6 research outputs found

    Semivalues: weighting coefficients and allocations on unanimity games

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Optimization letters. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11590-017-1224-8.Each semivalue, as a solution concept defined on cooperative games with a finite set of players, is univocally determined by weighting coefficients that apply to players’ marginal contributions. Taking into account that a semivalue induces semivalues on lower cardinalities, we prove that its weighting coefficients can be reconstructed from the last weighting coefficients of its induced semivalues. Moreover, we provide the conditions of a sequence of numbers in order to be the family of the last coefficients of any induced semivalues. As a consequence of this fact, we give two characterizations of each semivalue defined on cooperative games with a finite set of players: one, among all semivalues; another, among all solution concepts on cooperative games.Peer ReviewedPostprint (author's final draft

    Some properties for probabilistic and multinomial (probabilistic) values on cooperative games

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Optimization on 18-02-2016, available online: http://www.tandfonline.com/10.1080/02331934.2016.1147035.We investigate the conditions for the coefficients of probabilistic and multinomial values of cooperative games necessary and/or sufficient in order to satisfy some properties, including marginal contributions, balanced contributions, desirability relation and null player exclusion property. Moreover, a similar analysis is conducted for transfer property of probabilistic power indices on the domain of simple games.Peer ReviewedPostprint (author's final draft

    Multinomial probabilistic values

    Get PDF
    Multinomial probabilistic values were introduced by one of us in reliability. Here we define them for all cooperative games and illustrate their behavior in practice by means of an application to the analysis of a political problem.Peer ReviewedPostprint (author’s final draft

    Bayesian Regression Markets

    Full text link
    Machine learning tasks are vulnerable to the quality of data used as input. Yet, it is often challenging for firms to obtain adequate datasets, with them being naturally distributed amongst owners, that in practice, may be competitors in a downstream market and reluctant to share information. Focusing on supervised learning for regression tasks, we develop a \textit{regression market} to provide a monetary incentive for data sharing. Our proposed mechanism adopts a Bayesian framework, allowing us to consider a more general class of regression tasks. We present a thorough exploration of the market properties, and show that similar proposals in current literature expose the market agents to sizeable financial risks, which can be mitigated in our probabilistic setting.Comment: 46 pages, 11 figures, 2 table

    Coalitional control in the framework of cooperative game theory

    Full text link
    [EN] Coalitional control is a fairly new branch of distributed control where the agents merge dynamically into coalitions according to the enabled/disabled communication links at each time instant. Therefore, with these schemes there is a reduction of the communication burden without compromising the system performance. In this tutorial, the main features of these schemes will be introduced in the framework of cooperative game theory, being the game related to the cost function that is optimized by the control approach, and with the players corresponding to either the communication links or the agents involved. In this context, several cooperative game theory tools will be considered in order to: rank the players, impose constraints on them, provide more effcient ways of calculation, perform system partitioning, etc., hence analyzing the main features related to each tool.[ES] El control coalicional es una rama incipiente del control distribuido donde los distintos agentes se agrupan de forma dinámica en coaliciones en función de los enlaces de comunicación activos/inactivos en cada instante de tiempo. Gracias a ello, se reduce la carga de comunicación sin comprometer las prestaciones del sistema. En este tutorial, se analizan las principales características de estos esquemas dentro del marco de la teoría de juegos cooperativos, estando el juego definido por la función de coste a optimizar en el esquema de control, y correspondiendo los jugadores bien a los enlaces de comunicación o bien a los propios agentes. En este contexto, se estudiarán diversas herramientas de teoría de juegos cooperativos, con objeto de clasificar jugadores, imponer restricciones en los mismos, proponer vías de cálculo más eficientes, realizar particionado de sistemas, etc., examinando las características más relevantes presentadas por cada herramienta.Este estudio ha sido parcialmente financiado por los proyectos de investigación OCONTSOLAR, (H2020 ADG-ERC, ID 789051), C3PO (MINECO, DPI2017-86918-R), y GESVIP (Junta de Andalucía, US-1265917). Asimismo, se agradece a Jose María Maestre, Encarnación Algaba y Eduardo F. Camacho las innumerables discusiones mantenidas a lo largo de los anos de doctorado que me ayudaron a dominar los conceptos presentados en este tutorial. Es también de destacar los comentarios del Editor y los revisores anónimos que han contribuido a la mejora sustancial del manuscrito. Finalmente, se dedica este artículo a Lloyd S. Shapley (1923-2016), ya que su concepto de solución (Shapley, 1953b) ha inspirado todo mi trabajo.Muros, FJ. (2021). El control coalicional en el marco de la teoría de juegos cooperativos. Revista Iberoamericana de Automática e Informática industrial. 18(2):97-112. https://doi.org/10.4995/riai.2020.13456OJS97112182Alamo, T., Normey-Rico, J. E., Arahal, M. R., Limon, D., Camacho, E. F., June 2006. Introducing linear matrix inequalities in a control course. In: Proceedings of the 7th IFAC Symposium on Advances in Control Education (ACE 2006). Madrid, Spain, pp. 205-210. https://doi.org/10.3182/20060621-3-ES-2905.00037Algaba, E., Fragnelli, V., Sánchez-Soriano, J. (Eds.), December 2019. The Handbook of the Shapley Value. CRC Press Series in Operations Research. Chapman & Hall/CRC, Boca Ratón, Florida, USA. https://doi.org/10.1201/9781351241410Aranda-Escolástico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., March 2020. Event-based control: A bibliometric analysis of twenty years of research. IEEE Access 8, 47188-47208. https://doi.org/10.1109/ACCESS.2020.2978174Baldivieso-Monasterios, P. R., Trodden, P. A., March 2021. Coalitional predictive control: Consensus-based coalition forming with robust regulation.Automatica 125, 109380. https://doi.org/10.1016/j.automatica.2020.109380Banzhaf, J. F., 1965. Weighted voting doesn't work: A mathematical analysis. Rutgers Law Review 19, 317-343.Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., March 2019. Time-varying partitioning for predictive control design: Density-games approach. Journal of Process Control 75, 1-14. https://doi.org/10.1016/j.jprocont.2018.12.011Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., Maestre, J. M., September 2017. Non-centralized control for flow-based distribution networks: A game theoretical insight. Journ. of the Franklin Inst. 354 (14), 5771-5796. https://doi.org/10.1016/j.jfranklin.2017.06.021Bauso, D., Cannon, M., April 2018. Consensus in opinion dynamics as a repeated game. Automatica 90, 204-211. https://doi.org/10.1016/j.automatica.2017.12.062Bauso, D., Notarstefano, G., November 2015. Distributed n-player approachability and consensus in coalitional games. IEEE Transactions on Automatic Control 60 (11), 3107-3112. https://doi.org/10.1109/TAC.2015.2411873Bauso, D., Timmer, J., March 2009. Robust dynamic cooperative games. International Journal of Game Theory 38 (1), 23-36. https://doi.org/10.1007/s00182-008-0138-1Bauso, D., Timmer, J., October 2012. On robustness and dynamics in (un)balanced coalitional games. Automatica 48 (10), 2592-2596. https://doi.org/10.1016/j.automatica.2012.06.057Becker, H.W., Riordan, J., April 1948. The arithmetic of Bell and Stirling numbers. American Journal of Mathematics 70 (2), 385-394. https://doi.org/10.2307/2372336Borm, P., Owen, G., Tijs, S., August 1992. On the position value for communication situations. SIAM Journal on Discrete Mathematics 5 (3), 305-320. https://doi.org/10.1137/0405023Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, USA. https://doi.org/10.1137/1.9781611970777Cai, K., Ishii, H., September 2011. Quantized consensus and averaging on gossip digraphs. IEEE Transactions on Automatic Control 56 (9), 2087-2100. https://doi.org/10.1109/TAC.2011.2107630Camacho, E. F., Bordons, C., 2013. Model Predictive Control, 2nd Edition. Advances Textbooks in Control and Signal Processing. Springer, London, UK.Carreras, F., Freixas, J., January 2002. Semivalue versatility and applications. Annals of Operations Research 109 (1-4), 343-358. https://doi.org/10.1023/A:1016320723186Casella, G., Berger, R. L., 2002. Statistical Inference, 2nd Edition. Thomson Learning. Duxbury Advanced Series, Stamford, Connecticut, USA.Castro, J., Gómez, D., Molina, E., Tejada, J., June 2017. Improving polynomial estimation of the shapley value by stratified random sampling with optimum allocation. Computers & Operations Research 82, 180-188. https://doi.org/10.1016/j.cor.2017.01.019Castro, J., Gómez, D., Tejada, J., May 2009. Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research 36 (5), 1726-1730. https://doi.org/10.1016/j.cor.2008.04.004Chanfreut, P., Maestre, J. M., Camacho, E. F., 2021a. Coalitional model predictive control on freeways traffic networks. IEEE Transactions on Intelligent Transportation Systems.En Prensa. https://doi.org/10.1109/TITS.2020.2994772Chanfreut, P., Maestre, J. M., Ferramosca, A., Muros, F. J., Camacho, E. F.,2021b. Distributed model predictive control for tracking: A clustering approach. Submitted to the IEEE Trans. on Autom. Control.No publicado.Chanfreut, P., Maestre, J. M., Muros, F. J., Camacho, E. F., 2021c. Clustering switching regions for feedback controllers: A convex approach. IEEE Transactions on Control of Network Systems.En Prensa.Darivianakis, G., Eichler, A., Lygeros, J., 2020. Distributed model predictive control for linear systems with adaptive terminal sets. IEEE Transactions on Automatic Control 65 (3), 1044-1056. https://doi.org/10.1109/TAC.2019.2916774De Souza, C. A., Camponogara, E., Kraus Jr.,W., Peccin, V. B., May/June 2015. Distributed MPC for urban traffic networks: A simulation-based performance analysis. Optimal Control Applications & Methods 36 (3), 353-368. https://doi.org/10.1002/oca.2148Di Nardo, A., Di Natale, M., Giudicianni, C., Musmarra, D., Santonastaso, G. F., Simone, A., September 2015. Water distribution system clustering and partitioning based on social network algorithms. Procedia Engineering 119, 196-205. https://doi.org/10.1016/j.proeng.2015.08.876Dörfler, F., Jovanovic, M. R., Chertkov, M., Bullo, F., September 2014. Sparsity-promoting optimal wide-area control of power networks. IEEE Transactions on Power Systems 29 (5), 2281-2291. https://doi.org/10.1109/TPWRS.2014.2304465Dubey, P., Neyman, A., Weber, R. J., February 1981. Value theory without efficiency. Mathematics of Operations Research 6 (1), 122-128. https://doi.org/10.1287/moor.6.1.122Ebihara, Y., Peaucelle, D., Arzelier, D., January 2014. LMI approach to linear positive system analysis and synthesis. Syst. & Control Letters 63, 50-56. https://doi.org/10.1016/j.sysconle.2013.11.001Fele, F., Debada, E., Maestre, J. M., Camacho, E. F., September 2018. Coalitional control for self-organizing agents. IEEE Transactions on Automatic Control 63 (9), 2883-2897. https://doi.org/10.1109/TAC.2018.2792301Fele, F., Maestre, J. M., Camacho, E. F., July 2015. Coalitional control: a bottom-up approach. In: Proceedings of the 33rd American Control Conference (ACC 2015). Chicago, Illinois, USA, pp. 4074-4079. https://doi.org/10.1109/ACC.2015.7171966Fele, F., Maestre, J. M., Camacho, E. F., February 2017. Coalitional control: Cooperative game theory and control. IEEE Control Systems Magazine 37 (1), 53-69. https://doi.org/10.1109/MCS.2016.2621465Fele, F., Maestre, J. M., Shahdany, M. H., Muñoz de la Peña, D., Camacho, E. F., April 2014. Coalitional model predictive control of an irrigation canal. Journal of Process Control 24 (4), 314-325. https://doi.org/10.1016/j.jprocont.2014.02.005Fletcher, R., Leyer, S., May 1998. Numerical experience with lower bounds for MIQP branch-and-bound. SIAM Journal on Optimization 8 (2), 604-616. https://doi.org/10.1137/S1052623494268455Fletscher, L. A., Maestre, J. M., Peroni, C. V., July 2018. Coalitional planningfor energy efficiency of HetNets powered by hybrid energy sources. IEEETransactions on Vehicular Technology 67 (7), 6573-6584. https://doi.org/10.1109/TVT.2018.2809639Gahinet, P., Nemirovskii, A. S., Laub, A. J., Chilali, M., 1995. LMI Control Toolbox For Use with MATLAB. The MathWorks, Inc., Natick, Massa-chusetts, USA.Ghintran, A., May 2013.Weighted position values. Mathematical Social Sciences 65 (3), 157-163. https://doi.org/10.1016/j.mathsocsci.2013.01.003Gilles, R. P., April 2010. The Cooperative Game Theory of Networks and Hierarchies. Vol. 44 of Theory and Decision Library C. Springer, Heidelberg,Germany. https://doi.org/10.1007/978-3-642-05282-8Gillies, D. B., 1959. Solutions to general non-zero-sum games. In: Tucker, A. W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 47-85. https://doi.org/10.1515/9781400882168-005Ginsburgh, V., Zang, I., November 2012. Shapley ranking of wines. Journal of Wine Economics 7 (2), 169-180. https://doi.org/10.1017/jwe.2012.35Han, Z., Niyato, D., Saad,W., Basar, T., Hjørungnes, A., 2012. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, New York, USA.Harsanyi, J. C., 1959. A bargaining model for the n-person cooperative game. In: Tucker, A.W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 325-355. https://doi.org/10.1515/9781400882168-019Hiller, T., 2016. Excluded coalitions and the distribution of power in parliaments. Applied Economics 48 (4), 321-330. https://doi.org/10.1080/00036846.2015.1078449Hiller, T., January 2018. The effects of excluding coalitions. Games 9 (1), 1:1-1:7. https://doi.org/10.3390/g9010001Ishii, H., Tempo, R., February 2010. Distributed randomized algorithms for the PageRank computation. IEEE Transactions on Automatic Control 55 (9), 1987-2002. https://doi.org/10.1109/TAC.2010.2042984Jackson, M. O., 2008. Social and Economic Networks. Princeton University Press, Princeton, New Jersey, USA.Jiang, Y., May 2019. Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements. Journal of the Franklin Institute 356 (7), 3811-3830. https://doi.org/10.1016/j.jfranklin.2019.01.010Kalai, E., Samet, D., September 1987. On weighted Shapley values. International Journal of Game Theory 16 (3), 205-222. https://doi.org/10.1007/BF01756292Khmelnitskaya, A., Selcuk, Ö., Talman, D., January 2016. The Shapley value for directed graph games. Operations Research Letters 44 (1), 143-147. https://doi.org/10.1016/j.orl.2015.12.009Lehrer, E., June 1988. An axiomatization of the Banzhaf value. International Journal of Game Theory 17 (2), 89-99. https://doi.org/10.1007/BF01254541Loehman, E. T., Whinston, A. B., 1976. A generalized cost allocation scheme. In: Stevens, A., Lin, Y. (Eds.), Theory and Measurement of Economic Externalities. Academic Press, New York, USA, pp. 87-101. https://doi.org/10.1016/B978-0-12-450450-9.50013-0Lopez-Rodriguez, F., Maestre, J. M., Muros, F. J., Camacho, E. F., July 2020. A modular feedback approach for distributed control. In: Proceedings of the 21st IFAC World Congress (IFAC 2020). Berlin, Germany, pp. 4086-4091.Lucchetti, R., Moretti, S., Patrone, F., Radrizzani, P., August 2010. The Shapley and Banzhaf values in microarray games. Computers & Operations Research 37 (8), 1406-1412. https://doi.org/10.1016/j.cor.2009.02.020Maestre, J. M., November 2010. Distributed model predictive control based on game theory. Ph.D. thesis, Department of Systems and Automation Engineering, University of Seville, Seville, Spain.Maestre, J. M., Ishii, H., October 2017. A PageRank based coalitional control scheme. International Journal of Control, Automation and Systems 15 (5), 1983-1990. https://doi.org/10.1007/s12555-016-0336-8Maestre, J. M., Lopez-Rodriguez, F., Muros, F. J., Ocampo-Martinez, C., February 2021. Modular feedback control of networked systems by clustering: A drinking water network case study. Processes 9 (2), 389. https://doi.org/10.3390/pr9020389Maestre, J. M., Muñoz de la Peña, D., Camacho, E. F., Alamo, T., 2011. Distributed model predictive control based on agent negotiation. Journal of Process Control 21 (5), 685-697. https://doi.org/10.1016/j.jprocont.2010.12.006Maestre, J. M., Muñoz de la Peña, D., Jiménez Losada, A., Algaba, E., Camacho, E. F., September/October 2014. A coalitional control scheme with applications to cooperative game theory. Optimal Control Applications and Methods 35 (5), 592-608. https://doi.org/10.1002/oca.2090Maestre, J. M., Muros, F. J., Fele, F., Camacho, E. F., July 2015. An assessment of coalitional control in water systems. In: Proceedings of the 14th European Control Conference (ECC 2015). Linz, Austria, pp. 3291-3296. https://doi.org/10.1109/ECC.2015.7331041Maestre, J. M., Negenborn, R. R. (Eds.), 2014. Distributed Model Predictive Control Made Easy. Vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-007-7006-5Martin, J. G., Muros, F. J., Maestre, J. M., Camacho, E. F., 2020. Clustering for multi-robot task allocation problems by game theory. Submitted to the IEEE Transactions on Cybernetics. No publicado.Marzband, M., Ardeshiri, R. R., Moafi, M., Uppal, H., June 2017. Distributed generation for economic benefit maximization through coalition formation-based game theory concept. International Transactions on Electrical Energy Systems 27 (6), e2313. https://doi.org/10.1002/etep.2313Maschler, M., Solan, E., Zamir, S., March 2013. Game Theory. Cambridge University Press, Cambridge, UK.Masero, E., Fletscher, L. A., Maestre, J. M., December 2020. A coalitional mo-del predictive control for the energy efficiency of next-generation cellular networks. Energies 13 (24), 6546. https://doi.org/10.3390/en13246546Masero, E., Frejo, J. R. D., Maestre, J. M., Camacho, E. F., January 2021. Alight clustering model predictive control approach to maximize thermal power in solar parabolic-trough plants. Solar Energy 214, 531-541. https://doi.org/10.1016/j.solener.2020.11.056Mitchell, M., 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts, USA. https://doi.org/10.7551/mitpress/3927.001.0001Monroy, L., Fernández, F. R., April 2014. Banzhaf index for multiple voting systems. an application to the European Union. Annals of Operations Research 215, 215-230. https://doi.org/10.1007/s10479-013-1374-8Muros, F. J., 2019. Cooperative Game Theory Tools in Coalitional Control Networks. Springer Theses Series. Springer, Zug, Switzerland. https://doi.org/10.1007/978-3-030-10489-4Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June/July 2016. Cooperative game theory tools to detect critical nodes in distributed control systems. In: Proceedings of the 15th European Control Conference (ECC 2016). Aalborg, Denmark, pp. 190-195. https://doi.org/10.1109/ECC.2016.7810285Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June 2017a. The Banzhaf value as a design tool in coalitional control. Systems & Control Letters 104, 21-30. https://doi.org/10.1016/j.sysconle.2017.03.007Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., July 2017b. Harsanyi power solutions in coalitional control systems. IEEE Transactions on Automatic Control 62 (7), 3369-3381. https://doi.org/10.1109/TAC.2017.2651642Muros, F. J., Maestre, J. M., 2020. Generalized framework for coalitional feedback control with semivalues constraints. Submitted to the Journal of the Franklin Institute. No publicado.Muros, F. J., Maestre, J. M., Algaba, E., Alamo, T., Camacho, E. F., April 2017c. Networked control design for coalitional schemes using game-theoretic methods. Automatica 78, 320-332. https://doi.org/10.1016/j.automatica.2016.12.010Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., December 2018a. A game theoretical randomized method for large-scale systems partitioning. IEEE Access 6 (1), 42245-42263. https://doi.org/10.1109/ACCESS.2018.2854783Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., June 2018b. Partitioning of large-scale systems using game-theoretic coalitional methods. In: Proceedings of the 16th European Control Conference (ECC 2018). Limassol, Cyprus, pp. 2517-2522. https://doi.org/10.23919/ECC.2018.8550096Narayanam, R., Narahari, Y., January 2011. A Shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering 8 (1), 130-147. https://doi.org/10.1109/TASE.2010.2052042Nash, J. F., September 1951. Non-cooperative games. Annals of Mathematics 54 (2), 286-295. https://doi.org/10.2307/1969529Nedic, A., Bauso, D., June 2013. Dynamic coalitional TU games: Distributed bargaining among players' neighbors. IEEE Transactions on Automatic Control 58 (6), 1363-1376. https://doi.org/10.1109/TAC.2012.2236716Negenborn, R. R., De Schutter, B., Hellendoorn, J., April 2008. Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence 21 (3), 353-366. https://doi.org/10.1016/j.engappai.2007.08.005Negenborn, R. R., van Overloop, P.-J., Keviczky, T., De Schutter, B., June 2009. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media 4 (2), 359-380. https://doi.org/10.3934/nhm.2009.4.359Nowak, A. S., March 1997. On an axiomatization of the Banzhaf value without the additivity axiom. International Journal of Game Theory 26 (1), 137-141. https://doi.org/10.1007/s001820050022Núñez, A., Ocampo-Martinez, C., Maestre, J. M., Schutter, B. D., August 2015. Time-varying scheme for noncentralized model predictive control of large-scale systems. Mathematical Problems in Engineering 2015, 560702. https://doi.org/10.1155/2015/560702Ocampo-Martinez, C., Bovo, S., Puig, V., June 2011. Partitioning approach oriented to the decentralised predictive control of large-scale systems. Journal of Process Control 21 (5), 775-786. https://doi.org/10.1016/j.jprocont.2010.12.005Ocampo-Martinez, C., Puig, V., Cembrano, G., Quevedo, J., February 2013.Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Systems Magazine 33 (1), 15-41. https://doi.org/10.1109/MCS.2012.2225919Olfati-Saber, R., Fax, J. A., Murray, R. M., January 2007. Consensus and cooperation in networked multi-agent systems. Proc. of the IEEE 95 (1), 215-233. https://doi.org/10.1109/JPROC.2006.887293Olfati-Saber, R., Murray, R. M., September 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113Owen, G., September 1978. Characterization of the Banzhaf-Coleman index. SIAM Journal of Applied Mathematics 35 (2), 315-327. https://doi.org/10.1137/0135026Owen, G., 2013. Game Theory, 4th Edition. Emerald Group Publishing Limited, Bingley, UK.Peleg, B., Sudhölter, P., October 2007. Introduction to the Theory of Cooperative Games. Theory and Decision Library C. Springer.Penrose, L. S., 1946. The elementary statistics of majority voting. Journal of the Royal Statistical Society 109 (1), 53-57. https://doi.org/10.2307/2981392Peters, H., June 2015. Game Theory. A Multi-Leveled Approach, 2nd Edition. Springer Texts in Business and Economics. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-46950-7Petrosjan, L., Zaccour, G., January 2003. Time-consistent Shapley value allocation of pollution cost reduction. Journal of Economics Dynamics & Control 27 (3), 381-398. https://doi.org/10.1016/S0165-1889(01)00053-7Philippe, M., Essick,
    corecore