7 research outputs found

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Circuit Satisfiability and Constraint Satisfaction around Skolem Arithmetic

    Get PDF
    We study interactions between Skolem Arithmetic and certain classes of Circuit Satisfiability and Constraint Satisfaction Problems (CSPs). We revisit results of Glaßer et al. [1] in the context of CSPs and settle the major open question from that paper, finding a certain satisfiability problem on circuits—involving complement, intersection, union and multiplication—to be decidable. This we prove using the decidability of Skolem Arithmetic. Then we solve a second question left open in [1] by proving a tight upper bound for the similar circuit satisfiability problem involving just intersection, union and multiplication. We continue by studying first-order expansions of Skolem Arithmetic without constants, (N;×), as CSPs. We find already here a rich landscape of problems with non-trivial instances that are in P as well as those that are NP-complete

    Semilinear program feasibility

    No full text
    corecore