannel in cognitive small cell network with different cross-tier interference limit. As shown

in Fig. 9, similar to Fig.3, the average energy efficiency of each subchannel in cognitive small

cell first increases and then drops as the sensing time is increased from 0.0005 sec to 0.015 sec.

It is because that the near optimal sensing time is between 0.002 sec and 0.004 sec. Larger I thn

value results in higher average energy efficiency since a larger of value of I thn leads to a larger

optimization variable region in (20)-(21).

Figure 10 displays the trend of average energy efficiency of each subchannel in cognitive small

cell when Pmax increases from 5 dBm to 25 dBm with cross-tier interference limit I thn = −20,−5

dBm and target detection probability q̂dn = 0.9. Similar to Fig. 4, Fig. 10 shows that the average

energy efficiency of each subchannel in cognitive small cell increases when Pmax is increased

from 5 dBm to 25 dBm. Besides, we conclude that larger cross-tier interference limit can result

in improved performance in average energy efficiency.

Figure 11 shows the convergence performance of Algorithm 1 in the network consists of

multiple cognitive small cells under the different circuit power Pc. As shown in Fig. 11, the total

average energy efficiency on each subchannel of all small cells converges after 12 iterations.

The practical applicability of Algorithm 1 in the multiple cognitive small cells is demonstrated

through this figure.

Figure 12 shows that the total average energy efficiency on each subchannel of all small cells

versus the number of small cells in network with the co-tier interference limits γth = −10,−20

dBm, and Pmax = 15 dBm. As shown in Fig. 12, the total average energy efficiency on each
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subchannel of all small cells increase gradually with the increase of the number of small cells.

However, the ratio of increase is diminishing, and it is caused by the co-tier interference among

small cells. We can also see that a larger co-tier interference limits results in better performance

of the optimal total average energy efficiency. It implies that our proposed method not only can

optimize the energy efficiency but also can mitigate the co-tier interference in multiple cognitive

small cells.

Figure 13 shows the total average energy efficiency on each subchannel of all small cells versus

the number of small cells in network with the cross-tier interference limits I thn = −10,−13 dBm,

and Pmax = 15 dBm. We observe that the total average energy efficiency on each subchannel

increases and then drops when the number of small cells is increased from 5 to 30. The slope of

lines is diminishing. As shown in Fig. 13, the performance of the larger cross-tier interference

limits outperforms that of the smaller cross-tier interference limit in terms of the total average

energy efficiency on each subchannel. Therefore, we can say that our proposed scheme can

mitigate the cross-tier interference when optimizing the energy efficiency.

VI. CONCLUSION

We investigated the power allocation and sensing time optimization problem in cognitive

small cell where the cross-tier interference mitigation, imperfect spectrum sensing, and energy

efficiency were considered. The energy efficient sensing time optimization and power alloca-

tion were modeled as a non-convex optimization problem. We transformed the fractional form

non-convex optimization problem into an equivalent optimization problem in subtractive form.

An iterative resource allocation algorithm was developed. Simulation results showed that the

proposed algorithms not only converge within limited number of iterations, but also achieve

improved performance than the existing schemes. In the future, we will extend our work into

the multiple macrocells scenario [27].
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