23 research outputs found

    On Observer-Based Control of Nonlinear Systems

    Get PDF
    Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance raises the need for techniques, which makes it possible not only to estimate states, but also to derive control laws that guarantee stability when using the estimated states instead of the true ones. For linear systems, the separation principle assures stability for the use of converging state estimates in a stabilizing state feedback control law. In general, however, the combination of separately designed state observers and state feedback controllers does not preserve performance, robustness, or even stability of each of the separate designs. In this thesis, the problems of observer design and observer-based control for nonlinear systems are addressed. The deterministic continuous-time systems have been in focus. Stability analysis related to the Positive Real Lemma with relevance for output feedback control is presented. Separation results for a class of nonholonomic nonlinear systems, where the combination of independently designed observers and state-feedback controllers assures stability in the output tracking problem are shown. In addition, a generalization to the observer-backstepping method where the controller is designed with respect to estimated states, taking into account the effects of the estimation errors, is presented. Velocity observers with application to ship dynamics and mechanical manipulators are also presented

    Finite-Time Observer Based Guidance and Control of Underactuated Surface Vehicles with Unknown Sideslip Angles and Disturbances

    Get PDF
    Suffering from complex sideslip angles, path following control of an under actuated surface vehicle (USV) becomes significantly challenging and remains unresolved. In this paper, a finite-time observer based guidance and control (FOGC) scheme for path following of an USV with time-varying and large sideslip angles and unknown external disturbances is proposed. The salient features of the proposed FOGC scheme are as follows: 1) time-varying large sideslip angle is exactly estimated by a finite-time sideslip observer, and thereby contributing to the sideslip-tangent line-of-sight guidance law which significantly enhances the robustness of the guidance system to unknown sideslip angles which are significantly large and time-varying; 2) a finite-time disturbance observer (FDO) is devised to exactly observe unknown external disturbances, and thereby implementing FDO-based surge and heading robust tracking controllers, which possess remarkable tracking accuracy and precise disturbance rejection, simultaneously; and 3) by virtue of cascade analysis and Lyapunov approach, global asymptotic stability of the integrated guidance-control system is rigorously ensured. Simulation studies and comparisons are conducted to demonstrate the effectiveness and superiority of the proposed FOGC scheme

    L1 Adaptive Control For Underwater Vehicle-Manipulator

    Get PDF

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Advanced Computational-Effective Control and Observation Schemes for Constrained Nonlinear Systems

    Get PDF
    Constraints are one of the most common challenges that must be faced in control systems design. The sources of constraints in engineering applications are several, ranging from actuator saturations to safety restrictions, from imposed operating conditions to trajectory limitations. Their presence cannot be avoided, and their importance grows even more in high performance or hazardous applications. As a consequence, a common strategy to mitigate their negative effect is to oversize the components. This conservative choice could be largely avoided if the controller was designed taking all limitations into account. Similarly, neglecting the constraints in system estimation often leads to suboptimal solutions, which in turn may negatively affect the control effectiveness. Therefore, with the idea of taking a step further towards reliable and sustainable engineering solutions, based on more conscious use of the plants' dynamics, we decide to address in this thesis two fundamental challenges related to constrained control and observation. In the first part of this work, we consider the control of uncertain nonlinear systems with input and state constraints, for which a general approach remains elusive. In this context, we propose a novel closed-form solution based on Explicit Reference Governors and Barrier Lyapunov Functions. Notably, it is shown that adaptive strategies can be embedded in the constrained controller design, thus handling parametric uncertainties that often hinder the resulting performance of constraint-aware techniques. The second part of the thesis deals with the global observation of dynamical systems subject to topological constraints, such as those evolving on Lie groups or homogeneous spaces. Here, general observability analysis tools are overviewed, and the problem of sensorless control of permanent magnets electrical machines is presented as a case of study. Through simulation and experimental results, we demonstrate that the proposed formalism leads to high control performance and simple implementation in embedded digital controllers

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction

    Get PDF
    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly affects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms

    Uniform finite time stabilisation of non-smooth and variable structure systems with resets

    Get PDF
    This thesis studies uniform finite time stabilisation of uncertain variable structure and non-smooth systems with resets. Control of unilaterally constrained systems is a challenging area that requires an understanding of the underlying mechanics that give rise to reset or jumps while synthesizing stabilizing controllers. Discontinuous systems with resets are studied in various disciplines. Resets in states are hard nonlinearities. This thesis bridges non-smooth Lyapunov analysis, the quasi-homogeneity of differential inclusions and uniform finite time stability for a class of impact mechanical systems. Robust control synthesis based on second order sliding mode is undertaken in the presence of both impacts with finite accumulation time and persisting disturbances. Unlike existing work described in the literature, the Lyapunov analysis does not depend on the jumps in the state while also establishing proofs of uniform finite time stability. Orbital stabilization of fully actuated mechanical systems is established in the case of persisting impacts with an a priori guarantee of finite time convergence between t he periodic impacts. The distinguishing features of second order sliding mode controllers are their simplicity and robustness. Increasing research interest in the area has been complemented by recent advances in Lyapullov based frameworks which highlight the finite time Convergence property. This thesis computes the upper bound on the finite settling time of a second order sliding mode controller. Different to the latest advances in the area, a key contribution of this thesis is the theoretical proof of the fact that finite settling time of a second order sliding mode controller tends to zero when gains tend to infinity. This insight of the limiting behaviour forms the basis for solving the converse problem of finding an explicit a priori tuning formula for the gain parameters of the controller when and arbitrary finite settling time is given. These results play a central role ill the analysis of impact mechanical systems. Another key contribution of the thesis is that it extends the above results on variable structure systems with and without resets to non-smooth systems arising from continuous finite time controllers while proving uniform finite time stability. Finally, two applications are presented. The first application applies the above theoretical developments to the problem of orbital stabilization of a fully actuated seven link biped robot which is a nonlinear system with periodic impacts. The tuning of the controller gains leads to finite time convergence of the tracking errors between impacts while being robust to disturbances. The second application reports the outcome of an experiment with a continuous finite time controller
    corecore