159 research outputs found

    Geoscience-aware deep learning:A new paradigm for remote sensing

    Get PDF
    Information extraction is a key activity for remote sensing images. A common distinction exists between knowledge-driven and data-driven methods. Knowledge-driven methods have advanced reasoning ability and interpretability, but have difficulty in handling complicated tasks since prior knowledge is usually limited when facing the highly complex spatial patterns and geoscience phenomena found in reality. Data-driven models, especially those emerging in machine learning (ML) and deep learning (DL), have achieved substantial progress in geoscience and remote sensing applications. Although DL models have powerful feature learning and representation capabilities, traditional DL has inherent problems including working as a black box and generally requiring a large number of labeled training data. The focus of this paper is on methods that integrate domain knowledge, such as geoscience knowledge and geoscience features (GK/GFs), into the design of DL models. The paper introduces the new paradigm of geoscience-aware deep learning (GADL), in which GK/GFs and DL models are combined deeply to extract information from remote sensing data. It first provides a comprehensive summary of GK/GFs used in GADL, which forms the basis for subsequent integration of GK/GFs with DL models. This is followed by a taxonomy of approaches for integrating GK/GFs with DL models. Several approaches are detailed using illustrative examples. Challenges and research prospects in GADL are then discussed. Developing more novel and advanced methods in GADL is expected to become the prevailing trend in advancing remotely sensed information extraction in the future.</p

    Performance analysis of change detection techniques for land use land cover

    Get PDF
    Remotely sensed satellite images have become essential to observe the spatial and temporal changes occurring due to either natural phenomenon or man-induced changes on the earth’s surface. Real time monitoring of this data provides useful information related to changes in extent of urbanization, environmental changes, water bodies, and forest. Through the use of remote sensing technology and geographic information system tools, it has become easier to monitor changes from past to present. In the present scenario, choosing a suitable change detection method plays a pivotal role in any remote sensing project. Previously, digital change detection was a tedious task. With the advent of machine learning techniques, it has become comparatively easier to detect changes in the digital images. The study gives a brief account of the main techniques of change detection related to land use land cover information. An effort is made to compare widely used change detection methods used to identify changes and discuss the need for development of enhanced change detection methods

    Integration of geographic information system and RADARSAT synthetic aperture radar data using a self-organizing map network as compensation for realtime ground data in automatic image classification

    Get PDF
    The paper presents results of using advanced techniques such as Self-Organizing feature Map (SOM) to incorporate a GIS data layer to compensate for the limited amount of real-time ground-truth data available for land-use and land-cover mapping in wet-season conditions in Bangladesh based on multi-temporal RADARSAT-1 SAR images. The experimental results were compared with those of traditional statistical classifiers such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance, which are not suitable for incorporating low-level GIS data in the image classification process. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification with respect to the depth and duration of regular flooding was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers at 79.6% where the training data covered only 0.53% of the total image. It also achieved higher accuracies for more classes in comparison to the other classifiers

    Online change detection techniques in time series: an overview

    Get PDF
    Time-series change detection has been studied in several fields. From sensor data, engineering systems, medical diagnosis, and financial markets to user actions on a network, huge amounts of temporal data are generated. There is a need for a clear separation between normal and abnormal behaviour of the system in order to investigate causes or forecast change. Characteristics include irregularities, deviations, anomalies, outliers, novelties or surprising patterns. The efficient detection of such patterns is challenging, especially when constraints need to be taken into account, such as the data velocity, volume, limited time for reacting to events, and the details of the temporal sequence.This paper reviews the main techniques for time series change point detection, focusing on online methods. Performance criteria including complexity, time granularity, and robustness is used to compare techniques, followed by a discussion about current challenges and open issue

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Foreword to the Special Issue on Pattern Recognition in Remote Sensing

    Full text link

    Change Detection in Multi-temporal Images Using Multistage Clustering for Disaster Recovery Planning

    Get PDF
    Change detection analysis on multi-temporal images using various methods have been developed by many researchers in the field of spatial data analysis and image processing. Change detection analysis has many benefit for real world applications such as medical image analysis, valuable material detector, satellite image analysis, disaster recovery planning, and many others. Indonesia is one of the most country that encounter natural disaster. The most memorable disaster was happened in December 26, 2004. Change detection is one of the important part management planning for natural disaster recovery. This article present the fast and accurate result of change detection on multi-temporal images using multistage clustering. There are three main step for change detection in this article, the first step is to find the image difference of two multi-temporal images between the time before disaster and after disaster using operation log ratio between those images. The second step is clustering the difference image using Fuzzy C means divided into three classes. Change, unchanged, and intermediate change region. Afterword the last step is cluster the change map from fuzzy C means clustering using k means clustering, divided into two classes. Change and unchanged region. Both clustering\u27s based on Euclidian distance

    CHANGE DETECTION IN MULTI-TEMPORAL IMAGES USING MULTISTAGE CLUSTERING FOR DISASTER RECOVERY PLANNING

    Get PDF
    Change detection analysis on multi-temporal images using various methods have been developed by many researchers in the field of spatial data analysis and image processing. Change detection analysis has many benefit for real world applications such as medical image analysis, valuable material detector, satellite image analysis, disaster recovery planning, and many others. Indonesia is one of the most country that encounter natural disaster. The most memorable disaster was happened in December 26, 2004. Change detection is one of the important part management planning for natural disaster recovery. This article present the fast and accurate result of change detection on multi-temporal images using multistage clustering. There are three main step for change detection in this article, the first step is to find the image difference of two multi-temporal images between the time before disaster and after disaster using operation log ratio between those images. The second step is clustering the difference image using Fuzzy C means divided into three classes. Change, unchanged, and intermediate change region. Afterword the last step is cluster the change map from fuzzy C means clustering using k means clustering, divided into two classes. Change and unchanged region. Both clustering’s based on Euclidian distance
    • …
    corecore