11 research outputs found

    Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention

    Full text link
    Deep neural networks, including recurrent networks, have been successfully applied to human activity recognition. Unfortunately, the final representation learned by recurrent networks might encode some noise (irrelevant signal components, unimportant sensor modalities, etc.). Besides, it is difficult to interpret the recurrent networks to gain insight into the models' behavior. To address these issues, we propose two attention models for human activity recognition: temporal attention and sensor attention. These two mechanisms adaptively focus on important signals and sensor modalities. To further improve the understandability and mean F1 score, we add continuity constraints, considering that continuous sensor signals are more robust than discrete ones. We evaluate the approaches on three datasets and obtain state-of-the-art results. Furthermore, qualitative analysis shows that the attention learned by the models agree well with human intuition.Comment: 8 pages. published in The International Symposium on Wearable Computers (ISWC) 201

    Semi-supervised sequence classification through change point detection

    Full text link
    Sequential sensor data is generated in a wide variety of practical applications. A fundamental challenge involves learning effective classifiers for such sequential data. While deep learning has led to impressive performance gains in recent years in domains such as speech, this has relied on the availability of large datasets of sequences with high-quality labels. In many applications, however, the associated class labels are often extremely limited, with precise labelling/segmentation being too expensive to perform at a high volume. However, large amounts of unlabeled data may still be available. In this paper we propose a novel framework for semi-supervised learning in such contexts. In an unsupervised manner, change point detection methods can be used to identify points within a sequence corresponding to likely class changes. We show that change points provide examples of similar/dissimilar pairs of sequences which, when coupled with labeled, can be used in a semi-supervised classification setting. Leveraging the change points and labeled data, we form examples of similar/dissimilar sequences to train a neural network to learn improved representations for classification. We provide extensive synthetic simulations and show that the learned representations are superior to those learned through an autoencoder and obtain improved results on both simulated and real-world human activity recognition datasets.Comment: 14 pages, 9 figure

    Deep CNN hyperparameter optimization algorithms for sensor-based human activity recognition

    Get PDF
    Human activity recognition (HAR) is an active field of research for the classification of human movements and applications in a wide variety of areas such as medical diagnosis, health care systems, elderly care, rehabilitation, surveillance in a smart home, and so on. HAR data are collected from wearable devices which include different types of sensors and/or with the smartphone sensor's aid. In recent years, deep learning algorithms have been showed a significant robustness for classifying human activities on HAR data. In the architecture of such deep learning networks, there are several hyperparameters to control the model efficiency which are mainly set by experiment. In this paper, firstly, we introduced one dimensional Convolutional neural network (CNN) as a model among supervised deep learning for an online HAR data classification. In order to automatically choose the optimum hyperparameters of the CNN model, seven approaches based on metaheuristic algorithms were investigated. The optimization algorithms were evaluated on the HAR dataset from the UCI Machine Learning repository. Furthermore, the performance of the proposed method was compared with several state-of-the-art evolutionary algorithms and other deep learning models. The experimental results showed the robustness of using metaheuristic algorithms to optimize the hyperparameters in CNN

    Wearable-based behaviour interpolation for semi-supervised human activity recognition

    Get PDF
    While traditional feature engineering for Human Activity Recognition (HAR) involves a trial-and-error process, deep learning has emerged as a preferred method for high-level representations of sensor-based human activities. However, most deep learning-based HAR requires a large amount of labelled data and extracting HAR features from unlabelled data for effective deep learning training remains challenging. We, therefore, introduce a deep semi-supervised HAR approach, MixHAR, which concurrently uses labelled and unlabelled activities. Our MixHAR employs a linear interpolation mechanism to blend labelled and unlabelled activities while addressing both inter- and intra-activity variability. A unique challenge identified is the activity-intrusion problem during mixing, for which we propose a mixing calibration mechanism to mitigate it in the feature embedding space. Additionally, we rigorously explored and evaluated the five conventional/popular deep semi-supervised technologies on HAR, acting as the benchmark of deep semi-supervised HAR. Our results demonstrate that MixHAR significantly improves performance, underscoring the potential of deep semi-supervised techniques in HAR

    Machine Learning Based Physical Activity Extraction for Unannotated Acceleration Data

    Get PDF
    Sensor based human activity recognition (HAR) is an emerging and challenging research area. The physical activity of people has been associated with many health benefits and even reducing the risk of different diseases. It is possible to collect sensor data related to physical activities of people with wearable devices and embedded sensors, for example in smartphones and smart environments. HAR has been successful in recognizing physical activities with machine learning methods. However, it is a critical challenge to annotate sensor data in HAR. Most existing approaches use supervised machine learning methods which means that true labels need be given to the data when training a machine learning model. Supervised deep learning methods have outperformed traditional machine learning methods in HAR but they require an even more extensive amount of data and true labels. In this thesis, machine learning methods are used to develop a solution that can recognize physical activity (e.g., walking and sedentary time) from unannotated acceleration data collected using a wearable accelerometer device. It is shown to be beneficial to collect and annotate data from physical activity of only one person. Supervised classifiers can be trained with small, labeled acceleration data and more training data can be obtained in a semi-supervised setting by leveraging knowledge from available unannotated data. The semi-supervised En-Co-Training method is used with the traditional supervised machine learning methods K-nearest Neighbor and Random Forest. Also, intensities of activities are produced by the cut point analysis of the OMGUI software as reference information and used to increase confidence of correctly selecting pseudo-labels that are added to the training data. A new metric is suggested to help to evaluate reliability when no true labels are available. It calculates a fraction of predictions that have a correct intensity out of all the predictions according to the cut point analysis of the OMGUI software. The reliability of the supervised KNN and RF classifiers reaches 88 % accuracy and the C-index value 0,93, while the accuracy of the K-means clustering remains 72 % when testing the models on labeled acceleration data. The initial supervised classifiers and the classifiers retrained in a semi-supervised setting are tested on unlabeled data collected from 12 people and measured with the new metric. The overall results improve from 96-98 % to 98-99 %. The results with more challenging activities to the initial classifiers, taking a walk improve from 55-81 % to 67-81 % and jogging from 0-95 % to 95-98 %. It is shown that the results of the KNN and RF classifiers consistently increase in the semi-supervised setting when tested on unannotated, real-life data of 12 people

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions

    Attention Mechanism for Adaptive Feature Modelling

    Get PDF
    This thesis presents groundbreaking contributions in machine learning by exploring and advancing attention mechanisms within deep learning frameworks. We introduce innovative models and techniques that significantly enhance feature recognition and analysis in two key application areas: computer vision recognition and time series modeling. Our primary contributions include the development of a dual attention mechanism for crowd counting and the integration of supervised and unsupervised learning techniques for semi-supervised learning. Furthermore, we propose a novel Dynamic Unary Convolution in Transformer (DUCT) model for generalized visual recognition tasks, and investigate the efficacy of attention mechanisms in human activity recognition using time series data from wearable sensors based on the semi-supervised setting. The capacity of humans to selectively focus on specific elements within complex scenes has long inspired machine learning research. Attention mechanisms, which dynamically modify weights to emphasize different input elements, are central to replicating this human perceptual ability in deep learning. These mechanisms have proven crucial in achieving significant advancements across various tasks. In this thesis, we first provide a comprehensive review of the existing literature on attention mechanisms. We then introduce a dual attention mechanism for crowd counting, which employs both second-order and first-order attention to enhance spatial information processing and feature distinction. Additionally, we explore the convergence of supervised and unsupervised learning, focusing on a novel semi-supervised method that synergizes labeled and unlabeled data through an attention-driven recurrent unit and dual loss functions. This method aims to refine crowd counting in practical transportation scenarios. Moreover, our research extends to a hybrid attention model for broader visual recognition challenges. By merging convolutional and transformer layers, this model adeptly handles multi-level features, where the DUCT modules play a pivotal role. We rigorously evaluate DUCT's performance across critical computer vision tasks. Finally, recognizing the significance of time series data in domains like health surveillance, we apply our proposed attention mechanism to human activity recognition, analyzing correlations between various daily activities to enhance the adaptability of deep learning frameworks to temporal dynamics
    corecore