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1 Introduction

Semivalues were introduced by Weber [26] in the context of simple games (see
also Einy [17]). In 1981, Dubey et al. [16] proposed the family of semivalues
on all cooperative games, each one of which is defined by weighting coefficients
that apply to the marginal contributions v(S ∪ {i}) − v(S) and are common
to all coalitions of the same size. This new notion includes both, the Shapley
value [25] and the Banzhaf value, defined by Owen [22] —an extension to all
cooperative games of the original Banzhaf power index [3]—. In 1988, Weber
[27] went further, dropped anonymity, and defined the family of probabilistic
values, each one of which requires weighting coefficients piS for each player i
and each coalition S ⊆ N\{i} (of course, anonymity characterizes semivalues
within this new family).

Several authors have been especially concerned with semivalues. Dragan
[12] gives different interesting properties of semivalues as well as in [14, 15]
the inverse problem is considered. Calvo and Santos [5] and Dragan [13] in-
dependently get a potential for every semivalue. Grabisch and Roubens [18]
consider some properties of probabilistic interactions among the players in
order to characterize solution concepts. In [19] axiomatizations of the proba-
bilistic interaction indices are proposed and in [28] the additive efficient nor-
malization of a semivalue is axiomatized. Our research group has also been
studying semivalues. Carreras and Freixas [6] introduce regular semivalues.
Carreras and Freixas [8] show the semivalue versatility as a very interesting
tool for practical applications. Puente [24] devotes most of her PhD. thesis
to semivalues and, especially, to their action on simple games. In [9], a re-
stricted notion of semivalue as a power index, i.e., as a value for simple games,
is axiomatically introduced. In the analysis of certain cooperative problems
we have successfully used binomial semivalues, a single parametric subfam-
ily defined by Puente [24] (see also [20] and [1]) that includes the Banzhaf
value [22]. In [10] the binomial semivalues are used to study the effects of the
partnership formation in cooperative games, comparing the joint effect on the
involved players with the alternative alliance formation. Carreras and Puente
[11] introduced symmetric coalitional binomial semivalues, a new family of
coalitional values designed to take into account players’ attitudes with regard
cooperation. This new family applies to cooperative games with a coalition
structure by combining the Shapley value and the binomial semivalues.

The payoff that a semivalue allocates to every player in a game is a weighted
sum of his marginal contributions in the game, provided that all the coalitions
of a common size have the same weighting coefficient. Following the charac-
terization of semivalues by means of weighting coefficients given by Dubey et
al. [16], every family of weighting coefficients having as many components as
players in the game is associated to a unique semivalue if, and only if, these
weighting coefficients satisfy a simple condition of normalization.

As it is well known, semivalues for cooperative games are defined on car-
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dinalities rather than on specific player sets: this means that the n weighting
coefficients define a semivalue on all set N such that n = |N |. Moreover,
a semivalue on N induces semivalues for all cardinalities t < n, recurrently
defined by the Pascal triangle (inverse) formula given by Dragan [12].

The present paper focuses on the weighting coefficients that univocally
characterize a semivalue. First of all, we prove that these weighting coeffi-
cients can be reconstructed from the last weighting coefficients of its induced
semivalues. After that, in order to obtain the weighting coefficients of the
original semivalue, several conditions for the last weighting coefficients of its
induced semivalues are provided.

As it is well known, the unanimity games form a basis of the vector space of
the cooperative games and a semivalue is completely determined by its action
on any unanimity game. The fact that the payoff that a semivalue allocates to
each player in these games is closely related with the last weighting coefficient
of the induced semivalues allows us to characterize each semivalue within the
set of all semivalues defined on cooperative games with a finite set of players.
In order to provide an individual axiomatization of each semivalue among
all solution concepts on cooperative games, one nonstandard property, called
“Successively bounded allocations in unanimity games” will be introduced and
combined with the classical properties of linearity, anonymity and dummy
player property.

According to the above considerations, the paper is organized as follows.
Section 2 includes a minimum of preliminaries related to cooperative games
and semivalues, paying special attention to the weighting coefficients that de-
fine each semivalue. In Section 3 we focus on the last weighting coefficients of
the induced semivalues in order to establish conditions that allow us to recon-
struct the weighting coefficients associated to the original semivalue. Finally,
in Section 4, we give two characterizations of each semivalue defined on games
with a finite set of players: one, among all semivalues; another, among all
solution concepts on cooperative games.

2 Preliminaries on semivalues

Let N be a finite set of players and 2N be the set of its coalitions (subsets of
N). A cooperative game with transferable utility on N is a function v : 2N →
R, which assigns a real number v(S) to each coalition S ⊆ N and satisfies
v(∅) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever S ⊂ T . A game v
is additive (or inessential) if v(S ∪ T ) = v(S) + v(T ) whenever S ∩ T = ∅.

A player i ∈ N is called dummy in a game v ∈ GN if all marginal contri-
butions of the player to the coalitions to which it belongs equal its individual
utility in the game, i.e., v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}.

Endowed with the natural operations for real–valued functions, denoted
by v + v′ and λv for λ ∈ R, the set of all cooperative games on N is a vector
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space GN . For every nonempty coalition T ⊆ N , the unanimity game uT is
defined on N by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise, and it is
easily checked that the set of all unanimity games is a basis for GN , so that
dim(GN ) = 2n − 1 if n = |N |. Each game v ∈ GN can then be uniquely
written as a linear combination of unanimity games, and its components are
the Harsanyi dividends (Harsanyi [21]):

v =
∑

T⊆N : T 6=∅

αTuT , where αT = αT (v) =
∑
S⊆T

(−1)t−sv(S) (1)

and, as usual, t = |T | and s = |S|. The additive games form a linear subspace
of GN that we denote as AGN and is spanned by the set {u{i} : i ∈ N} formed
by unanimity games on singletons. Finally, every permutation θ of N induces
a linear automorphism of GN that leaves invariant AGN and is defined by
(θv)(S) = v(θ−1S) for all S ⊆ N and all v ∈ GN .

By a solution or a value on GN we will mean a map f : GN → RN , which
assigns to every game v on N a vector f [v] with components fi[v] for all i ∈ N .

Following Weber’s [27] axiomatic description, ψ : GN → RN is a semivalue
iff it satisfies the following properties:

(A1) linearity: ψ[v + v′] = ψ[v] + ψ[v′] (additivity) and ψ[λv] = λψ[v] for all
v, v′ ∈ GN and λ ∈ R;

(A2) anonymity: ψθi[θv] = ψi[v] for all θ permutation on N , i ∈ N , and
v ∈ GN ;

(A3) dummy player property: if i ∈ N is a dummy in game v, then ψi[v] =
v({i}).

(A4) positivity: if v is monotonic, then ψ[v] ≥ 0;

There is an interesting characterization of semivalues, by means of weight-
ing coefficients, due to Dubey, Neyman and Weber [16].

Theorem 2.1 (a) For every nonnegative weighting coefficients (ps)
n−1
s=0 such

that
n−1∑
s=0

(
n− 1

s

)
ps = 1, (2)

the expression

ψi[v] =
∑

S⊆N\{i}

ps[v(S ∪ {i})− v(S)] for all i ∈ N and all v ∈ GN (3)

where s = |S|, defines a semivalue ψ; (b) conversely, every semivalue can be
obtained in this way; (c) the correspondence (ps)

n−1
s=0 7→ ψ is bijective.
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Thus, the payoff that a semivalue allocates to every player in any game is
a weighted sum of his marginal contributions in the game. If pk is interpreted
as the probability that a given player i joins a coalition of size k, provided that
all the coalitions of a common size have the same probability of being joined,
then ψi[v] is the expected marginal contribution of that player to a random
coalition he joins.

Well known examples of semivalues are the Shapley value ϕ, for which
ps = 1

n(n−1
s )

, and the Banzhaf value β, for which ps = 21−n. The Shapley

value ϕ is the only efficient semivalue, in the sense that
∑

i∈N ϕi[v] = v(N)
for every v ∈ GN . It is noteworthy that these two classical values are defined
for each N .

As a generalization of the Banzhaf value we find the family of binomial
semivalues (Puente [24], Giménez [20], Amer and Giménez [1]) introduced
as follows. Let α ∈ [0, 1] and ps = αs(1 − α)n−s−1 for s = 0, 1, . . . , n − 1.
Then {ps}n−1s=0 are the weighting coefficients and define a semivalue that will
be denoted as ψα and called the α–binomial semivalue. Using the convention
that 00 = 1, the definition makes sense also for α = 0 and α = 1, where we
respectively get the dictatorial index ψ0 = δ and the marginal index ψ1 = µ,
introduced by Owen [23] and such that δi[v] = v({i}) and µi[v] = v(N) −
v(N\{i}) for all i ∈ N and all v ∈ GN . Of course, α = 1/2 gives the Banzhaf
value.

In fact, semivalues are defined on cardinalities rather than on specific player
sets: this means that a family of weighting coefficients (ps)

n−1
s=0 defines a semi-

value ψ on all N such that n = |N |. When necessary, we shall write ψn for
a semivalue on cardinality n and pns for its weighting coefficients. This often
matters since a semivalue ψ = ψn on cardinality n gives rise to induced semi-
values ψt for all cardinalities t such that 1 ≤ t ≤ n − 1, recurrently defined
by their weighting coefficients, which are given by an expression obtained by
Dubey et al. [16] and referred by Dragan ([12], [13]) as the Pascal triangle
(inverse) formula:

pts = pt+1
s + pt+1

s+1 for 0 ≤ s < t ≤ n− 1. (4)

It is not difficult to check that the induced semivalues of the Shapley value
(resp., the α–binomial semivalue) are all Shapley values (resp., α–binomial
semivalues for the same α). By applying (4) repeatedly, one gets the expres-
sion of the weighting coefficients of any induced semivalue in terms of the
coefficients of the original semivalue,

pts =

n−t∑
j=0

(
n− t
j

)
pns+j for 0 ≤ s < t ≤ n− 1 (5)

Example 2.2 Let ψ4 be a semivalue defined on four-player games with weight-
ing coefficients (p4s)

3
s=0 = (0.16, 0.14, 0.12, 0.06). The weighting coefficients of
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its induced semivalues ψt, for all cardinalities t such that 1 ≤ t ≤ 3, are com-
puted according to (4) and their values can be summarized on a triangular
table as follows:

ψ4 ψ3 ψ2 ψ1

pn0 0.16 0.30 0.56 1.00
pn1 0.14 0.26 0.44
pn2 0.12 0.18
pn3 0.06

3 Recovering weighting coefficients

In particular, Eq. (5) allows us to determine the last weighting coefficient of
each induced semivalue of ψn from its weighting coefficients:

ptt−1 =

n−t∑
j=0

(
n− t
j

)
pnt−1+j for 1 ≤ t ≤ n− 1. (6)

The latter expression is useful for cases 2 ≤ t ≤ n−1. In case t = 1, according
to condition (2), p10 = 1. The following result provides a kind of inverse formula
for the weighting coefficients of any semivalue in terms of the last weighting
coefficients of its induced semivalues.

Lemma 3.1 Let ψn be a semivalue defined on GN . Its weighting coefficients
pns can be recovered from the last weighting coefficients ptt−1 of its induced
semivalues ψt as follows:

pns =

n∑
t=s+1

(−1)t−s−1
(
n− s− 1

t− s− 1

)
ptt−1 for 0 ≤ s ≤ n− 2. (7)

Proof. Since pn−1n−2 = pnn−2 + pnn−1, it follows pnn−2 = pn−1n−2 − pnn−1, that proves
(7) for s = n− 2.

Assume that Eq. (7) holds for values s with k ≤ s ≤ n − 2; we will prove
that it still holds for s = k − 1. Eq. (6) for t = k,

pkk−1 =
n−k∑
j=0

(
n− k
j

)
pnk−1+j ,
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allows us to separate coefficient pnk−1 and to apply the induction hypothesis:

pnk−1 = pkk−1 −
n−k∑
j=1

(
n− k
j

)
pnk−1+j

= pkk−1 −
n−k∑
j=1

(
n− k
j

) n∑
t=k+j

(−1)t−k−j
(
n− k − j
t− k − j

)
ptt−1

= pkk−1 −
n∑

t=k+1

[
t−k∑
j=1

(−1)t−k−j
(
n− k
j

)(
n− k − j
t− k − j

)]
ptt−1

= pkk−1 −
n∑

t=k+1

(−1)t−k
(
n− k
t− k

)[ t−k∑
j=1

(
t− k
j

)
(−1)j

]
ptt−1,

where the last equality derives from
(
n−k
j

)(
n−k−j
t−k−j

)
=
(
n−k
t−k
)(
t−k
j

)
. Now, it

suffices to see that
∑t−k

j=1

(
t−k
j

)
(−1)j = −1 and hence

pnk−1 = pkk−1 +
n∑

t=k+1

(−1)t−k
(
n− k
t− k

)
ptt−1 =

n∑
t=k

(−1)t−k
(
n− k
t− k

)
ptt−1. �

Following Theorem 2.1, each selection of a family of weighting coefficients
(ps)

n−1
s=0 univocally defines a semivalue on cooperative games with n players

if, and only if, these weights satisfy Eq. (2). The weighting coefficients of the
semivalue lead us to the last weighting coefficients of its induced semivalues
ptt−1 (1 < t ≤ n− 1) and, conversely, the previous Lemma shows that all these
last weighting coefficients are able to recover the weighting coefficients of the
semivalue. The following result gives some restrictions for the last weighting
coefficients of the induced semivalues.

Proposition 3.2 (a) Let ψ be a semivalue on GN with weighting coefficients
(pns )n−1s=0 . The last weighting coefficients of its induced semivalues are succes-
sively bounded according to the following expressions

(i) 0 ≤ pnn−1 ≤ 1

(ii) qs ≤ pss−1 ≤ Qs for s = n− 1, n− 2, . . . , 2,

where

qs =

n∑
t=s+1

(−1)t−s−1
(
n− s
t− s

)
ptt−1 (8)

and

Qs =

(
n− 1

s− 1

)−1
+ (s− 1)

n∑
t=s+1

(−1)t−s+1

t− 1

(
n− s
t− s

)
ptt−1. (9)

(b) In the set of all semivalues on GN , it is always possible to find semivalues
satisfying the equalities in (i) or in (ii).
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Proof. (a) The nonnegativity condition of all weighting coefficients (pns )n−1s=0

leads us to pnn−1 ≥ 0 and, at the same time, from Eq. (2), pnn−1 ≤ 1 holds and
Part (i) in the statement has been proved. Now we prove the inequalities in
(ii). Lemma 3.1 shows that every weighting coefficient pns can be written in
terms of the last weighting coefficients of its induced semivalues. Applying it
to pns−1,

pns−1 =

n∑
t=s

(−1)t−s
(
n− s
t− s

)
ptt−1 ≥ 0 for s = n− 1, . . . , 2, (10)

and hence

pss−1 ≥
n∑

t=s+1

(−1)t−s−1
(
n− s
t− s

)
ptt−1 for s = n− 1, . . . , 2. (11)

Analogously, for s = n− 1, . . . , 2, from Eq. (2),

n−1∑
k=s−1

(
n− 1

k

)
pnk =

n−1∑
k=s−1

(
n− 1

k

) n∑
t=k+1

(−1)t−k−1
(
n− k − 1

t− k − 1

)
ptt−1 ≤ 1,

(12)
and consequently,

n∑
t=s

[
t−1∑

k=s−1
(−1)t−k−1

(
n− 1

k

)(
n− k − 1

t− k − 1

)]
ptt−1 ≤ 1,

(
n− 1

s− 1

)
pss−1 ≤ 1 +

n∑
t=s+1

[
t−1∑

k=s−1
(−1)t−k

(
n− 1

k

)(
n− k − 1

t− k − 1

)]
ptt−1,

pss−1 ≤
(
n− 1

s− 1

)−1
+

n∑
t=s+1

[
t−1∑

k=s−1
(−1)t−k

(
n− 1

k

)(
n− k − 1

t− k − 1

)(
n− 1

s− 1

)−1]
ptt−1.

After some calculations in the inner sum, we can write

pss−1 ≤
(
n− 1

s− 1

)−1
+

n∑
t=s+1

(n− s)!(s− 1)!

(n− t)!(t− 1)!

[
t−1∑

k=s−1
(−1)t−k

(
t− 1

k

)]
ptt−1.

Finally, it is not difficult to see that

t−1∑
k=s−1

(−1)t−k
(
t− 1

k

)
= (−1)t−s+1 s− 1

t− 1

(
t− 1

s− 1

)
and, in this way, the previous inequality becomes

pss−1 ≤
(
n− 1

s− 1

)−1
+(s−1)

n∑
t=s+1

(−1)t−s+1

t− 1

(
n− s
t− s

)
ptt−1 for s = n−1, n−2, . . . , 2.

8



(b) According to Eq. (2), pnn−1 = 0 is achieved by all semivalue satisfying∑n−2
s=0

(
n−1
s

)
pns = 1, whereas pnn−1 = 1 is only reached by the marginal index

µ.
In the extreme case pss−1 = qs in (ii), Eqs. (11) and (10) become equalities

and then pns−1 = 0. The other extreme case, pss−1 = Qs, leads us to equality
in Eq. (12), so that, in addition to (2):

n−1∑
k=s−1

(
n− 1

k

)
pnk = 1 ⇒ pn0 = · · · = pns−2 = 0 for s = n− 1, . . . , 2. �

The previous Proposition proves that the last weighting coefficients of each
induced semivalue are bounded and their bounds depend on the last weighting
coefficients of the induced semivalues defined on games with more players.
From now on, we ask what amounts may be admissible for ptt−1 (1 < t ≤ n)
so that when we go back and find the coefficients pns (0 ≤ s ≤ n − 1), they
effectively define a semivalue on n-person games. In other words, is it possible
to find a formula similar to expression (2) for the last weighting coefficients of
any induced semivalues? A partial answer can be found in the next theorem,
where some conditions are given so that a sequence of real numbers becomes
admissible as a family of the last weighting coefficients.

Theorem 3.3 A family of numbers (kn, kn−1, ..., k2) can be sequentially cho-
sen in order to be the last weighting coefficients of the induced semivalues of
a semivalue ψ defined on GN , starting by pnn−1 and decreasing until p21, if, and
only if, it is verified:

(i) 0 ≤ kn ≤ 1

(ii) qs ≤ ks ≤ Qs for s = n− 1, n− 2, . . . , 2,

where

qs =

n∑
t=s+1

(−1)t−s−1
(
n− s
t− s

)
kt (13)

and

Qs =

(
n− 1

s− 1

)−1
+ (s− 1)

n∑
t=s+1

(−1)t−s+1

t− 1

(
n− s
t− s

)
kt. (14)

Proof. (⇒) It easily follows from part (a) in Proposition 3.2, identifying
kn = pnn−1, . . ., k2 = p21.

(⇐) All number kn with 0 ≤ kn ≤ 1 is admissible as the weighting co-
efficient pnn−1 of some semivalue. Suppose sequentially given the numbers
(kn, kn−1, ..., kt) admissible as (pnn−1, p

n−1
n−2, ..., p

t
t−1) for n − 2 ≥ t ≥ 2, then

from part (b) in Proposition 3.2, and by continuity, all the values of kt−1 with
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qt−1 ≤ kt−1 ≤ Qt−1 are admissible as the last weighting coefficient pt−1t−2 of
some semivalue. �

Introduced by Carreras and Freixas [6], the so-called regular semivalues
constitute a particular type of semivalues whose weighting coefficients are
positive. In this case, all marginal contributions of each player matter when the
allocation by such a semivalue is considered. The Shapley value and every α–
binomial semivalue for α ∈ (0, 1) are regular semivalues. Interesting properties
on regular semivalues can be found in [6], specially their nice behavior with
regard to strict monotonicity, which characterizes them. Even, a system of
axioms characterizing each regular semivalue is provided in [2].

With the same notations as in Theorem 3.3, a result specially adapted to
regular semivalues can be formulated.

Corollary 3.4 A family of numbers (kn, kn−1, ..., k2) can be sequentially cho-
sen in order to be the last weighting coefficients of the induced semivalues of
a regular semivalue ψ, starting by pnn−1 and decreasing until p21, if, and only
if, it is verified:

(i) 0 < kn < 1

(ii) qs < ks < Qs for s = n− 1, n− 2, . . . , 2. �

Remark 3.5 In a first approximation, it seems that Eqs. (13) and (14) for
the bounds qs and Qs are rather complicated. Next, we offer formulae for the
first values of qs and Qs.

Bounds for pn−1n−2 (n > 2): qn−1 = kn; Qn−1 =
1

n− 1
+
n− 2

n− 1
kn.

Bounds for pn−2n−3 (n > 3): qn−2 = 2kn−1 − kn;

Qn−2 =
2

(n− 1)(n− 2)
+ (n− 3)

[
2kn−1
n− 2

− kn
n− 1

]
.

Bounds for pn−3n−4 (n > 4): qn−3 = 3kn−2 − 3kn−1 + kn;

Qn−3 =
3!

(n− 1)(n− 2)(n− 3)
+ (n− 4)

[
3kn−2
n− 3

− 3kn−1
n− 2

+
kn
n− 1

]
.

Example 3.6 Let GN be the vector space of five-player games.
(a) We will prove that the sequence of numbers (0.24, 0.36, 0.49, 0.65) is
admissible as the last weighting coefficients (p54, p

4
3, p

3
2, p

2
1) of the induced semi-

values of some semivalue ψ5 on GN .
It is clear that 0 < 0.24 < 1 and, by using the formulae given in the

previous Remark for n = 5, we have

q4 = 0.24 < 0.36 <0.43 = Q4; q3 = 0.48 < 0.49 < 0.526̂ = Q3 and

q2 = 0.63 < 0.65 < 0.685 = Q2.
(15)
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From these last weighting coefficients

(p54, p
4
3, p

3
2, p

2
1, p

1
0) = (0.24, 0.36, 0.49, 0.65, 1.00),

the remaining weighting coefficients of every induced semivalue ψt, 1 ≤ t ≤ 5,
can be reconstructed and, in particular, of the semivalue ψ5. To do that, it
is enough to consider a triangular table as in Example 2.2 but now starting
with the known coefficients (in bold) and then proceeding from left to right
and from bottom to top:

ψ5 ψ4 ψ3 ψ2 ψ1

pn0 0.14 0.16 0.19 0.35 1.00
pn1 0.02 0.03 0.16 0.65
pn2 0.01 0.13 0.49
pn3 0.12 0.36
pn4 0.24

The strict inequalities in (15) guarantee the condition of regular semivalue, as
it has been obtained.
(b) On the contrary, the sequence of numbers (0.13, 0.24, 0.42, 0.65) is not
admissible as a family of the last weighting coefficients (p54, p

4
3, p

3
2, p

2
1) of any

semivalue. Notice that 0 < 0.13 < 1 holds and

q4 = 0.13 < 0.24 < 0.3475 = Q4 and q3 = 0.35 < 0.42 < 0.4216̂ = Q3,

whereas q2 = 0.67 and Q2 = 0.6725, so that 0.65 6∈ [q2, Q2].
Nevertheless, a procedure as in part (a) can be carried out and a triangular

table can be constructed. In this case, the obtained numbers are all positive
except in the first column where we would get (0.09,−0.02, 0.07, 0.11, 0.13).
These amounts are not the weighting coefficients of any semivalue on five-
player games.

4 Unanimity games and semivalues

Since the unanimity games form a basis of GN , through linearity, a semivalue
is completely determined by its action on any unanimity game. In this section
we raise the following question: suppose to define a linear value in a finite set
of players by allocating ks to players belonging to S in the unanimity game uS ,
where s = |S|. Then, under which conditions do the assignments of ks define a
semivalue? This problem has been studied recently by Bernardi and Lucchetti
[4]. In their work they established a sufficient condition to build semivalues via
the unanimity games by means of completely monotonic sequences. Our goal is
to obtain sequentially bounded intervals for all admissible players’ allocations
in the unanimity games.

The next Lemma relates the last weighting coefficients pss−1 of the induced
semivalues ψs, 1 ≤ s ≤ n, studied in Section 3, to the allocations on the
unanimity games uS in the original vector space GN .
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Lemma 4.1 Given a semivalue ψ defined on GN with weighting coefficients
(pns )n−1s=0 , then

ψi[uS ] = pss−1 ∀i ∈ S, ∀S ⊆ N with 1 ≤ s ≤ n.

Proof. It easily follows by applying (3) and (6) to the unanimity games uS .
�

Taking into account this result, Theorem 3.3 can be rewritten in terms of
players’ allocations in the respective unanimity games as follows:

Proposition 4.2 (a) For each selection of real numbers (kn, . . . , k2) there is
a unique semivalue ψ : GN → RN satisfying

(i) ψi[uN ] = kn ∀i ∈ N with kn ∈ [0, 1] and

(ii) ψi[uS ] = ks ∀S ⊂ N, 2 ≤ s ≤ n − 1, ∀i ∈ S with ks ∈ [qs, Qs], where qs
and QS are given in Theorem 3.3.

(b) ψ is the only semivalue whose weighting coefficients (pns )n−1s=0 are given by

pns =

n∑
t=s+1

(−1)t−s−1
(
n− s− 1

t− s− 1

)
kt, (16)

whereas in all cases 1 = k1 = ψi[u{i}] ∀i ∈ N .

Remark 4.3 An interpretation for the bounds qs and Qs obtained sequen-
tially in the above Proposition derives from the following property: players’
allocations given by a semivalue ψ with weighting coefficients (pns )n−1s=0 in the
unanimity games uS depend on the allocations in the unanimity games uT
with |T | > |S|. Starting with uN we get

ψi[uN ] = pnn−1[uN (N)− uN (N \ {i})] = pnn−1.

The admissible values for ψi[uN ], that is, kn, equal pnn−1, so that condition (i)
in part (a) of Proposition 4.2 holds.

Following with the unanimity games uN\{j}, j ∈ N , and for any i ∈ N\{j},

ψi[uN\{j}] = pnn−1[uN\{j}(N)− uN\{j}(N \ {i})] +

pnn−2[uN\{j}(N \ {j})− uN\{j}(N \ {j, i})] = pnn−1 + pnn−2

Choosing pnn−1 as kn, the admissible values for ψi[uN\{j}], i.e., kn−1, depend
on pnn−2. An extreme case for kn + pnn−2 = kn−1 arises for pnn−2 = 0 and then
kn−1 = kn. The first lower bound qn−1 in (ii) is achieved. The other extreme
case for pn0 = · · · = pnn−3 = 0 leads us to pnn−2 = (1− kn)/(n− 1) and then

kn−1 =
1

n− 1
+
n− 2

n− 1
kn.

The first upper bound Qn−1 in (ii) is reached. Decreasing the cardinal of S,
we can repeat the same procedure for the remaining unanimity games uS and
the respective bounds in (ii) are also reached.

12



Remark 4.4 The previous Proposition allows us to characterize a single semi-
value within the set of all semivalues on cooperative games with a given set of
players N . Notice that Eq. (16) can be written as

pns =

n∑
t=s+1

(−1)t−s−1
(
n− s− 1

t− s− 1

)
ψi[uT ] with |T | = t and i ∈ T , (17)

taking kt as ψi[uT ].

As we will see, the previous result combined with the classical properties
(A1), (A2) and (A3) will help us to characterize each individual semivalue
among all the solution concepts defined on the set of cooperative games GN .
To achieve this, a nonstandard property should be considered:

(A5) Successively bounded allocations in unanimity games. Let X be an al-
location rule on GN . Given a family of real numbers (kn, kn−1, . . . , k2)
with kn ∈ [0, 1] and ks ∈ [qs, Qs] for s = n− 1, . . . , 2, where each qs and
Qs is defined in Eqs. (13) and (14), then Xi[uS ] = ks ∀i ∈ S and ∀S ⊆ N
with 1 ≤ s ≤ n.

In fact, Property (A5) is a family of properties given through each “valid”
selection of numbers (kn, kn−1, . . . , k2), where “valid” should be interpreted
as the only allocations that the semivalues can offer to the players in the
unanimity games, according to the relation between these allocations and
the last weighting coefficients of its induced semivalues previously proved in
Lemma 4.1. The recursive method used to obtain “valid” selections of num-
bers (kn, kn−1, . . . , k2) has been already showed in Remark 4.3. In turn, each
of these allocation families characterizes and provides the semivalue.

Theorem 4.5 (a) For every selection of real numbers (kn, kn−1, . . . , k2) with
kn ∈ [0, 1] and successively bounded according to Eqs. (13) and (14), there is
a unique allocation rule X : GN → RN that satisfies properties (A1), (A2),
(A3) and (A5) for these given numbers.
(b) This allocation rule is the semivalue ψ with weighting coefficients (pns )n−1s=0

given by

pns =
n∑

t=s+1

(−1)t−s−1
(
n− s− 1

t− s− 1

)
kt, where k1 = 1 is imposed. (18)

Proof. (Existence) We prove that the semivalue ψ given in (b) satisfies the
four properties. It is clear that properties (A1), (A2) and (A3) hold for all
semivalue.

Property (A5) follows by applying Proposition 4.2 and the fact that each
player i ∈ N is a dummy in the unanimity game u{i} and consequently
ψi[u{i}] = 1 for all semivalue defined on GN .
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(Uniqueness) Let X be an allocation rule on GN that satisfies the stated
properties. We will show that X is uniquely determined in all v ∈ GN , so that
it must coincide with ψ.

Through linearity, we only have to prove that X is uniquely determined
in each unanimity game uS . By the dummy player property, Xi[uS ] = 0
if i /∈ S. This leaves us with the players of S. Moreover, all players in S
are symmetric in uS and, according to Property (A2), their allocations are
coincident. Finally, if S = {i}, according to Property (A3), Xi[uS ] is well
determined, and, according to Property (A5), for the remaining coalitions S
with 1 < s ≤ n. �

Example 4.6 Let GN be the vector space of five-player games. We would like
to know if there exists one solution X on GN that satisfies linearity, anonymity,
dummy player property and that assigns the following allocations to the play-
ers in the respective unanimity games:

Xi[uN ] = 0.24 ∀i ∈ N ; Xi[uS ] = 0.36 S ⊂ N, s = 4, ∀i ∈ S;

Xi[uS ] = 0.49 S ⊂ N, s = 3,∀i ∈ S; Xi[uS ] = 0.65 S ⊂ N, s = 2, ∀i ∈ S.

These players’ allocations on unanimity games, Xi[uS ], s = 5, 4, 3, 2, for all
i ∈ S, are respectively k5, k4, k3, k2 in Theorem 4.5 and, as we have seen in
Example 3.6, they are adequately bounded. Then, the weighting coefficients
of the semivalue ψ are:

(p50, p
5
1, p

5
2, p

5
3, p

5
4) = (0.14, 0.02, 0.01, 0.12, 0.24).
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[2] Amer, R. and Giménez, J.M. [2006]: “An axiomatic characterization for
regular semivalues.” Mathematical Social Sciences 51, 217–226.

[3] Banzhaf, J.F. [1965]: “Weigthed voting doesn’t work: A mathematical
analysis.” Rutgers Law Review 19, 317–343.

[4] Bernardi, G. and Lucchetti, R. [2015]: “Generating Semivalues via Una-
nimity Games. ” Journal of Optimization Theory and Applications 166(3),
1051–1062.

14



[5] Calvo, E. and Santos, J.C. [1997]: “Potentials in cooperative TU games.”
Mathematical Social Sciences 34, 175–190.

[6] Carreras, F. and Freixas, J. [1999]: “Some theoretical reasons for using
(regular) semivalues.” In: Logic, Game theory and Social Choice (H.
Swart, ed.), Tilburg University Press, 140–154.

[7] Carreras, F. and Freixas, J. [2000]: “A note on regular semivalues.” In-
ternational Game Theory Review 2, 345–352.

[8] Carreras, F. and Freixas, J. [2002]: “Semivalue versatility and applica-
tions.” Annals of Operations Research 109, 343–358.

[9] Carreras, F., Freixas, J. and Puente, M.A. [2003]: “Semivalues as power
indices.” European Journal of Operational Research 149, 676–687.

[10] Carreras, F. Llongueras, M.D Puente, M.A. [2009]: “Partnership forma-
tion and binomial semivalues.” European Journal of Operational Research
192, 487–499.

[11] Carreras, F. and Puente, M.A. [2011]: “Symmetric coalitional binomial
semivalues.” Group Decision and Negotiation 21, 637–662.

[12] Dragan, I. [1997]: “Some recursive definitions of the Shapley value and
other linear values of cooperative TU games.” Working paper 328, Uni-
versity of Texas at Arlington, United States of America.

[13] Dragan, I. [1999a]: “Potential and consistency for semivalues of finite
cooperative TU games.” International Journal of Mathematics, Game
Theory and Algebra 9, 85–97.

[14] Dragan, I. [2005]: “On the inverse problem for semivalues of cooperative
TU games.” IJPAM 4, 545–561.

[15] Dragan, I. [2015]: “On the coalitional rationality of the Banzhaf value and
other non−−efficient semivalues.” Applied Mathematics 6, 2069–2076.

[16] Dubey, P., Neyman, A. and Weber, R.J. [1981]: “Value theory without
efficiency.” Mathematics of Operations Research 6, 122–128.

[17] Einy, E. [1987]: “Semivalues of simple games.” Mathematics of Operations
Research 12, 185–192.

[18] Grabisch, M. and Roubens, M. [1999]: “Probabilistic interactions among
players of a cooperative game: Beliefs, Interactions and Preferences in
Decision Making”. Theory Decis. Libr. Ser. B., Mons, Belgium, Vol. 40,
205–216.

15



[19] Fujimoto, K., Kojadinovic, I. and Marichal, L. [2006]: “Axiomatic charac-
terizations of probabilistic and cardinal-probabilistic interaction indices.”
Games and Economic Behavior 55, 72–99.
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