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Abstract

We investigate the conditions for the coefficients of probabilistic and multinomial
values of cooperative games necessary and / or sufficient in order to satisfy some
properties, including marginal contributions, balanced contributions, desirabil-
ity relation and null player exclusion property. Moreover, a similar analysis is
conduced for transfer property of probabilistic power indices on the domain of
simple games.
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1 Introduction

Weber’s general model for assessing cooperative games [27] is based on probabilistic
values, a family of values axiomatically characterized by means of linearity, positivity,
and the dummy player property. Every probabilistic value allocates, to each player
in each game of its domain, a weighted (convex) sum of the marginal contributions of
the player in the game. These allocations can be interpreted as a measure of players’
bargaining relative strength. The most conspicuous member of this family (in fact,
the inspiring one) is the Shapley value [26]. In the present paper we also focus on
a subfamily of probabilistic values called multinomial (probabilistic) values. These
values were introduced in reliability by Puente [24] (see also [15]) with the name of
“multibinary probabilistic values.” They were independently defined by Carreras [2],
for simple games only —i.e. as power indices—, in a work on decisiveness (see also
[3]) where they were called “Banzhaf α–indices.” As it is shown in Carreras and
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Puente [8], multinomial values (n parameters, n being the number of players) offer
a deal of flexibility clearly greater than binomial semivalues (one parameter) [1, 24],
and hence many more possibilities to introduce additional information when evaluat-
ing a game. Technically, their main characteristic is the systematic generation of the
weighting coefficients in terms of a few parameters (one parameter per player). In [17]
the multinomial values are used to study the effects of the partnership formation in
cooperative games, comparing the joint effect on the involved players with the alterna-
tive alliance formation. Recently, Carreras and Puente [9] introduced the coalitional
multinomial probabilistic values, a new family of coalitional values designed to take
into account players’ attitudes with regard cooperation. This new family applies to
cooperative games with a coalition structure by combining the Shapley value and the
multinomial probabilistic values.

For more than a decade, our research group has been studying semivalues, a
subfamily of probabilistic values introduced by Dubey et al. [12], characterized by
anonymity, and including the Shapley value as the only efficient member. In the
analysis of certain cooperative problems we have successfully used binomial semival-
ues, a single parametric subfamily defined by Puente that includes the Banzhaf value
introduced by Owen [22].1

Fig. 1 describes the relationships between the above values and families of values
and the main characteristics of each one of them.

linearity
positivity

dummy player property + anonymity + efficiency

Probabilistic values ⊃ Semivalues ∋ Shapley value

∪ ∪

Multinomial values ⊃ Binomial semivalues ∋ Banzhaf value

n parameters (one per player) 1 parameter parameter = 1/2

Fig. 1: Inclusion relationships between values and families of values

Indeed, parameters defining probabilistic values (Weber [27]) and semivalues (Dubey
et al. [12]), and in particular multinomial values and binomial semivalues [24], intro-
duce in the evaluation of games additional information not stored in the characteristic
function. These parameters will be addressed here to cope with different attitudes
that the players may hold when playing a given game, even if they are not individuals
but countries, enterprizes, parties, trade unions, or collectivities of any other kind.
We will attach to parameter pi the meaning of generical tendency of player i to form
coalitions, assuming pi and pj independent of each other if i ̸= j.

1[5], [6] and [7] are samples of our work in this line.
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Summing up, the paper tries to contribute to a better understanding of multino-
mial values as a consistent alternative or complement to classical values (Shapley and
Banzhaf). The fact that they are based on tendency profiles provides new tools to en-
compass a wide variety of situations arising from players’ personality when playing a
given game. In this sense, multinomial values represent a wide generalization of bino-
mial semivalues, whose single parametric condition implies a quite limited capability
of analysis of such situations. Of course, these situations can neither be analyzed,
without modifying the game, by means of the classical values, which can be concerned
only with the structure of the game.

The organization of the paper is then as follows. Section 2 includes a minimum
of preliminaries. In Section 3, we specialize to multinomial values as a natural gener-
alization of the binomial semivalues. In Section 4 we compare the behavior of prob-
abilistic values and multinomial values with respect to several standard properties
for values and power indices, concerning null and nonnull players, balanced contribu-
tions, dominance, monotonicity, sensitivity and donation. The notions of regularity
and hereditary value arise in a natural way as a convenient condition to guarantee
the validity of some of them. Particularly, we characterize the class of regular val-
ues within the class of probabilistic values and, the class of solutions satisfying the
balanced contributions property within the class of regular and hereditary regular
probabilistic values. Section 5 focuses on multinomial values and provides a measure
of the effect of a variation of pj (j ̸= i) on the payoff to i by investigating second
partial derivatives of the multilinear extension of the games. Section 6 contains an
example of application of the multinomial values. Finally, Section 7 provides a sum-
mary of the paper and concluding remarks. Proofs of the statements in Sections 4
and 5 will be found in Appendices A and B, respectively.

2 Preliminaries

Let N be a finite set of players, where N is any set of natural numbers, and 2N be
the set of its coalitions (subsets of N). A (TU) cooperative game on N is a function
v : 2N → R that assigns a real number v(S) to each coalition S ⊆ N , with v(∅) = 0.
This number is usually understood as the utility that coalition S can obtain by itself,
that is, independently of the actions of the remaining players.

A game v is monotonic iff v(S) ≤ v(T ) whenever S ⊂ T ⊆ N . A player i ∈ N is a
dummy in v iff v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}, and null iff, moreover,
v({i}) = 0. Two players i, j ∈ N are symmetric in v iff v(S ∪ {i}) = v(S ∪ {j}) for
all S ⊆ N\{i, j}.

Endowed with the natural operations for real–valued functions, i.e. v + v′ and λv
for all λ ∈ R, the set of all cooperative games on N is a vector space GN . For every
nonempty coalition T ⊆ N , the unanimity game uT is defined by uT (S) = 1 if T ⊆ S
and uT (S) = 0 otherwise, and it is easily checked that the set of all unanimity games
is a basis for GN , so that dimGN = 2n−1. Finally, every permutation θ on N induces
a linear automorphism of GN given by (θv)(S) = v(θ−1S) for all S ⊆ N and all v.

By a value on GN we will mean a map g : GN → Rn, n = |N |, which assigns to
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every game v a vector g[v] with components gi[v] for all i ∈ N .
Following Weber’s [27] axiomatic definition, ϕ : GN → Rn is a (group) probabilistic

value iff it satisfies the following properties:

(i) linearity : ϕ[v+v′] = ϕ[v]+ϕ[v′] and ϕ[λv] = λϕ[v] for all v, v′ ∈ GN and λ ∈ R;
(ii) positivity2: if v is monotonic, then ϕ[v] ≥ 0;
(iii) dummy player property : if i ∈ N is a dummy in game v, then ϕi[v] = v({i}).
There is an interesting characterization of the probabilistic values, also in [27]:

(a) given a set of n2n−1 weighting coefficients {piS : i ∈ N, S ⊆ N\{i}} such that∑
S⊆N\{i}

piS = 1 for each i ∈ N and piS ≥ 0 for all i ∈ N and S ⊆ N\{i}, the expression

ϕi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN (1)

defines a probabilistic value ϕ on N ; (b) conversely, every probabilistic value can be
obtained in this way; (c) the correspondence given by {piS : i ∈ N, S ⊆ N\{i}} 7→ ϕ
is one–to–one.

Thus, the payoff that a probabilistic value allocates to every player in any game
is a weighted sum of his marginal contributions in the game. We quote from [27]:

“Let player i view his participation in a game v as consisting merely
of joining some coalition S and then receiving as a reward his marginal
contribution to the coalition. If piS is the probability that he joins coalition
S, then ϕi[v] is his expected payoff from the game.”

All probabilistic values are linear, so that it is interesting to know their action on
unanimity games, which form a basis of the space of games. It is as follows:

ϕi[uT ] =
∑

S⊆N\{i}:
T\{i}⊆S

piS if i ∈ T and ϕi[uT ] = 0 otherwise. (2)

Among the probabilistic values, semivalues, introduced by Dubey et al. [12], are
characterized by the anonymity property: ϕθi[θv] = ϕi[v] for all i ∈ N , v ∈ GN and for
every permutation θ on N . Alternatively, this is equivalent to saying that, if n = |N |,
there is a vector {ps}n−1

s=0 such that piS = ps for all i ∈ N and all S ⊆ N\{i}, where
s = |S|, so that all coalitions of a given size share a common weight that applies to
all (external) players, and hence Eq. (1) reduces to

ϕi[v] =
∑

S⊆N\{i}

ps[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

The weighting coefficients {ps}n−1
s=0 of any semivalue ϕ satisfy therefore two char-

acteristic conditions:

each ps ≥ 0 and

n−1∑
s=0

(
n− 1

s

)
ps = 1.

2In [27] this property is called monotonicity, but we prefer to call to it positivity as in [12].
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Among semivalues, the Shapley value (Shapley [26]), denoted here by φ and defined

by ps = 1/n
(
n−1
s

)
for all s, is the only efficient semivalue, in the sense that

∑
i∈N

φi[v] =

v(N) for every v ∈ GN . The Banzhaf value (Owen [21, 23]), denoted here by β and
defined by ps = 1/2n−1 for all s, is the only semivalue with constant (i.e. independent
of s) weighting coefficients.

Finally, the multilinear extension (Owen [21]) of a game v ∈ GN is the real–valued
function defined on Rn by

f(x1, x2, . . . , xn) =
∑
S⊆N

∏
i∈S

xi
∏

j∈N\S

(1− xj)v(S). (3)

As is well known, both the Shapley and Banzhaf values of any game v can be
obtained from its multilinear extension. Indeed, φ[v] can be calculated by integrating
the partial derivatives of the multilinear extension of the game along the main diagonal
x1 = x2 = · · · = xn of the cube [0, 1]n [21], while the partial derivatives of that
multilinear extension evaluated at point (1/2, 1/2, . . . , 1/2) give β[v] [22].

3 Multinomial (probabilistic) values

The multinomial (probabilistic) values were introduced in reliability by Puente [24]
(see also [15]) with the name of ”multibinary probabilistic values” as follows:

Definition 3.1 Set N = {1, 2, . . . , n} and let p ∈ [0, 1]n, that is, p = (p1, p2, . . . , pn)
with 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n, be given. Then the coefficients

piS =
∏
j∈S

pj
∏

k∈N\S
k ̸=i

(1− pk) for all i ∈ N and S ⊆ N\{i} (4)

(where the empty product, arising if S = ∅ or S = N\{i}, is taken to be 1) define
a probabilistic value on GN that will be called the p–multinomial probabilistic value
and denoted as λp. Thus,

λpi [v] =
∑

S⊆N\{i}

∏
j∈S

pj
∏

k∈N\S
k ̸=i

(1− pk)[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

We will attach to pi the meaning of generical tendency of player i to form coali-
tions, and thus we will say that p is a (tendency) profile on N . According to Eq. (4),
this implies that coefficient piS , the probability of i to join S, will depend on the
positive tendencies of the members of S to form coalitions and also on the negative
tendencies in this sense of the outside players, i.e. the members of N\(S ∪ {i}).

Remarks 3.2 (a) For example, for n = 2 we have p = (p1, p2) and, if i ̸= j,

λpi [v] = (1− pj)[v({i} − v(∅)] + pj [v(N)− v({j})].
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Thus, the payoff allocated by λp to player i does not depend on pi but only on pj .
If player j is not greatly interested in cooperating, and hence pj is small, player i
mainly receives his individual utility whereas, otherwise, if player j is interested in
cooperating, and hence pj is great, player i mainly receives his marginal contribution
to the grand coalition.

(b) It is easy to check that the action of λp on a unanimity game uT is given by:

λpi [uT ] =
∏
j∈T
j ̸=i

pj if i ∈ T and λpi [uT ] = 0 otherwise. (5)

(c) Whenever, in particular, p1 = p2 = · · · = pn = q for some q ∈ [0, 1], coefficients
piS reduce, for all i ∈ N , to

piS = ps = qs(1− q)n−s−1 for s = 0, 1, . . . , n− 1,

where s = |S| and 00 = 1 by convention in cases q = 0 and q = 1. These coefficients
{ps}n−1

s=0 define the q–binomial semivalue ψq introduced by Puente [24] and, obviously,
λp = ψq. If, moreover, q = 1/2 then we obtain ψ1/2 = β, the Banzhaf value.

(d) As it is shown in [24, 1], the multilinear extension representation of the Banzhaf
value extends well to all binomial semivalues. In [24, 15], the method is also extended
to any multinomial probabilistic value: if λp is such a value and f is the multilinear
extension of game v ∈ GN then

λpi [v] =
∂f

∂xi
(p1, p2, . . . , pn) for all i ∈ N.

4 Regularity and other properties

In this section first we study for probabilistic values a series of standard properties
considered in the literature on value theory. Most of them hold for semivalues but,
as we will see, things are not so simple when we use probabilistic and multinomial
values, where the tendency profile plays an important role. Next, we restrict our
analysis to simple games and probabilistic power indices. In both cases some of these
properties only hold for a special subclass of probabilistic values (indices) that we will
call regular.

4.1 Dominance, monotonicity and sensitivity properties

The first property concerns the desirability and indifference relations. Let us consid-
erer v ∈ GN and i, j ∈ N . Following Isbell [18], we set

iDj in v iff v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N\{i, j}.

Thus, iDj in v means that player i dominates (i.e., is “at least as desirable as”)
j as a coalition partner in v. We also set iIj in v iff iDj and jDi in v, which means
that players i, j are symmetric, that is, indifferent (perfect substitutes of each other)
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as coalition partners. If iDj but j D̸ i in v then we say that i dominates j strictly.
It is not difficult to verify that D is a preordering and I is an equivalence relation
(both on N). Notice that these relations depend only on the game structure. As it
is shown in [4], g being a semivalue on N , iDj in v implies gi[v] ≥ gj [v], and hence
iIj in v implies gi[v] = gj [v], although not always iDj and j D̸ i together in v imply
gi[v] > gj [v]. However, thinks are not so simple when probabilistic values are used.

Next example refers to the desirability and indifference relations and it can help
us to a better understanding of the multinomial values.

Example 4.1 Let n = 4, p = (p1, p2, p3, p4), and v be the game given by

v(∅) = 0, v({1}) = v({2}) = 1, v({1, 2}) = 4,
v({1, 3}) = v({2, 3}) = 3, v({1, 4}) = v({2, 4}) = 2, v({3, 4}) = 1,
v({1, 2, 3}) = 4, v({1, 2, 4}) = 5, v({1, 3, 4}) = v({2, 3, 4}) = 4,
v(N) = 6, v(S) = 0 otherwise.

Equivalently,

v = [u{1} + u{2}] + 2u{1,2} + 2[u{1,3} + u{2,3}] + [u{1,4} + u{2,4}] + u{3,4}−
4u{1,2,3} − u{1,2,4} − [u{1,3,4} + u{2,3,4}] + 2uN

and hence the multilinear extension of this game is

f(x1, x2, x3, x4) = x1 + x2 + 2x1x2 + 2x1x3 + 2x2x3 + x1x4 + x2x4 + x3x4−
4x1x2x3 − x1x2x4 − x1x3x4 − x2x3x4 + 2x1x2x3x4.

Here we have, for instance, 1I2, 1D3 but 3D̸ 1. If g is a semivalue on N , implies
g1[v] = g2[v], although it does not always imply g1[v] > g3[v]. What happens when
multinomial values are used?

From Remark 3.2(d) we can obtain λpi [v] for i=1, 2 and 3 from the multilinear
extension of the game as follows:

λp1 [v] = 1 + 2p2 + 2p3 + p4 − 4p2p3 − p2p4 − p3p4 + 2p2p3p4,

λp2 [v] = 1 + 2p1 + 2p3 + p4 − 4p1p3 − p1p4 − p3p4 + 2p1p3p4,

λp3 [v] = 2p1 + 2p2 + p4 − 4p1p2 − p1p4 − p2p4 + 2p1p2p4.

Notice that the introduction of tendency profiles breaks the symmetry between play-
ers 1 and 2. Nevertheless, a “structural” symmetry still exists, between λp1 [v] and
λp2 [v] since λ

p
2 [v] is obtained from λp1 [v] by replacing p2 with p1. This is due to the

symmetrical positions of each pair of players in the game, which translates to the
multilinear extension.

Next we consider some particular samples of profiles that show the different rela-
tions between λp1 [v] and λ

p
2 [v] and λ

p
1 [v] and λ

p
3 [v].

• For players 1 and 2 (1I2):

If p = (0.6, 0.6, 0.8, 0.7) we have p1 = p2 and λp1 [v] = λp2 [v] = 2.2720.
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If p = (0, 0.7, 0.5, 0.2) we have p1 < p2 and λp1 [v] = λp2 [v] = 2.1000.
If p = (0.7, 0.2, 0.5, 0) we have p1 > p2 and λp1 [v] = λp2 [v] = 2.0000.
If p = (0.4, 0.5, 0.1, 0.2) we have p1 < p2 and λp1 [v] = 2.1000 > 1.9560 = λp2 [v].

• For players 1 and 3 (1D3 but 3D̸ 1):

If p = (0.3, 0.7, 0.3, 0.9) we have p1 = p3 and λp1 [v] = 2.5380 > λp3 [v] = 1.5380
If p = (0.8, 0.4, 0.2, 0.7) we have p1 > p3 and λp1 [v] = 2.2720 > λp3 [v] = 1.4280.
If p = (0.9, 0.1, 0.2, 0.1) we have p1 > p3 and λp1 [v] = 1.5940 < λp3 [v] = 1.6580.
If p = (0.3, 0.6, 0.4, 0.7) we have p1 < p3 and λp1 [v] = 2.3760 > λp2 [v] = 1.4020.

Table 1 in Example 5.6 yields more particular samples of profiles that cover, more
or less, all the cases of Corollaries 5.4 and 5.5 that will be studied in Section 5.

Now, we introduce regular probabilistic values.

Definition 4.2 A probabilistic value ϕ on GN is regular iff piS > 0 for all i ∈ N and
for all S ⊆ N\{i}.

Notice that a multinomial value λp is regular iff 0 < pi < 1 for all i = 1, 2, ..., n and,
in particular, a regular multinomial value is defined by a positive profile.

Definition 4.3 A probabilistic value ϕ on GN is regular for player i iff piS > 0 for all
S ⊆ N\{i}.

Particularly, a multinomial value λp is regular for player i iff 0 < pk < 1 for all k ̸= i.

Definition 4.4 Let i, j ∈ N be two distinct players and let ϕ be a probabilistic value
on GN .

ϕ is (i, j)–symmetric iff for all S ⊆ N\{i, j} piS = pjS and piS∪{j} = pjS∪{i}.

Next proposition characterizes (i, j)–symmetric values within the class of proba-
bilistic values.

Proposition 4.5 (Dominance property) Let i, j ∈ N be two distinct players and let
ϕ be a probabilistic value on GN . The following properties are equivalent:

(1) ϕ is (i, j)–symmetric,
(2) for all v ∈ GN , if iIj in v then ϕi[v] = ϕj [v],
(3) for all v ∈ GN , if iDj in v then ϕi[v] ≥ ϕj [v].

If additionally for all S ⊆ N\{i, j}, piS + piS∪{j} > 0 then (1) is equivalent to

(4) for all v ∈ GN , if iDj and jD̸ i in v then ϕi[v] > ϕj [v].

Carreras and Freixas [4], prove that all semivalues satisfy (2) and (3) in Proposition
4.5, and a semivalue satisfies (4) if additionally ps+ps+1 > 0 for all s = 0, 1, ..., n−2.
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Corollary 4.6 Let i, j ∈ N be two distinct players and let λp be a regular multinomial
probabilistic value on GN . The following properties are equivalent:

(1) pi = pj,
(2) for all v ∈ GN , if iIj in v then λpi [v] = λpj [v],

(3) for all v ∈ GN , if iDj in v then λpi [v] ≥ λpj [v].

(4) for all v ∈ GN , if iDj and jD̸ i in v then λpi [v] > λpj [v].

From now on we will focus on the monotonicity conditions considered by Young
[28], when providing an axiomatic characterization of the Shapley value without using
additivity, and extended to semivalues by Carreras and Freixas [4]. Let v, w ∈ GN be
and i ∈ N . Following [4], we set

v B w for i iff v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all S ⊆ N\{i},

i.e., iff i’s marginal contributions are better (not smaller) in v than in w.
If g is a value on GN , we shall say that g satisfies the monotonicity property iff

v B w for i implies gi[v] ≥ gi[w], and that g satisfies the sensitivity property iff v B w
and w B̸ v together for i imply gi[v] > gi[w].

In [4] it is shown that all semivalues satisfy the monotonicity property, and also
that a semivalue satisfies the sensitivity property iff it is regular. It is not difficult to
extend these results to probabilistic values.

Proposition 4.7 (Monotonicity and sensitivity properties) Let ϕ a probabilistic value
on GN and v, w ∈ GN be distinct games. Then, for each i ∈ N :

(a) v B w for i implies ϕi[v] ≥ ϕi[w].
(b) v B w and wB v for i implies ϕi[v] = ϕi[w].
(c) v B w and w B̸ v for i implies ϕi[v] > ϕi[w] iff ϕ is regular for i.

4.2 Nonnull player, null player exclusion and balanced contri-
butions properties

The first property of this section refers to nonnull players. Usually, if g is a value
on GN , a nonnull player i ∈ N in a monotonic game v gets a payoff gi[v] > 0. This
property holds for —and in fact characterizes for n ≥ 2— all regular probabilistic
values within the class of probabilistic values.

Proposition 4.8 (Nonnull player property) A probabilistic value ϕ allocates a pos-
itive payoff to every nonnull player in any monotonic game v ∈ GN if, and only if
whenever n ≥ 2, ϕ is regular.

Before studying the following properties, we need the notions of subgame and
subprofile, both with regard to a nonempty T ⊆ N . If v ∈ GN , the game vT ∈ GT ,
defined by vT (S) = v(S) for all S ⊆ T , is a subgame of v. Analogously, if p ∈ [0, 1]n

is a profile on N , we will say that pT ∈ [0, 1]t (where t = |T |), defined by pTi = pi
for all i ∈ T , is a subprofile of p. Thus, any multinomial probabilistic value λp on

GN induces a multinomial probabilistic value λp
T

on GT for each nonempty T ⊆ N .
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Notice that, in general, such a procedure does not work for an arbitrary probabilistic
value on N .

In the particular case where T = N\{i} for some i ∈ N we will prefer to write
v−{i} and p−i instead of vN\{i} and pN\{i}, respectively. That is, if i ∈ N then any
multinomial probabilistic value λp on GN induces a multinomial probabilistic value
λp

−i

on GN\{i} with profile p−i, whose weighting coefficients will be denoted as (p−i)jS
for each j ∈ N\{i} and each S ⊆ N\{i, j}.

The following property refers to the effect of a null player leaving the game. It is
desirable that the payoffs given by a value to the remaining players are not affected by
this exclusion. As we will see, this property holds for any multinomial probabilistic
value.

Definition 4.9 (Null player exclusion property) A value g on GN satisfies the null
player exclusion property if for all v ∈ GN

gj [v] = gj [v−{i}],

for all i, j ∈ N such that i is a null player in v.

The null player exclusion property or null players out property studies the conse-
quences of excluding a null player on the payoff of the remaining players. For more
details about it we refer the reader to Derks and Haller [10].

Definition 4.10 (Balanced contributions property) A value g on GN satisfies the
property of balanced contributions if for all v ∈ GN and all i, j ∈ N

gi[v]− gi[v−{j}] = gj [v]− gj [v−{i}].

As we will see, these two properties have not sense for probabilistic values in
general and we need to introduce a definition that will be also useful later.

Definition 4.11 A probabilistic value ϕ on GN is hereditary iff its weighted coeffi-
cients on N\{i} satisfy

(p−i)jS = pjS + pjS∪{i} for all S ⊆ N\{i, j}.

Proposition 4.12 Every multinomial probabilistic value on GN is hereditary.

Remark 4.13 Taking into account the last proposition, a multinomial value induces
multinomial values on lower cardinalities. We can say that the multinomial value λp

is hereditary in the sense of that for each player set N , all its induced values in T ⊆ N
are also multinomial values. However, this is not true for all probabilistic values. For
instance, the probabilistic value defined by

piS =

{
1 if either n is even and |S| = n− 1 or n is odd and |S| = 0,
0 otherwise,

is not hereditary.
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Next proposition shows that within the class of probabilistic values, ϕ satisfying
the null player property is equivalent to ϕ being hereditary.

Proposition 4.14 (Null player exclusion property) Let ϕ be a probabilistic value on
GN . Then

ϕ satisfies the null player exclusion property iff ϕ is hereditary.

Corollary 4.15 Any multinomial probabilistic value on GN satisfies the null player
exclusion property.

The following property refers to the effect of excluding a player on the payoff
to any other player and characterizes the class of solutions satisfying the balanced
contributions property within the class of regular and hereditary regular probabilistic
values.

Proposition 4.16 (Balanced contributions property) Given v ∈ GN , i, j ∈ N and ϕ
a regular and hereditary probabilistic value, then

ϕ satisfies the balanced contributions property iff pjS∪{i} = piS∪{j} for all S ⊆ N\{i, j}.

Proposition 4.17 Let us assume v ∈ GN .

(a) (Weighted balanced contributions property)3 Any multinomial probabilistic value
λp on GN satisfies

pi(λ
p
i [v]− λ

p−j

i [v−{j}]) = pj(λ
p
j [v]− λ

p−i

j [v−{i}]).

(b) (Balanced contributions property) If λp is a regular multinomial probabilistic
value then

λp satisfies the balanced contributions property iff pi = pj .

Remark 4.18 Particularly, Proposition 4.16 proves that all semivalue satisfies bal-
anced contributions property, generalizing the results obtained in [13]. Myerson [20]
proved that the balanced contributions property and efficiency characterize the Shap-
ley value and, in a more general context, Dragan [11] shows that the balanced contri-
butions property is equivalent to the existence of a potential function.

3Notice that Corollary 4.15 follows from this weighted balanced contributions property but only
for players j with pj > 0.
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4.3 Simple games and donation property

Simple games constitute very often a test bed for many cooperative concepts. In par-
ticular, they have been intensively applied to describe and analyze collective decision
and the notion of voting power has been closely attached to them.

We recall that v is a simple game if it is monotonic and v(S) = 0 or 1 for all
S ⊆ N . It is determined by the set W = {S ⊆ N : v(S) = 1} of winning coalitions
and even by the subset Wm = {S ∈ W : T /∈ W if T ⊂ S} of minimal winning
coalitions. In particular, v is a weighted majority game if there exist a quota q > 0
and weights w1, w2, . . . , wn ≥ 0 such that S ∈ W if and only if

∑
i∈S wi ≥ q. We

denote this fact by v ≡ [q;w1, w2, . . . , wn], although this representation of v is never
unique. All unanimity games are simple (and weighted majority games).

If (N, v) is a simple game, a player i ∈ N is said to be crucial for a coalition
S ⊆ N\{i} if S /∈ W but S ∪ {i} ∈ W ; we then write S ∈ C(i, v). It seems desirable
that a measure of power takes account of the times that each player is crucial in a
game.

Particularly, all properties stated for probabilistic values in this paper make sense
for probabilistic (power) indices and the restriction to SGN of any probabilistic value
on GN is, of course, a power index, which will be denoted by the same symbol as
follows: if v ∈ SGN and i ∈ N then,

ϕi[v] =
∑

S∈C(i,v)

piS . (6)

Following Remark 2.3(c) in [2], an alternative interpretation in simple games of
the profile that defines a multinomial value is as follows: there is a status quo Q and
a proposal P to modify it. The action of the parliamentary members reduces to vote
for or against P . Then each pi can be viewed as the probability that player i votes
for P . Since the result of a voting is essentially equivalent to forming a coalition
(the coalition of players that vote for P ), this interpretation of pi agrees with that of
“tendency to form a coalition” that we are using in this paper.

Now we consider probabilistic indices on weighted majority games. The situation
that we analyze is as follows. Two weighted majority games (N, v) ≡ [q;w1, w2, ..., wn]
and (N, v′) ≡ [q;w′

1, w
′
2, ..., w

′
n] are given with common player set, quota and total

weight
∑

i∈N wi =
∑

i∈N w′
i. A player i for which wi > w′

i is called a donor and a
player j for which wj < w′

j is called a recipient. Intuitively, the idea is that (N, v) rep-
resents the initial distribution of weights and (N, v′) arises from it by redistribution,
the donor(s) ”donating” some weight to the recipient(s), so each donor loses weight
and each recipient gains some, while the total weight remains unchanged.

Proposition 4.19 (Donation property). If, in the preceding situation, there is just
a donor i and a recipient j, then, for every probabilistic index ϕ, ϕi[v] ≥ ϕi[v

′].

Proposition 4.20 (Donation strict property). Assume, moreover, that v ̸= v′. A
probabilistic index ϕ satisfies ϕi[v] > ϕi[v

′] iff ϕ is regular for i.
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Remark 4.21 Schotter [25] presents and discusses cases in which is possible to de-
crease a voter’s weight and, at the same time, increase his power. This phenomenon
has been regarded as paradoxical; indeed, Fisher and Schotter [14] termed it the para-
dox of redistribution. As we have proved on Proposition 4.19 and Proposition 4.20,
things are easier when we restrict our analysis to probabilistic indices. In addition,
Proposition 4.20 generalizes a result on the Shapley-Shubik index given by Gambarelli
[16]. For more information about results related to both propositions, we refer the
reader to Felsenthal and Machover [13].

The donation strict property was generalized by Felsenthal and Machover [13] to
all simple games by the transfer property as follows. Let (N, v) and (N, v′) be different
simple games. Assume that there are players i, j ∈ N such that, for any S ⊆ N ,

(a) if either i, j ∈ S or i, j /∈ S, then S ∈W iff S ∈W ′;

(b) if i ∈ S, j /∈ S and S ∈W ′ then S ∈W ;

(c) if i /∈ S, j ∈ S and S ∈W then S ∈W ′.

We say that there is a donation from (N, v) to (N, v′). Player i can lose in v′ some
crucial positions he had in v, whereas player j can gain crucial positions in v′ he had
in v. Hence some transfer of power should be expected from i to j when passing from
v to v′.

Proposition 4.22 (Generalized donation strict property). A probabilistic index ϕ
satisfies ϕi[v] > ϕj [v] in a donation from (N, v) to (N, v′) iff ϕ is regular for i.

5 Second partial derivatives to compute multino-
mial values

One of the distinguished features of multinomial probabilistic values is that the payoff
obtained by any player i does not depend on his tendency pi to cooperate, but only on
the tendencies of some or all the remaining players. Then it is interesting to measure
the effect of a variation of pj (j ̸= i) on the payoff to i. Since this payoff is given by
the first partial derivative of f , the multilinear extension of the game, with respect
to variable xi at point p, this leads us to investigate second partial derivatives of the

form
∂2f

∂xj∂xi
with j ̸= i. Notice that, as stated in Corollary 4.6, when pi = pj the

payoffs agree with the dominance (strict or not) and indifference relations iDj, iIj,
or iDj but j D̸ i, which depend on the game structure only.

What happens when pi ̸= pj? For example, in the unanimity game u{1,2} (for any
n ≥ 2), we have 1I2 but, for any profile p, λp1 [u{1,2}] − λp2 [u{1,2}] = p2 − p1 ̸= 0 if
p1 ̸= p2. We seek an answer to the question, which is important for discarding any
sensation that the multinomial values are “perverse” in the sense that the more is the
tendency of a player to cooperate, the less is the payoff he gets...

13



We begin by introducing a bit more of notation. If v ∈ GN , its multilinear exten-
sion f is, in principle, defined on the whole Euclidean space Rn although, generally,
we are only interested in its behavior in the n–cube [0, 1]n. The set 2N of coali-
tions of N can be identified with {0, 1}n, the set of vertices of the cube, through the
map S 7→ xS = (xS1 , x

S
2 , . . . , x

S
n) given by xSi = 1 if i ∈ S or else xSi = 0. Then,

v(S) = f(xS) for all S ⊆ N .
We shall use in the sequel, for any x = (x1, x2, . . . , xn) ∈ Rn, notation like e.g.

f(1i,x) = f(x1, . . . ,
i
⌣

1 , . . . , xn) or f(0i, 1j ,x) = f(x1, . . . ,
i
⌣

0 , . . . ,

j
⌣

1 , . . . , xn).

Notice that, for each i ∈ N , f is a linear function of xi, that is, f(x) = a+ bxi where
a = f(0i,x) and b = f(1i,x)− f(0i,x) for all x. Then

f(x) = xif(1i,x) + (1− xi)f(0i,x) for all x. (7)

Lemma 5.1 Let p be a profile on N . For all distinct i, j ∈ N and v ∈ GN , if f is
the multilinear extension of v then:

(a) λpi [v] =
∂f

∂xi
(p) = f(1i,p)− f(0i,p).

(b)
∂2f

∂xj∂xi
(p) = f(1i, 1j ,p)− f(1i, 0j ,p)− f(0i, 1j ,p) + f(0i, 0j ,p).

Theorem 5.2 Let i, j ∈ N be distinct players, v ∈ GN , and f be the multilinear
extension of v. Then, for any profile p on N ,

λpi [v]− λpj [v] = (pj − pi)
∂2f

∂xj∂xi
(p) + f(1i, 0j ,p)− f(0i, 1j ,p).

Now we are ready to provide some answers to the question stated above as imme-
diate consequences of Theorem 5.2. To ease the notation, let us set

d(i, j,p) =
∂2f

∂xj∂xi
(p) and ∆(i, j,p) = f(1i, 0j ,p)− f(0i, 1j ,p),

so that
λpi [v]− λpj [v] = (pj − pi)d(i, j,p) + ∆(i, j,p).

Notice that, by the multilinearity of f ,

v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N\{i, j} iff ∆(i, j,p) ≥ 0 for all p,

but even if, moreover, v(S ∪ {i}) > v(S ∪ {j}) for some such S, we cannot conclude
that ∆(i, j,p) > 0 for all p (see the case of players 4 and 3 and coalition S = {1, 2}
in Example 5.6).
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Corollary 5.3 If iDj in v then ∆(i, j,p) ≥ 0 for all p. If, moreover,
(a) d(i, j,p) = 0, then λpi [v] ≥ λpj [v];

(b) d(i, j,p) > 0 and pi < pj, then λ
p
i [v] > λpj [v];

(c) d(i, j,p) < 0 and pi > pj, then λ
p
i [v] > λpj [v]. �

Corollary 5.4 If iIj in v then ∆(i, j,p) = 0 for all p. If, moreover,
(a) d(i, j,p) = 0, then λpi [v] = λpj [v];

(b) d(i, j,p) > 0 and pi < pj, then λ
p
i [v] > λpj [v];

(c) d(i, j,p) > 0 and pi > pj, then λ
p
i [v] < λpj [v];

(d) d(i, j,p) < 0 and pi < pj, then λ
p
i [v] < λpj [v];

(e) d(i, j,p) < 0 and pi > pj, then λ
p
i [v] > λpj [v]. �

Corollary 5.5 If iDj but j D̸ i in v then ∆(i, j,p) ≥ 0 for all p and ∆(i, j,p) > 0
for some p. If, moreover,

(a) d(i, j,p) = 0, then λpi [v] > λpj [v] for any such p;

(b) d(i, j,p) > 0 and pi < pj, then λ
p
i [v] > λpj [v] for any such p;

(c) d(i, j,p) < 0 and pi > pj, then λ
p
i [v] > λpj [v] for any such p. �

We have not detailed, in Corollaries 5.3 and 5.5, the cases where no conclusion
can be established due to the influence of ∆(i, j,p).

Now we consider the previous Example 4.1 that will illustrate some of these results.

Example 5.6 For n = 4, p = (p1, p2, p3, p4), and v the game given by

v(∅) = 0, v({1}) = v({2}) = 1, v({1, 2}) = 4,
v({1, 3}) = v({2, 3}) = 3, v({1, 4}) = v({2, 4}) = 2, v({3, 4}) = 1,
v({1, 2, 3}) = 4, v({1, 2, 4}) = 5, v({1, 3, 4}) = v({2, 3, 4}) = 4,
v(N) = 6, v(S) = 0 otherwise.

Here we have 1I2, 1D3 but 3D̸ 1, 1D4 but 4D̸ 1, and 3D̸ 4 and 4D̸ 3. Table 1 yields
some particular samples of profiles that cover, more or less, all cases of Corollaries
5.4 and 5.5. We add that, for all p,

∆(1, 2,p) = 0, ∆(1, 3,p) = 1 and ∆(1, 4,p) = 1 + p2 + p3 − 3p2p3,

and also that d(1, 4,p) is never negative and vanishes only at two points.

6 An example of application: multinomial values
among players connected by a network

In [19], Myerson used graph theory to analyze cooperation structure in games. His
main idea is that players might cooperate in a game by forming agreements among
themselves. These cooperative agreements can be represented by links between the
agreeing players. Then any cooperation structure can be represented by a set of links.
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case for i, j p1 p2 p3 p4 d(i, j, p) pi ? pj λpi [v] sign λpj [v]

0.0 0.7 0.5 0.2 0.0000 pi < pj 2.1000 = 2.1000
0.7 0.2 0.5 0.0 0.0000 pi > pj 2.0000 = 2.0000

1I2 0.4 0.5 0.1 0.2 1.4400 pi < pj 2.1000 > 1.9560
(1D2 and 2D1) 0.6 0.5 0.1 0.2 1.4400 pi > pj 2.1000 < 2.2440

0.4 0.5 0.8 0.7 −0.7800 pi < pj 2.3500 < 2.4280
0.6 0.5 0.8 0.7 −0.7800 pi > pj 2.3500 > 2.2720
0.1 0.5 0.8 0.1 0.0000 pi < pj 2.0500 > 1.0500
0.8 0.5 0.1 0.7 0.0000 pi > pj 2.3500 > 1.3500

1D3 and 0.4 0.3 0.5 0.7 0.5200 pi < pj 2.3500 > 1.2980
3D̸ 1 0.8 0.4 0.2 0.7 0.2600 pi > pj 2.2720 > 1.4280

0.3 0.6 0.4 0.7 −0.2600 pi < pj 2.3760 > 1.4020
0.3 0.7 0.2 0.1 −0.7600 pi > pj 2.2780 > 1.2020
0.1 0.0 1.0 0.8 0.0000 pi < pj 3.0000 > 1.0000

1D4 and 0.8 0.0 1.0 0.1 0.0000 pi > pj 3.0000 > 1.0000
4D̸ 1 0.6 0.3 0.4 0.8 0.5400 pi < pj 2.3520 > 0.9040

0.2 0.3 0.4 0.6 0.5400 pi > pj 2.2440 > 0.6880

Table 1: Behavior of multinomial values as to indifference and strict dominance

Once the graph (or network) is fixed, it may be viewed as a cooperative game where
the role of the network is to define which coalitions can work. Coalition’s worth is
obtained by adding the utilities achieved by those members who are communicated
by the network. These situations holds particularly when players may, due to affinity,
consanguinity or other factors, have clear preferences for joining certain coalitions as
opposed to others.

Cases in which many theoretically possible coalitions will not realistically be
formed are not limited to social situations alone. If one is studying cooperative coali-
tions among players connected by supply routes, computer networks or web links,
there are clear structural reason for entirely excluding some coalitions and including
in consideration instead only coalitions that are connected along the network.

As we will see in the following example, the way in which the players are connected
to each other is important and the tendency profile defining multinomial values pro-
vides new tools to study these situations.

Example 6.1 Consider a situation where 5 players are connected in some network
Γ, like friendships and social relationships, communication lines or alliances given by

• •

• • •

�
�

�
�

2 3 4

1 5

Γ :

Let v be the cooperative game defined by v(S) =
s(s− 1)

2
where s = |S|. The
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multilinear extension of the game vΓ associated to the graph Γ in Myerson’s sense is

f(x1, x2, x3, x4, x5) = x1x2 + x1x3 + x2x3 + x3x4 + x4x5 + x1x3x4+
x2x3x4 + x3x4x5 + x1x3x4x5 + x2x3x4x5

Let p = (p1, p2, p3, p4, p5) a tendency profile.

The calculation of λpi [vΓ] for i=1, 2, 3, 4 and 5 derives from Remark 3.2(d):

λp1 [vΓ] = p2 + p3 + p3p4(1 + p5),

λp2 [vΓ] = p1 + p3 + p3p4(1 + p5),

λp3 [vΓ] = p1 + p2 + p4(1 + p5)(1 + p1 + p2),

λp4 [vΓ] = p5 + p3(1 + p5)(1 + p1 + p2),

λp5 [vΓ] = p4[1 + p3(1 + p1 + p2)].

Notice that the introduction of tendency profiles breaks the symmetry between
players 1 and 2 in the game vΓ. Nevertheless, a “structural” symmetry still exists,
between λp1 [vΓ] and λ

p
2 [vΓ] since λ

p
2 [vΓ] is obtained from λp1 [vΓ] by replacing p2 with

p1.
These allocations reflect the a priori power distribution. The possibilities of player

3 depend on p4 as well as p1 and p2 as a consequence of the central position of the
player 3 in the network. The allocations for player 4 are strongly influenced by p3.
Moreover, the possibilities of player 5 clearly rest upon the interest of player 4 to form
coalitions.

p = (0.5, 0.5, 0.5, 0.5, 0.5) p = (0.1, 0.8, 0.2, 0.5, 0.9) p = (0.1, 0.8, 0.2, 0.9, 0.9)
λp1 [vΓ] 1.375 (16.67 %) 1.190 (17.77 %) 1.342 (14.92 %)
λp2 [vΓ] 1.375 (16.67 %) 0.490 ( 7.32 %) 0.642 ( 7.14 %)
λp3 [vΓ] 2.500 (30.30 %) 2.705 (40.39 %) 4.149 (46.12 %)
λp4 [vΓ] 2.000 (24.24 %) 1.622 (24.22 %) 1.622 (18.03 %)
λp5 [vΓ] 1.000 (12.12 %) 0.690 (10.30 %) 1.242 (13.80 %)

Table 2. Multinomial values for several values of p

7 Concluding remarks

As we have said before, in this paper we have been concerned to the analysis of multi-
nomial values and probabilistic values within the framework of cooperative games.
The aim of the work is that providing a self–contained theory for multinomial values.
We investigate the conditions for the coefficients of these values necessary and / or suf-
ficient in order to satisfy some properties including marginal contributions, balanced
contributions, desirability relation and null player exclusion property. The notions of
regularity and hereditary value guaranty the validity of some of them. Some of these
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properties were studied by Felshenthal and Machover [13] for several power indices
and by Carreras and Freixas [4] for semivalues.

Two kind of results have been established in Section 4. On one hand, general
results for all probabilistic values like Propositions 4.7(a) and (b) and 4.19. On the
other hand, results not so general but interesting in the sense that they evidence the
great influence that the weighting coefficients and the tendency profiles may exert on
the validity of classical properties in this setup, as is the case of Propositions 4.5,
4.7(c), 4.8, 4.17(b) and 4.20. Moreover, Propositions 4.14 and 4.16, where the notion
of hereditary value it is necessary, have not sense for probabilistic values in general.

In this work we also characterize: (i) the class of regular values within the class of
probabilistic values; (ii) the (i, j)–symmetric values within the class of probabilistic
values; and (iii) the class of solutions satisfying the balanced contributions property
within the class of regular and hereditary regular probabilistic values. Moreover, a
discussion based on the second partial derivatives of the multilinear extension of the
game provides additional insight on the meaning of multinomial values.

Even a potential theory can be developed when the profile is positive. However,
for not to enlarge this paper too much, we prefer to leave all this material for a future
article.
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Appendix A: proofs of Section 4

Proof of Proposition 4.5: The proof goes as follows: (1) ⇒ (3) ⇒ (2) ⇒ (1) ⇒
(4) ⇒ (1).

(1) ⇒ (3) Assume iDj in v. Starting at Eq. (1) and splitting the sum into two parts,
we have

ϕi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] =

∑
S⊆N\{i,j}

[
piS [v(S ∪ {i})− v(S)] + piS∪{j}[v(S ∪ {i} ∪ {j})− v(S ∪ {j})]

]
.

Now, by comparing this expression with the analogous expression for ϕj [v], it follows
that

ϕi[v]− ϕj [v] =
∑

S⊆N\{i,j}

(piS + piS∪{j})[v(S ∪ {i})− v(S ∪ {j})] ≥ 0

because piS = pjS , p
i
S∪{j} = pjS∪{i} and v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N\{i, j},

since iDj in v.
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(3) ⇒ (2) It suffices to apply the previous result twice.

(2) ⇒ (1) Let us first assume that piS ̸= pjS for some S ⊆ N\{i, j}. Let w ∈ GN be
defined by

w(T ) =

{
1 if T ⊇ S ∪ {k} for any k ∈ N\S
0 otherwise.

(8)

Since, in fact, iIj in w, without loss of generality we may assume that piS < pjS .

But then ϕi[w] = piS < pjS = ϕj [w], a contradiction.

Now we assume that piS∪{j} ̸= pjS∪{i} for some S ⊆ N\{i, j}. Consider w∗ ∈ GN

defined by

w∗(T ) =

{
1 if T ⊇ S ∪ {k}, for any k ̸= i, j or T ⊇ S ∪ {i} ∪ {j}
0 otherwise.

(9)

Since, in fact, iIj in w∗, without loss of generality we may assume that piS∪{j} <

pjS∪{i}. But then ϕi[w
∗] = piS∪{j} < pjS∪{i} = ϕj [w

∗], a contradiction.

(1) ⇒ (4) If iDj and j D̸ i in v then, for some S ⊆ N\{i, j} we have v(S ∪ {i}) >
v(S ∪ {j}). As piS = pjS , p

i
S∪{j} = pjS∪{i} and piS + piS∪{j} > 0 for all S⊆ N\{i, j}, it

follows from the proof of (1) ⇒ (3) that ϕi[v] > ϕj [v].

(4) ⇒ (1) First, let us assume that piS ̸= pjS for some S ⊆ N\{i, j} and e.g. pjS > piS .

Consider v = 2u{i} + u{j} + cw, with c >
1

pjS − piS
and w ∈ GN as defined in (8).

Then it is clear that iDj and j D̸ i in v. However,

ϕi[v] = 2 + cpiS and ϕj [v] = 1 + cpjS ,

and so ϕi[v]− ϕj [v] = 1− c(pjS − piS) < 0, a contradiction.4

Now, we assume that piS∪{j} ̸= pjS∪{i} for some S ⊆ N\{i, j} and e.g. pjS∪{i} >

piS∪{j}. Consider v = 2u{i} + u{j} + cw∗, with c >
1

pjS∪{i} − piS∪{j}
and w∗ ∈ GN as

defined in (9).
Then it is clear that iDj and j D̸ i in v. However,

ϕi[v] = 2 + cpiS∪{j} and ϕj [v] = 1 + cpjS∪{i},

and so ϕi[v]− ϕj [v] = 1− c(pjS∪{i} − piS∪{j}) < 0, a contradiction.5 �

4If pjS < piS the argument is similar, with c <
1

pjS − piS
.

5If pj
S∪{i} < pi

S∪{j} the argument is similar, with c <
1

pi
S∪{i} − pj

S∪{j}

.
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Proof of Corollary 4.6: It follows from the fact that pi = pj and λp regular is
equivalent to (i, j)–symmetry of λp and for regular multinomial values the condition
pS + pS∪{j} > 0 holds. �

Proof of Proposition 4.7: (a) By a mere inspection of

ϕi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] and ϕi[w] =
∑

S⊆N\{i}

piS [w(S ∪ {i})− w(S)],

it follows that ϕi[v] ≥ ϕi[w], because v(S ∪ {i}) − v(S) ≥ w(S ∪ {i}) − w(S) and
piS ≥ 0 for all S ⊆ N\{i}.

(b) It suffices to apply (a) twice.
(c) (⇐) If v B w and w B̸ v for i, then we have v(S∪{i})−v(S) > w(S∪{i})−w(S)

for some S ⊆ N\{i}. If ϕ is regular for player i, ϕi[v] > ϕi[w] follows from the proof
of (a).

(⇒) If n = 1, the statement holds trivially because any probabilistic value is
regular. If n ≥ 2, let us assume that ϕ is not regular for player i. Then there is some
S ⊆ N\{i} such that piS = 0. Take w,w∗∗ ∈ GN ; w as defined in (8) and

w∗∗(T ) =

{
1 if T ⊇ S ∪ {k}, for any k ∈ N\S, k ̸= i

0 otherwise.
(10)

Again, it is clear that wBw∗∗ and w∗∗ B̸ w for i but ϕi[w] = piS = ϕi[w
∗∗] = 0, a

contradiction. �

Proof of Proposition 4.8: (⇐) Assume that ϕ is regular and let i ∈ N be a nonnull
player in a monotonic game v ∈ GN . Then, by monotonicity, v(S ∪ {i}) ≥ v(S) for
all S ⊆ N\{i}, and v(S ∪ {i}) > v(S) for some such S since i is nonnull. Moreover,
from regularity it follows that piS > 0 for all S ⊆ N\{i}. Hence

ϕi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] > 0.

(⇒) If n = 1, v is monotonic, and 1 is nonnull in v, then v({1}) > 0, p1∅ = 1 for
any profile p and ϕ1[v] = v({1}) > 0 for all ϕ, regular or not. Now, consider n ≥ 2
and assume that ϕ is not regular. Then there is some S ⊆ N\{i} such that piS = 0.

Let w ∈ GN be as defined in (8).
Then w is monotonic and i is a nonnull player in w since w(S ∪ {i})− w(S) = 1.

However, ϕi[w] = piS = 0. �

Proof of Proposition 4.12: For all S ⊆ N\{i, j} we have

pjS = (1− pi)
∏
k∈S

pk
∏

h∈N\S
h̸=i,j

(1− ph) and pjS∪{i} = pi
∏
k∈S

pk
∏

h∈N\S
h̸=i,j

(1− ph)
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so that
pjS + pjS∪{i} =

∏
k∈S

pk
∏

h∈N\S
h̸=i,j

(1− ph) = (p−i)jS . �

Proof of Proposition 4.14: (⇐) Following the initial argument of the proof of
Proposition 4.5 we obtain

ϕj [v] =
∑

S⊆N\{j}

pjS [v(S ∪ {j})− v(S)] =

∑
S⊆N\{i,j}

[
pjS [v(S ∪ {j})− v(S)] + pjS∪{i}[v(S ∪ {i} ∪ {j})− v(S ∪ {i})]

]
.

As i is a null player in v, we have v(S∪{i}∪{j}) = v(S∪{j}) and v(S∪{i}) = v(S).
Thus, using that ϕ is hereditary,

ϕj [v] =
∑

S⊆N\{i,j}

(pjS + pjS∪{i})[v(S ∪ {j})− v(S)] =

∑
S⊆(N\{i})\{j}

(p−i)jS [v−{i}(S ∪ {j})− v−{i}(S)] = ϕj [v−{i}].

(⇒) Assume that ϕ is not an hereditary probabilistic value. That is, there is some
S ⊆ N\{i, j} such that (p−i)jS ̸= pjS + pjS∪{i}. Let w

∗∗ ∈ GN be as defined in (10).

Notice that player i is null in w∗∗ and ϕj [w
∗∗] = pjS+p

j
s∪{i} ̸= (p−i)jS = ϕj [w

∗∗
−{i}].

�

Proof of Corollary 4.15: It is straightforward to verify with Proposition 4.12. �

Proof of Proposition 4.16: (⇐) Using the fact that ϕ is hereditary we have

ϕi[v]−ϕi[v−{j}] =
∑

S⊆N\{i,j}

piS [v(S∪{i})−v(S)]+
∑

S⊆N\{i,j}

piS∪{j}[v(S∪{i}∪{j})−

v(S∪{j})]−
∑

S⊆N\{i,j}

(p−j)iS [v((S∪{i})−v(S)] =
∑

S⊆N\{i,j}

piS∪{j}[v(S∪{i}∪{j})−

v(S ∪ {i})− v(S ∪ {j}) + v(S)] and analogously for

ϕj [v]−ϕi[v−{i}] =
∑

S⊆N\{i,j}

pjS∪{i}[v(S ∪ {i} ∪ {j})− v(S ∪ {i})− v(S ∪ {j}) + v(S)].

(⇒) Assume that piS∪{j} ̸= pjS∪{i} for some S ⊆ \N{i, j}. Let w ∈ GN be as defined

in (8).
Then ϕi[w] = piS , ϕi[w−{j}] = (p−j)iS , ϕj [w] = pjS and ϕj [w−{i}] = (p−i)jS . Using

that ϕ is hereditary we find, because of the regularity of ϕ,

ϕi[w]− ϕi[w−{j}] = −piS∪{j} ̸= −pjS∪{i} = ϕj [w]− ϕj [w−{i}]. �
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Proof of Proposition 4.17: (a)

pi(λ
p
i [v]− λ

p−j

i [v−{j}]) = f(p)− f(0i,p)− f(0j ,p)− f(0i, 0j ,p)

The symmetrical appearance of i and j in this expression shows that the claimed
equality holds.

(b) (⇐) It follows at once from Proposition 4.16. �

Proof of Proposition 4.19: It suffices to prove that C(i, v′) ⊆ C(i, v).
Given S ∈ C(i, v′), then w′(S) < q and w′(S) + w′

i ≥ q, where w′(S) =
∑

i∈S w
′
i.

We have to distinguish two cases:
(i) If j ∈ S, w(S) = wj + w(S\{j}) = wj + w′(S\{j}) < w′

j + w′(S\{j}) =
w′(S) < q, w(S)+wi = wj +w(S\{j})+wi = w′

j +w
′(S\{j})+w′

i = w′(S)+w′
i ≥ q

and then S ∈ C(i, v).
(ii) If j /∈ S, w(S) = w′(S) < q, w(S) + wi = w′(S) + wi > w′(S) + w′

i ≥ q and
then S ∈ C(i, v). �

Proof of Proposition 4.20: (⇐) As ϕ is regular it suffices to prove that there
is some S ∈ C(i, v)\C(i, v′). From condition v ̸= v′ it follows that either (a) there
is S such that S ∈ W and S /∈ W ′ (and hence i ∈ S and j /∈ S) or (b) there is
some S such that S /∈ W and S ∈ W ′ (and hence i /∈ S and j ∈ S). In case (a),
S\{i} ∈ C(i, v)\C(i, v′); in case (b), S ∈ C(i, v)\C(i, v′).

(⇒) Assume that ϕ is not regular for player i and n > 2. Then it follows that
there is some S ⊆ N\{i} such that piS = 0. If j /∈ S, let v be the majority game
defined by

wk =


1 if k ∈ S,

s+ 2 if k = i,

s if k = j,

2s+ 2 otherwise,

q = 2s + 2, and v′ be the game obtained from v after player i gives one unit of
weight to player j. Then it is easily seen that C(i, v)\C(i, v′) = S, so that v ̸= v′ but
ϕi[v] = ϕi[v

′].
If j ∈ S let v ∈ GN be defined by

wk =


s+ 1 if k = i,

s+ 3 if k = j,

1 if k ∈ S\{j},
2s+ 3 otherwise,

q = 2s + 3 and v′ be the game obtained from v after player i gives one unit of
weight to player j. Then it is easily seen that C(i, v)\C(i, v′) = S, so that v ̸= v′ but
ϕi[v] = ϕi[v

′].

Proof of Proposition 4.22: The proof is analogously to Proposition 4.20. �
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Appendix B: proofs of Section 5

Proof of Lemma 5.1: (a) By the linearity of f with respect to variable xi, we have

λpi [v] =
∂f

∂xi
(p) = f(1i,p)− f(0i,p).

(b) The second equality in (a) holds6 not only for any profile but for all x ∈ Rn:

∂f

∂xi
(x) = f(1i,x)− f(0i,x).

Then, by deriving this equation and evaluating at x = p we get the result. �

Proof of Theorem 5.2: From Lemma 5.1 and Eq. (7) we find

λpi [v] = f(1i,p)− f(0i,p) =

pjf(1i, 1j ,p) + (1− pj)f(1i, 0j ,p)− pjf(0i, 1j ,p)− (1− pj)f(0i, 0j ,p)

and a similar expresion for λpj [v]. Hence

λpi [v] = pj
∂2f

∂xj∂xi
(p) + f(1i, 0j ,p)− f(0i, 0j ,p)

λpj [v] = pi
∂2f

∂xi∂xj
(p) + f(0i, 1j ,p)− f(0i, 0j ,p)

and, f being of class C∞ and satisfying therefore Schwartz’s theorem on coincidence
of crossed partial derivatives, by subtracting the above expressions and cancelling the
common term the result follows at once. �

References
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