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Abstract: Images gathered from different satellites are vastly available these days due to the fast
development of remote sensing (RS) technology. These images significantly enhance the data sources
of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired
at distinct intervals and are used for numerous applications, such as urban area development, disaster
management, land cover object identification, etc. In recent years, deep learning (DL) techniques have
been used tremendously in change detection processes, where it has achieved great success because
of their practical applications. Some researchers have even claimed that DL approaches outperform
traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep
learning techniques, such as supervised, unsupervised, and semi-supervised for different change
detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and
their advantages and disadvantages will be highlighted. In the end, some significant challenges are
discussed to understand the context of improvements in change detection datasets and deep learning
models. Overall, this review will be beneficial for the future development of CD methods.

Keywords: change detection methods; remote sensing images; SAR image; multispectral images;
hyperspectral images; VHR images; heterogeneous image; deep learning

1. Introduction and Background

With the advancement of Remote sensing(RS) technology, RS platforms have become
increasingly capable of collecting a wide range of data. These available data have become
key resources for environmental monitoring by detecting changes on the land surface.
Change detection (CD) is a phenomenon of detecting change of the same geographical
area by observing the set of images captured at different periods [1–3]. It has attracted
widespread interest due to it being extensively used in several real-world applications,
such as fire detection, environmental monitoring [4], disaster monitoring [5], urban change
analysis [6], and land management [7], among others.Therefore, CD has attracted increasing
attention from researchers throughout the world.

RS data contain limited temporal, spatial, and spectral resolutions that significantly
constrain RS-based CD methodologies. However, the development of sensors with greater
technical capabilities has overcome many of these constraints. As a result, researchers
have examined an ever-expanding set of methodologies, algorithms, and procedures for
detecting change. In RS, numerous types of satellites have been launched in space, such
as active or passive, optical, or microwave sensors, and have high- or low-resolution.
The satellite datasets are valuable data sources for describing urban land use/cover types
and their changes over time. Various approaches for detecting changes in satellite images
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have been developed to find changes in the status of an object or phenomenon [8]. For CD,
multimodal RS images, such as synthetic aperture radar (SAR) [9,10], multispectral (MS),
or hyperspectral (HS) images have been used, which are acquired from an active sensor
(SAR), passive optical sensor (MS), and others.

Over the last several decades, various CD approaches have been developed. Tra-
ditional CD approaches may be classified into two groups based on the analysis unit:
pixel-based CD (PBCD) and object-based CD (OBCD). PBCD is the conventional approach
and identifies changes by comparing pixels, and as a result, it cannot overcome the limits
of radiometric variations and misregistration across various dates or sensors. Because of
the increased variability among image objects, PBCD approaches, which are generally
appropriate for middle- and low-resolution RS images, frequently fail to operate in VHR
imagery. The OBCD solves these issues and increases CD accuracy significantly. OBCD-
based techniques are proposed for VHR image CDs, where images are segmented into
disjoint and homogeneous objects, then bitemporal objects are compared and analyzed.
Different approaches of PBCD and OBCD are shown in Figure 1.

Figure 1. Traditional change detection method.

Many traditional techniques of change detection, such as image algebra [11] and
transformation [12], are relatively limited in their applications and are affected by the
influences of atmospheric conditions, changing seasons, satellite sensors, and solar eleva-
tions, reducing the accuracy of change detection [13,14]. While specific approaches, such as
object-based image analysis, reduce false changes by extracting geometric and textural char-
acteristics, this needs a tiresome and time-consuming procedure. They effectively eliminate
the benefit of an automated CD approach. Furthermore, identifying change regions is diffi-
cult due to the threshold selection [15]. The unsupervised method is presented to facilitate
change detection by using the expectation–maximization algorithm for threshold selection.
However, selecting suitable criteria to capture all change regions while eliminating unde-
sired ones remains challenging. In addition, the classification-based CD approaches [16]
convert pixels of an image into land cover classes without the need for random noises for
change identification [17–19]. Most previous supervised or unsupervised techniques rely
on hand-crafted feature representations, which have limited representational abilities to
describe complicated and high-level change information, resulting in low performance
under clutter land covers. All of the previously described classification methods would be
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appropriate for training samples. However, those methods cannot incorporate specific and
dependable statistical features for many datasets and, hence, do not produce high detection
performance for new datasets. Each scheme focuses on only a few aspects of the domain
while ignoring others. In the absence of a clear and explicit definition that integrates all
relevant aspects, the concept of an RS CD technique remains fuzzy.

Deep learning methods automatically discover the representations of input data
required for the CD. Recently, a DL-based CD in the RS sector has become a “hotspot”,
attracting major attention and yielding good results. In recent years, to identify changes in
RS images, DL can automatically derive complicated, hierarchical, and non-linear features
from raw data and overcome several limitations of traditional change detection methods.
Because of their tremendous modeling and learning capabilities, deep learning approaches
represent the link between the image object and its real-world geographical elements as
closely as possible, allowing for more real-world change information [20,21].

1.1. Contribution of This Study

Various survey studies have been published in the literature over the last decade,
reviewing various machine and deep learning models for change detection and almost all
published reviews in the area of remote sensing image CDs were considered to show the
overall picture of research contributions in the field. Table 1 summarizes the works that
have been published thus far. One paper [22] published in reputable journals has focused
on DL-based methods for remote sensing. Review papers [23]discussed pixel-based to
object-based change detection methods and highlight some issues. In [24], the authors
reviewed the AI-based CD technique. The authors of [25] reviewed the analysis on CD
techniques for RS applications, but they did not highlight the challenges of the current CD
method in deep learning. Some review papers [26] have focused on hyperspectral and
multispectral image CDs, but still, there are a lack of reviews in which all RS datasets are
discussed for change detection in deep learning, highlighting its challenges.

Table 1. Summary of survey papers on change detection.

Reference Publisher Publication Year Citation

[2] Taylor & Francis 1989 4834

[27] Taylor & Francis 2002 60

[28] Taylor & Francis 2004 3595

[29] Taylor & Francis 2012 510

[23] Elsevier 2013 1219

[30] Elsevier 2016 134

[31] IEEE 2016 1295

[22] others 2017 411

[20] IEEE 2017 1475

[32] Elsevier 2018 124

[33] IEEE 2019 90

[21] ISPRS 2019 689

[26] MDPI 2019 11

[34] IEEE 2020 48

[24] MDPI 2020 76

[25] Elsevier 2020 8

To the best of our knowledge, no work has explored the current advancements and
mostly-used RS datasets, such as SAR, multispectral, hyperspectral, VHR, and heteroge-
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neous images for CD by using deep learning separately, and presenting it in its categories,
such as supervised, unsupervised, and semi-supervised, in a particular and comprehensive
manner at one platform. None of the reviews have discussed CD from the perspective of
datasets separately based on the deep learning method. We present the data from different
sensors used for CD in detail, mainly including SAR, multispectral, hyperspectral, VHR,
and heterogeneous images. We also highlight some challenges at the end of this review
that need to be solved. This review will be helpful to new researchers regarding the issues
and challenges faced by the community in this domain. Moreover, this paper analyzes the
research gaps found in the literature that will help future researchers identify and explore
new avenues in the area of RS CD for deep learning.

1.2. Organization of This Work

The outline of this literature review is as follows. Section 2 explains the inclusion and
exclusion criteria. Section 3 highlights the remote sensing sensors and dataset analysis,
covering the datasets of SAR, multispectral, hyperspectral, VHR, and heterogeneous im-
ages. Section 4 covers the change detection architecture. Section 5 covers the literature
review of the change detection in remote sensing datasets by using DL-based networks.
Section 6 expresses the evaluation techniques. Section 7 highlights the discussion and,
finally, Section 8 concludes the paper.

2. Research Inclusion/Exclusion Criteria

Firstly, search criteria were set to extract the maximum publications from the selected
sources. The selection criteria were divided into three parts in order to collect more relevant
articles. The title of the article was verified in the first phase to eliminate duplicate and
irrelevant papers. We studied the abstracts of the articles collected in the first step, in the
second stage, to pick relevant papers to the specified field. At the end of the process, we
examined each paper in depth and finalised the papers for this study. We reviewed the
significant research papers in the field published during 2015–2021, mainly from the years
of 2019 and 2020, with some papers from 2021. The main focus was papers from the most
reputed publishers, such as Elsevier, IEEE, and Remote Sensing. Some of the latest papers
were selected from conferences, such as IGRASS and ISPRS. We reviewed 68 papers on deep
learning change detection for each type of dataset. Our focus was to present a review on RS
datasets for CD in deep learning. Figure 2 presents the details of the year-wise publications.
Moreover, datasets and category wise discussions are presented in Sections 5.1–5.5.

Figure 2. Year-wise publications in journals from 2015 to 2021.
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3. Remote Sensing Datasets for Change Detection
3.1. Sensors for Collecting Change Detection Datasets

Different kinds of satellites have recently been launched into space, including active
and passive, optical and microwave sensors, and high- and low-resolution. Satellite images
are good sources of data for determining urban land use/cover forms and how they vary
over time and space [35]. Different RS devices are installed on a satellite to collect data about
an object on Earth’s surface without direct physical contact with the object. When compared
to aerial and terrestrial platforms, spaceborne platforms are the most stable carriers. There
are two modes of interaction between a sensor and the Earth’s surface: active and passive.
Active sensors produce energy to illuminate objects and measure observations. Passive
satellite sensors include the Landsat, GeoEye, SPOT, EROS, and WorldView spacecrafts [36].
Due to recent sensor developments, such as TerraSAR-X [37] and COSMO-SkyMed, which
operate at sub-metric resolutions, or very high temporal resolutions, such as Sentinel-1,
and a series of systems that ensure continuous measurements over several decades, we
can now consider operational applications in many civilian sectors, e.g., M environmental
surveillance and the security of goods and people, as well as many other geophysical
sciences fields. A SAR image’s key properties are its resolution and geographic coverage,
as well as the frequency range, incidence angle, and emission/reception polarisation of
the obtained signal. In general, the use of a SAR image in RS necessitates geometric and
radiometric calibrations, which can be accomplished in accordance with the methods
described by the agencies sending the data coverage. It is necessary to conduct geometric
and radiometric calibrations on SAR images before using them in remote sensing.

However, MS RS is advantageous in terms of data availability. MS RS systems use
parallel frame sensors to detect radiation in a few bands, usually three to six spectral
bands from visible to middle infrared. Aside from these bands, various kinds of satellite
sensors capture images in one or two thermal bands. As a result, MS satellite sensors have
fewer but broader spectral bands, which cannot detect tiny details on the land’s surface
and do not allow the separation of objects with minor spectral reflecting differences [38].
While hyperspectral remote sensing sensors can capture images in a variety of narrow
spectral bands found in the electromagnetic spectrum, ranging from visible to near-infrared,
medium infrared, and thermal infrared, HS sensors can capture energy in 200 bands or more,
implying that they continuously cover the reflecting spectrum for each pixel in the scene.
There are two distinct types of images capture systems used in hyperspectral imaging:
aircraft (AVIRIS) and satellite-based (Hyperion on EO-10). The majority of hyperspectral
sensors are deployed on aerial platforms, with fewer on satellites [39–42].

As earth observation technology advances, more advanced satellite sensors, such as
QuickBird, SPOT, and others, are becoming available, and are designed to gather VHR
images. Table 2 summarizes the most regularly utilized RS satellites and their specifications.

Table 2. Provides details of the most widely utilized RS satellites and their characteristics [43–45].

Satellite/Sensors Country Year Revisit (Day) Spatial Resolution (m)

COSMO Italy 2010 5 15 m

Gaofen 3 China 2016 5 1–500 m

Landsat 9 USA 2020 16 15 m

TerraSAR-X Germany 2007 2.5–11 days 1–16

SPOT7 USA 2014 1–3 1.5 m

ERS2 ESA 1995 336 6–30 m

RADARSAT Canada 2018 1 3–100 m

Hyperion (EO-1) USA 2000 2–16 30 m
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Table 2. Cont.

Satellite/Sensors Country Year Revisit (Day) Spatial Resolution (m)

ALOS Japan 2006 2 days 2.5, 10 m

IKONOS USA 1999 3 1 m, 4 m

QuickBird USA 2001 2.4–5.9 2.61 m

Envisat ESA 2002 35 days 300 m

GeoEye USA 2008 8.3 0.41 m

WorldView 1 USA 2007 1.7 0.5 m

WorldView 2 USA 2009 1.1 0.46 m

WorldView 3 USA 2014 <1 1.24 m

WorldView 4 USA 2016 3 0.34 m

Sentinel-1 ESA 2014 12 5–20 m

Sentinel-2 ESA 2015 10 10–60 m

Sentinel-3 ESA 2016 27 5–40 m

Sentinel-4 ESA 2019 1 10 m

Sentinel-5 ESA 2014 <1 20 m

Sentinel-6 ESA 2020 9 60 m

3.2. Datasets for Change Detection

This section explains different types of commonly used RS datasets for CD, such as
SAR, multispectral, hyperspectral, VHR, and heterogeneous images.

3.2.1. SAR Images

SAR is a type of radar that produces a two-dimensional image or three-dimensional
reconstructions of an object, such as landscapes [46]. It is a technique for remotely mapping
the reflectivity of objects or their surroundings with high spatial resolutions, by sending
and receiving electromagnetic (EM) signals. The images obtained using this method can
be used for a wide range of applications, from basic radar functionalities, such as object
detection and geographical localization, to estimating some geophysical properties of
complex environments, such as certain dimensions, roughness, moisture content, density,
etc. SAR data are captured from an active microwave sensor that reflects backscattering
information of land cover in all weather conditions and at all times. As a result of its
independence from sunshine conditions, the SAR imagery provides an advantage for
change detection tasks. Due to the frequency domains commonly employed by SAR
devices, this active sensing technology is not affected by sunlight but only slightly by
the weather. SAR systems based on aerial or satellite sensors quickly scan huge regions
impossible to reach using field measurements. This type of characteristic makes radar
imaging systems a particularly well-suited instrument for RS [47]. Moreover, the negative
effects of geometric distortion and electromagnetic interference, such as target overlap,
perspective shrinkage, and multipath effect, must be addressed in the SAR [48]. Table 3 lists
the most often used CD datasets for SAR, including the Ottawa dataset, Bern dataset, [49],
San Francisco datasets [50], Farmland, and others. The links of the datasets are as follows:

1. Bern dataset open source: https://github.com/yolalala/RS-source (accessed on 22
December 2021).

2. San Francisco dataset open source: https://github.com/yolalala/RS-source (accessed
on 22 December 2021).

3. Farmland dataset open source: https://share.weiyun.com/5M2gyVd (accessed on 22
December 2021).

https://github.com/yolalala/RS-source
https://github.com/yolalala/RS-source
https://share.weiyun.com/5M2gyVd
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Table 3. Illustration of SAR datasets.

Satellite Area Dataset Name Image Pixel Date

RADARSAT SAR Canada Ottawa 290 × 350 May–August 1997

RADARSAT-2 China Yellow river 257 × 289
June 2008
June 2009

ERS-2 US San Francisco 256 × 256
August 2003

May 2004

Landsat ETM+ Mexico Mexico 512 × 512
April 2000
March 2002

ERS-2 Switzerland Bern 301 × 301 April–May 1999

Envisat Japan Sulzberger 256 × 256 March 2011

RADARSAT-2 China Beijing 1024 × 1024 October 2010

Multi-band, multi-polarization, multi-platform SAR images are becoming increasingly
common as SAR imaging technology progresses, providing more data sources for CD tasks.
On the other hand, SAR images always have speckle noise, making change detection more
difficult than optical RS images.

3.2.2. Multi-Spectral Images

A multispectral image (MSI) gathers image data across the electromagnetic spectrum
at certain wavelength ranges. MSI can extract additional information that the human eye
fails to capture with its visual receptors for red, green, and blue [51]. The wavelengths may
be separated by filters or detected using sensitive instruments, including light from frequen-
cies beyond the visible light range, i.e., infrared and ultraviolet. MSI is often acquired using
a passive optical sensor that gathers information about ground objects in many spectral
bands. MSI with spatial resolutions ranging from low to high may be obtained cheaply and
consistently. Vibrant texture, colors, and other features are also provided. MSI measures
the radiation inherent to an object, regardless of an external light source [52–55]. It includes
acquiring visible, near-infrared, and short-wave infrared images in a few broad wavelength
bands. Different materials reflect and absorb differently at different wavelengths. The reso-
lutions of remote sensing images vary; the application scenarios for the various resolution
multispectral images differ slightly. MS images are generally used for CD, and the most of-
ten used MS images for deep learning-based CD algorithms are taken from Landsat [56–63]
and the Sentinel series [64,65] of satellites because their low collections cost great temporal
and spatial coverage. Furthermore, additional satellites, such as QuickBird, SPOT [66–68],
Gaofen [69,70], and Worldview, provide very high spatial resolution images, while others
provide very high spatial resolution aerial [71] images, allowing the CD findings to preserve
more details of the changes. The multispectral datasets are classified into wide and local
area change datasets.

3.2.3. Wide-Area Datasets

It concentrates on changes throughout a large coverage region while neglecting the
details of sporadic targets. Multispectral (MS) datasets are obtained by satellites carrying
the imaging spectrometer as the most accessible and intuitive remote sensing images.
The EROS Data Center’s Southwest U. S. CD Images [72] are the first open-source dataset
for the CD task that uses a change vector to explain changes in greening and brightness.
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The datasets that fall under it are Southwest U. S. Change Detection Dataset, MtS-WH,
Taizhou dataset [73], Onera Satellite Change Detection dataset [74], and NASA Earth
Observatory Change Datasets. Some examples of wide area datasets are mentioned in
Table 4.

Table 4. Illustration of wide area datasets.

Satellite Area Dataset Name Image Pixel Date

World View-2 Los Angeles U. S. 322 × 266 1986–1992

Landsat 7 China Kunshan 400 × 400 March 2000
February 2003

IKONOS China MtS-WH 7200 × 6000 February 2002
June 2009

Sentinel-2 UAE Onera 700 × 700
1200 × 1200 2015–2018

The links of Wide-area datasets are as follows

1. Southwest U. S. dataset open source: https://geochange.er.usgs.gov/sw/changes/
anthropogenic/vegas (accessed on 22 December 2021).

2. MtS-WH dataset open source: Open source: http://sigma.whu.edu.cn/newspage.
php?q=2019-03-26 (accessed on 22 December 2021).

3. NASA Earth Observatory dataset open source: https://earthobservatory.nasa.gov/
images/146194/how-cancun-grew-into-a-major-resort (accessed on 22 December
2021).

4. Onera Satellite dataset open source: https://ieee-dataport.org/open-access/oscd-
onera-~satellite-change-detection (accessed on 22 December 2021).

3.2.4. Local Area Datasets

It is vital to investigate certain goals in an urban region, such as buildings, rivers, roads,
etc. HR RS images are the primary data sources for artificial neural network changes of
target and detail regions. The datasets that fall under it are: SZTAKI dataset, Hongqi Canal
dataset, Minfeng dataset, season changes detection dataset, HRSCD dataset, and building
CD dataset [75–78]. Regardless of the application scenario, MSI has inherent restrictions.
The accuracy of the feature extraction method will be affected not only by weather circum-
stances, such as mist and fog, but also by the difference in shooting time. The results of
the changes are affected by shadows and distractions near the concerned targets. Some
examples of local area datasets are mentioned in Table 5.

Table 5. Illustration of local area datasets.

Satellite Area Dataset Name Image Pixel Date

FÖMI China SZTAKI 952 × 640 2000
2003

Géoportail China HRSCD 321 × 330 2002
2005

WorldView-2 China Yandu 322 × 350 19 September 2012
10 February 2015

The links of local area datasets are as follows:

1. HRSCD dataset open source: https://ieee-dataport.org/open-access/hrscd-high-
resolution-semantic-change-detection-dataset.

https://geochange.er.usgs.gov/sw/changes/ anthropogenic/vegas
https://geochange.er.usgs.gov/sw/changes/ anthropogenic/vegas
http://sigma.whu.edu.cn/newspage.php?q=2019-03-26
http://sigma.whu.edu.cn/newspage.php?q=2019-03-26
https://earthobservatory.nasa.gov/images/146194/how-cancun- grew-into-a-major-resort
https://earthobservatory.nasa.gov/images/146194/how-cancun- grew-into-a-major-resort
https://ieee-dataport.org/open-access/oscd-onera-~satellite-change-detection
https://ieee-dataport.org/open-access/oscd-onera-~satellite-change-detection
https://ieee-dataport.org/open-access/hrscd-high-resolution- semantic-change-detection-dataset
https://ieee-dataport.org/open-access/hrscd-high-resolution- semantic-change-detection-dataset
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2. SZTAKI dataset open source: http://web.eee.sztaki.hu/remotesensing/airchange~
benchmark.htm (accessed on 22 December 2021).

3. Season changes dataset open source: https://drive.google.com/file/d/1GX656JqqOyBi-
Ef0w65kDGVto-nHrNs9 (accessed on 22 December 2021).

4. Building change dataset open source: https://study.Rsgis.whu.edu.cn/pages/download/
building-dataset.html (accessed on 22 December 2021).

3.2.5. Hyperspectral Images

Hyperspectral images (HSIs) are captured using HSI sensors. HSI technology aims
to capture hundreds of spectral channels from the Earth’s immediate surface that can
precisely characterize the chemical composition of various materials. The spatial and
spectral resolutions of HSI distinguishes them. The geometric relationships of image
pixels (to one another) are determined by spatial resolution, whereas spectral resolution
determines changes within image pixels as a function of wavelength.

Most HS optical passive sensors measure the reflectance of an object in the visible
(0.4–0.7 µm) to short-wave infrared (IR) spectrum (2.5 µm). The sensor samples the reflected
radiance with excellent spectral resolution (e.g., 10 nm). This dense spectrum sampling
enables an accurate representation of each pixel’s reflectance, resulting in a precise measure-
ment of the spectral signature [33]. Because multispectral sensors provide coarse spectral
sampling in a few distinct spectrum bands, the early stage of developing CD algorithms for
these images focuses largely on identifying strong, abrupt, and sudden changes. The pur-
pose of CD in HS is to detect changes associated with significant spectral fluctuations and
those associated with minor spectral variations using comprehensive spectral sampling
of HS sensors (which are usually not detectable in MS images). Most of the time, these
changes only influence a subset of the spectral signatures. In Table 6, some examples of
hyperspectral datasets are mentioned.

Table 6. Illustration of hyperspectral datasets.

Satellite Area Dataset Name Image Pixel Date

Hyperion sensor China Jiangsu Province 420 × 140 3 May 2006

23 April 2007

Hyperion sensor USA Hermiston City 308 × 350 1 May 2004
8 May 2007

AVIRIS Oregon Hermiston dataset 390 × 200 2007–2015

AVIRIS California Santa Barbara dataset 984 × 740 2013–2014

AVIRIS USA California 147 × 316 21 October 2015
25 June 2018

EO-1 Henan Dalin 187 × 268 6 March 2003
16 April 2006

HSI can provide more spectral information than SAR [33] and MS images [79]. As a
result, HSIs may detect finer variations [80], reflecting the exact composition of distinct
objects. Though HSI-CD approaches have been used, this does not indicate that the hyper-
spectral CD difficulties may be resolved, as change detection is a challenging process that
various factors can influence. The primary challenges for HSI-CD are summarised below.

http://web.eee.sztaki.hu/remotesensing/airchange~benchmark.htm
http://web.eee.sztaki.hu/remotesensing/airchange~benchmark.htm
https://drive.google.com/file/d/1GX656JqqOyBi-Ef0w65kDGVto-nHrNs9
https://drive.google.com/file/d/1GX656JqqOyBi-Ef0w65kDGVto-nHrNs9
https://study. Rsgis.whu.edu.cn/pages/download/building-dataset.html
https://study. Rsgis.whu.edu.cn/pages/download/building-dataset.html
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3.2.6. Limited Labeled Data

Because deep learning models have millions of parameters, it is not easy to train
them without labeled data. Furthermore, categorizing each pixel in the HSI dataset is
time-consuming and requires human experts [81].

3.2.7. High-Dimensionality

Due to high-dimensionality of the hyperspectral dataset, some CD algorithms are
difficult to handle. Even though band selection and feature extraction are used to min-
imize dimensionality, some precise details information can also be lost to some extent.
The development of different sensors and platforms creates different challenges, e.g., high-
dimensional datasets (hyperspectral features and high spatial resolution), complex data
structures, and high computational complexity. The high-dimensional remote sensing data
HSI have limited accessibility to training samples, which makes deep neural networks,
as a result, generally unsuccessful at generalizing the partitioning of HIS data during the
training stage [82].

3.2.8. Mixed Pixels Problem

Mixed pixels problems typically exist in real HSI-CD, and these pixels consist of
several distinct substances. It is not easy (and sometimes impossible) to characterize a
mixed pixel accurately if it is roughly classified as a specific type of substance [83].

3.3. Very High Spatial Resolution (VHR) Images

VHR images from several satellite sensors are becoming more commonly available,
substantially improving the data sources for CD. VHR is collected by many satellite sensors,
including QuickBird, GaoFen, and others. VHR images can provide more information about
surface characteristics and spatial distributions than medium- and low-resolution images.
CD in remotely sensed VHR images has an enormous effect in building CD research, urban
expansion, and urban internal change analysis; hence, it has attracted the interest of many
researchers. In Table 7, some examples of VHR datasets are mentioned

Table 7. Illustration of very high spatial resolution datasets.

Satellite Area Dataset Name Image Pixel Date

Worldview-2 Italy VHR World
View 2 420 × 140 August 2010

May 2011

QuickBird Italy image pair 1400 × 1400 August 2012
September 2013

Google Earth US LEVIR-CD
dataset 1024 × 1024 2002–2018

Although employing VHR to identify change is favorable, there is a technological
challenge due to the following.

3.3.1. Limited Spectral Information

Images acquired by VHR sensors have fewer bands than images captured by medium-
resolution sensors. VHR sensor WorldView-3 can provide images with up to 16 spectral
bands; other VHR images, such as QuickBird, IKONOS, Ziyuan-3, and WorldView-2, only
cover four bands [84]. It is hard to distinguish classes with equivalent spectral signatures
with limited spectral information because of the low between-class variation. Researchers
have also stated that high-accuracy change detection is difficult due to the limited spectral
information of VHR images [18,85–88]. The direct use of traditional spectral-based CD
approaches, such as change vector analysis, is difficult. Consequently, different features are
frequently used to enrich spectral information for VHR CD.
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3.3.2. Spectral Variability

The spectral variability of VHR images is high. Buildings, for example, have complex
appearances due to various roof superstructures, such as pipelines, chimneys, and wa-
ter tanks; as a result, spectral characteristics in VHR images are significantly heteroge-
neous [89,90]. High spectral variability within geographic objects increases within-class
variance, resulting in the uncertainty of spectral-based image interpretation methods.
Weather, sun angles, phenological stages, tidal stages, soil moisture, and water turbidity
(atmosphere and external factor) can cause unchanging objects to have temporally varying
spectral properties, misclassifying them as changed [91,92]. Furthermore, temporary objects
visible in VHR imagery, such as cars on the road, can influence the efficacy of spectral-based
CD in VHR images.

3.3.3. Information Loss

The existence of cloud shadow/haze, terrain, tree shadows, building, and VHR images
suffer from major information loss. By selecting cloud-free observations, the problem
of clouds and their shadow contamination can be avoided [93]. When tall objects in
the image block sunlight, shadows arise, resulting in a partial or even complete loss
of information from the Earth’s surface covered by shadows. Shadows cast by terrain,
buildings, and trees, on the other hand, appear inevitable in VHR imagery, particularly
in metropolitan environments [94]. Though shadow information is significant in building
detection and height estimation [95,96], it becomes an issue in larger areas for change
detection [97].

3.3.4. Heterogeneous Datasets

The heterogeneous images are captured by different sensors, resolutions, frequency
(SAR) illumination conditions, and polarization. At the moment, it is a more convenient and
adaptable method of obtaining heterogeneous images from multiple sensors to obtain multi-
temporal images with a higher shooting frequency. However, the CD of the heterogeneous
image is not being promoted due to the technological difficulties in data processing of
multiple sensor data. The relevant dataset has not yet been adequate. The different feature
representations of ground objects in the image obtained by multiple sensors, particularly
those captured from optical and SAR sensors, make heterogeneous CD difficult [98,99].
However, calculating the difference between heterogeneous images is difficult because
direct comparisons are impossible. After all, heterogeneous images represent unique
physical qualities of the objects and display quite diverse statistical tendencies. In Table 8,
some commonly used heterogeneous images are elaborated.

Table 8. Illustration of Heterogeneous datasets.

Satellite Area Dataset Name Image Pixel Date

ETM+ US Mexico 512 × 512 April 2000
March 2002

LANDSAT 7 China Farmland 306 × 291 2008
2009

LANDSAT 7 China Shuguang Village 921 × 593 June 2008
September 2012

Gaofen-3 China Sichuan Province 2827 × 1333 24 June 2017

Landsat-5 Italy Sardinia 412 × 350,300 September 1995
July 1996
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4. Change Detection Architecture

With the advent of civilian remote sensing, the world has benefited from constant
and expanding surveillance through satellite imagery. This coverage is accomplished
using various sensors with varying time, spatial, and spectral scale properties. These
properties make it possible to characterize a broader range of earth surface elements and
alter processes. Change identification was also constrained by the availability and accuracy
of data. Indeed, remote sensing data have a broad range of applications in CD, which
requires detecting major changes in output images. Thus, Figure 3 demonstrates the general
flow of change detection based on deep learning, and this section explains the components
of the change detection architecture and their interactions.

Figure 3. The workflow of the change detection architecture.

4.1. Pre-Processing

Image pre-processing may have a significant beneficial impact on the quality of fea-
ture extraction and image analysis outcomes. The mathematical normalization of a data
collection, which is a typical step in many feature descriptor approaches, is akin to image
pre-processing. Researchers have created many image processing approaches to solve the
problem of atmospheric effects, such as unwanted noise or objects.

4.2. Data Collection

Data collection is the first step, and it is critical in identifying changes. The acquisition
time of multitude imagery, i.e., season, month, is a critical factor to consider in image
collection since it is closely related to phenology, climatic conditions, and solar angle.
Therefore, a careful collection of multi-dimensional images is essential to mitigate the
consequences of these variables. However, data collection is often constrained by data
availability, and the decision is typically a trade-off between the target time, acquisition
date, and data availability. The captured data are then grouped into multiple sub-datasets,
referred to as multi-temporal images, and sent for pre-processing [100].
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4.3. Geometric Cegistration

Geometric Registration is a method for detecting unnecessary parts of satellite images
to analyze change. It is needed in all change detection techniques because raw aerial
imagery involves some degree of geometric distortion. Sensor location variations cause
this illusion. Although some distortions are predictable and quickly corrected, others
are complex and difficult to exclude from records. Thus, the geometric correction is
intended to compensate for distortions and eventually create an image with a high degree
of geometric [101,102]. If geometric distortions are not accounted for in images, the spatial
coordinates of the pixel would be incorrect. This method is mostly used to identify image
changes taken in many dimensions that may cause pixel misclassification. Geometric
registration may be performed using RPC, SIFT, DTM, CACO, and RANSAC [103,104].
Aside from these methods, a registration strategy known as Harris-Laplace is used for
CD [105,106]. To improve the accuracy of point detection, the identified points are grouped
and balanced using SIFT in this method.

4.4. Radiometric Correction

Radiometric correction is more effective for optical images. Relative radiometric
correction can be used to normalize multitemporal data gathered over distinct periods,
eliminating errors or distortions. Although comparing multiple datasets, it was discov-
ered that image enhancement and correction methods play substantial roles. It is used to
calibrate the pixel values and to compensate for value errors. The method significantly
enhances the interpretability and accuracy of remote sensing data. Calibration and ad-
justment of radiometric data are critical when comparing different datasets over time.
This step employs two distinct approaches: absolute calibration, in which digital numbers
are converted to their corresponding ground reflectance values, and relative calibration,
which is necessary to calibrate the deflection sensitivity properly [25,107]. The intensity
normalization approach is used in satellite images to regulate brightness and contrast.
It can be tested by adjusting the histogram of a satellite image as needed. In the digital
elevation model (DEM); radiometric corrections also increase the incident-angle oriented
surface area [108]. Radiometric corrections that erase geometric distortions remove sensors
that produce alterations in scene illumination and geometric corrections.

4.5. Despeckling

Log transformations are the general denoising approaches for multiplicative noise.
However, the SAR images include more significant noise, necessitating a complicated
denoising technique known as despeckling. Despeckling is possible because of the well-
designed filters, such as Lee filter, gamma maximum a posteriori, and Kuan filter. SAR
images, in addition to Landsat images, are frequently employed for CD. This method
increases the performance of the SAR-based CD technology. Among the filters used for
despeckling, the Lee sigma filter produced the best results [109]. In the spatial domain,
speckle filtering is achieved using an improved Lee sigma filter, while in the temporal
domain, accuracy is improved by utilizing temporal similarity between neighboring pix-
els [110]. Alternatively, the Gaussian noise model, extensively used to remove Gaussian
noise, was developed [111]. Rather than observing nearby pixels in an image, pixel values
are obtained by assessing the entire image. Moreover, non-linear diffusion filtering is also
useful to remove speckle noise in SAR images [112].

4.6. Denoising

Image denoising is a fundamental pre-processing process before processing the other
tasks, such as segmentation, texture analysis, feature extraction, etc. It is used for various
noise reduction tasks, while also retaining image information. Furthermore, a non-local
mean filter is used to denoise the SAR image [113]. In [114], a real-time image dimen-
sionality reduction filter is proposed that locates image edges using a thresholding-based
method. Moreover, spatial filters work by smoothing across a fixed window, producing
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artifacts surrounding the object and occasionally excessive smoothing, resulting in visual
blurring. As a result of its qualities, such as sparsity, multiresolution, and multiscale nature,
the wavelet transform is ideally suited for performance [115].

5. Change Detection in Remote Sensing Datasets by Using DL-Based Networks

In this section, we review various representative CDs in RS images by using DL-based
algorithms. We present the literature review of nearly 68 CD papers published from 2015
to 2021 in deep learning. They are classified into different categories (e.g., supervised,
unsupervised, and semi-supervised) in each section. To demonstrate the effectiveness of
several methods, we present the actual findings for some of them; their advantages and
disadvantages are also discussed at the end of each section and in the tables.

5.1. SAR Image Change Detection by Using Deep Learning

To demonstrate the performance of several deep learning algorithms for change
detection in SAR images, we present the review literature into different DL-based categories,
such as supervised, unsupervised, and semi-supervised, in tabular form, in Table 9.

5.1.1. Deep Learning-Based Supervised Methods for SAR Image

Gong et al. [116] presented an innovative CD method using deep learning for multi-
temporal SAR images. They trained a deep neural network to generate a CD map directly
from the two source images without creating a difference image (DI); the CD problem was
simplified as a classification problem. To complete classification, the learning procedure for
deep architectures comprises unsupervised feature learning and supervised fine-tuning.
Their proposed model consists of three parts as follows: (1) data pre-classification for
obtaining high-accuracy data with labels; (2) neural network construction for learning
image features and fine-tuning the parameters of the neural network; and (3) for classifying
the changed and unchanged pixels using a trained deep neural network. Their suggested
method performs well compared to existing methodologies, such as the clustering and
thresholding techniques.

Ma et al. [117] provided a unique technique for SAR image CD based on gcForest and
multiscale image fusion. gcForest was used since it enhances accuracy and reduces training
difficulty. Consequently, the suggested technique uses various sizes of image blocks as
gcForest input, allowing it to learn more image attributes while reducing the effect of the
image’s local information on the classification result. Furthermore, to increase the detection
accuracy of pixels with abrupt gray value changes, the suggested technique integrates
gradient information from the difference image with the probability map acquired from
the well-trained gcForest. As a result, extracting image gradient information may increase
the image edge information, and edge detection accuracy can be improved. To reduce
the drawback of computational volume and the time-consuming nature of simulation,
Samadi et al. [118] used a supervised DL methods for CD in SAR images. They proposed
an approach that combines morphological images with two original images to provide a
suitable data source for DBN training. The experimental findings showed that the proposed
method has sufficient implementation time, desirable performance, and excellent accuracy.

5.1.2. Deep Learning-Based Unsupervised Methods for SAR Image

Gao et al. [119] developed a unique SAR image CD approach using deep semi-NMF
and SVD networks. In their suggested method, pre-classification is done using deep semi-
NMF and easily obtains high accuracy labeled samples. They presented a CD classification
model based on SVD networks. From multi-temporal SAR images, SVD networks can learn
nonlinear relations and suppress the noisy unchanging areas. In addition, to improved
the classification performance—two SVD convolutional layers were used to get a reliable
feature. The suggested approach is unsupervised and does not make any rigorous assump-
tions.
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Planinsic et al. [120] proposed a CD algorithm that extracts features within the tun-
able Q discrete wavelet transform (TQWT) employing higher-order log cumulates of the
fractional Fourier transform (FrFT), which were input into a stacked autoencoder (SAE)
to distinguish between changed and unchanged areas. A comparison of SVMs and SAEs
was performed. Experiment findings revealed that extracting features inside TQDWT and
FrFT produced the most remarkable results, and the SAE outperformed the SVM in terms
of accuracy.

The idea proposed in [121] is a deep learning and superpixel feature extraction for CD
in SAR image with a contractive autoencoder. The proposed research focused on reducing
the performance degradation due to speckle noise. The proposed strategy extracts the
features with a stacked contractive autoencoder. The idea presented by Xiao et al. [122]
provided a novel image change detection approach. A self-organizing map (SOMDNCD)
was presented to produce a successful change map to strike a reasonable balance between
noise reduction and the preservation of area edges. First, the approach employs a median
filter to enhance the difference image produced by the mean ratio operator, reducing the
impact of image point noise on the generation of difference maps. The logarithmic ratio
operator produces a more diverse difference map than the logarithmic ratio operator. When
used for images, the edge information is substantially preserved, and the rate of missing
change is reduced. Second, the network computes a preliminary change map from the
difference map, classifies the pixels of the change map based on whether they have changed,
and divides the pixels of the change map into three categories: change, noise, and no change.
Finally, a DNN is trained with a noise-like training set to remove residual noise in the
change class and generate the final change graph. For change detection tasks in different
SAR datasets, Dong et al. [123] used multiple convolutional neural networks in which
two patches were used as input. They developed a “Siamese samples” network to take
patch pairs as input, taking into account the various trade-offs between them. The Siamese
sample network uses single branch double samples as discriminative input to construct
a binary classifier (i.e., identify changed class and unchanged class). Pseudo Siamese,
Siamese, and two-channel networks offer a worse balance between accuracy and run-time
than the suggested design and are weak against speckle noise. Moreover, the proposed
method uses a reduced algorithm framework compared to the state-of-the-art technique,
resulting in less demanding requirements for pre-classification label accuracy.

Bergamasco et al. [124] proposed a convolutional auto-encoders to detect CD in SAR
images. They trained the CAE in a unsupervised way. By using a variance-based feature
selection approach, this strategy only evaluates the most informative information received
by the CAE.

Geng et al. [125] used saliency-guided deep neural networks (SGDNNs), an unsu-
pervised method for five SAR datasets. Their suggested approach can extract potentially
changed locations and eliminate background pixels from DI, reducing the impact of speckle-
noise on SAR. Hierarchical fuzzy C-means (HFCM) clustering is created to select samples
with a greater probability of being changed and unchanged to get pseudo-training samples
automatically. Furthermore, to improve sample feature discrimination, DNNs based on
non-negative and Fisher-constrained autoencoders are utilized for final detection.

Farahani et al. [126] used a technique based on auto-encoder, which was a deep analy-
sis method used to achieve fused features of SAR, “optical” to benefit from complementary
information, to align multi-temporal images by a reduction in spectral and radiometric
differences, and made multi-temporal features more similar, for better accuracy in CD.

Saha et al. [127] proposed an unsupervised method, LSTM, and provide a time-series
analysis framework that solved the CD issue in a time-series without knowing the event
date or any pixel-wise labeled training data.

Shu et al. [128] used a patch-based approach for CD. A mask function converts change
labels with irregular shapes into a regular map, allowing the network to learn patches
end-to-end. First, SAR images are used to generate training samples and the designed
mask. With the presence of a mask, the U-Net-based network can learn end-to-end while
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ignoring irregular forms of labels. The newly created change map is processed iteratively
to get a new label and mask used in the next learning cycle. Change features are learned
iteratively. Through iterative learning, a two-stage update technique improves data variety
while suppressing noise.

Qu et al. [129] introduced a unique DDNet. The spatial and frequency domain elements
of the DDNet are merged to improve classification performance. They create a multi-region
convolution module in the spatial domain to improve the input image patches and increase
the central region features. To extract frequency information in the frequency domain, they
used DCT and a gating mechanism. Experiments on different datasets revealed that the
proposed DDNet outperforms several other CD methods.

5.1.3. Deep Learning-Based Semi-Supervised Methods for SAR Image

Gao et al. [130] developed a model for sea ice CD using convolutional-wavelet neural
networks (CWNNs). In sea ice change detection, the wavelet transform is employed to
minimize speckle noise in SAR images. In their proposed method, dual-tree complex
wavelet transform is added into the convolutional neural networks by using CWNN to
classify changed and unchanged pixels. Furthermore, a virtual sample production approach
is used to generate samples for CWNN training, alleviating the problem of limited samples.
The recommended method’s efficacy is demonstrated by experimental findings on two
SAR datasets.

Wang et al. [131] proposed a semi-supervised DNN for a SAR Image CD with dual-
feature representation pixel-wise and context-wise change feature extraction. An LCS-
EnsemNet with the label-consistent self-ensemble technique was created specifically for
the SAR image CD to address the issues caused by a lack of labeled samples.

Table 9. Summary of the literature work of change detection techniques based on a SAR image dataset.

Author Year Techniques Mode Advantage Disadvantage

Planinsic et al. [120] 2018 Stacked autoencoder Unsupervised High accuracy Model complexity

Gong et al. [116] 2015 DNN Supervised High accuracy High computational complexity

Ma et al. [117] 2019 gcForest Supervised Suppress noise Rely heavily on the quality of a DI

Samadi et al. [118] 2019 DBN Supervised Time reduction Limited Label data

Gao et al. [119] 2017 NMF SVD Unsupervised High performance Non-efficient samples

Lv et al. [121] 2018 Contractive autoencoder Unsupervised High performance Loss of spatial information

Xiao et al. [122] 2018 DNN Unsupervised Lower missed detection rate Limited training data

Bergamasco et al. [124] 2019 CAE Unsupervised Doesnot require label data Not fully suitable

Geng et al. [125] 2019 DNN Unsupervised High performance Lack of annotation data

Farahani, M et al. [126] 2020 DA Approach Unsupervised Novel Not used for SAR and optical feature fusion

Saha et al. [127] 2020 LSTM Unsupervised Not require any labeled training sample Complex

Shu et al. [128] 2021 U-Net Unsupervised High accuracy Limited training sample

Qu et al. [129] 2021 DDNet Unsupervised effective and Robust Lack of spatial feature

Gao et al. [130] 2019 CWNN Semi-Supervised Novel method for training data Potential of the network learning is not fully released

Wang et al. [131] 2021 LCS-EnsemNet Semi-Supervised High efficiency Computational burden.

Dong et al. [123] 2018 Siamese samples Preclassification Strong speckle noise canceler High dependency on labeled data

SAR dataset computational complexities and processing times are the two most sig-
nificant obstacles to overcome throughout the change detection procedure. An additional
issue is speckle noise in SAR images, which has a multiplicative property and always
causes an unfavorable impact in all SAR applications. In [116], the authors proposed a
change detection method, [119–121], without generating the DI, and was widely used in
previous research. Their proposed method exhibits excellent performance on PCC and
kappa (0.98, 0.86). The drawback is that the model is complex, with a high computational
complexity because of various features and non-efficient samples. Similarly, it achieved
better performance of PCC (0.98, 0.99, 0.99) and kappa (0.91, 0.90). However, drawbacks
include fewer training samples and classification errors. In [121], the model performance is
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high, but it has a loss of spatial information. In [123], by deriving from an incorrect starting
change map, the authors obtained accessible labels for training sets. These approaches do
not fully use the promise of network learning and prediction. In [125], the novel idea of
unsupervised method saliency-guided deep neural networks achieved good performance
(PCC 0.99 and kappa 0.92) but lacked annotation data. In reference [118], the authors
achieved the highest PCC and kappa results: 0.99, 0.96. The main advantage of their
research is a significant reduction in the amount of time required to simulate an algorithm
without creating any negative impact on the accuracy, but challenging to produce label
data. In [130], a novel virtual sample generation method was used to generate superior
and robust samples to the traditional method, and the problem of limited training samples
was alleviated. Their proposed approach outperforms PCC and kappa: 0.98, 0.95. In [126],
the authors proposed a unique method, domain adaptation (DA) techniques were not
utilized in any of the research for SAR or optical feature fusion. However, the model
complexity was high, and their result evaluation performance was lower than in previous
research. In [128], PCC and kappa was 0.99, 0.94. The main advantage is that model
accuracy and computational time is increased. However, training samples are less, and the
model may lead to overfitting. In [129], dual-domain CNN was used, including spatial and
frequency domains, to detect SAR images more effectively by using this learning-based
algorithm. However, they lack the mathematical description and regularization of poten-
tial spatial distribution features, which may weaken the feature representation ability of
networks. In [131], their proposed model shows high accuracy, but it has a computation
burden. In [123], the authors proposed a model that reduces the speckle noise, but the
networks will not perform like most existing deep learning change detection approaches.

5.2. Multispectral Images Change Detection Using Deep Learning
5.2.1. Deep Learning-Based Supervised Methods for Multispectral Images

Daudt et al. [132] presented two Siamese extensions of fully convolutional networks
trained end-to-end from scratch and out-performed the state-of-the-art for CD, both in
accuracy and inference speed, without the need for post-processing. Notable among these
modifications is the transformation of the fully convolutional encoder–decoder paradigm
into a Siamese architecture, which uses skip connections to increase the spatial accuracy of
the outputs. Their architectures are more than 500 times faster than earlier approaches.

Mou et al. [133] introduced the recurrent convolutional neural network, a unique
network design combining CNN and RNN. It can extract joint spectral–spatial–temporal
information and identify change kinds from bitemporal multispectral images. In both visual
and quantitative evaluations of experimental results, the suggested model works well.

Zhang et al. [134] used an end–to–end SSJLN for MS images that jointly learned
spectral–spatial representations for the CD challenge. SSJLN is made up of three compo-
nents: spectral–spatial joint representation, feature fusion, and discrimination learning.
First, similar to the Siamese CNN, the spectral–spatial joint representation is obtained from
the network (S-CNN). Second, the extracted features are fused to represent the different
information, adequate for the change detection task. Third, discrimination learning is
represented to better investigate the underlying information of generated fused features to
depict discrimination.

Lin, Y. et al. [135] proposed a bilateral convolution network to detect changes in
bitemporal multispectral images. They trained the model with two symmetric CNNs,
which were capable of learning the feature representations. They applied the outer matrix
product to the output feature maps to obtain the combined bilinear features. Softmax
classifier was applied to produce the change detected results.

5.2.2. Deep Learning-Based Unsupervised Methods for Multispectral Images

Cao et al. [136] developed an approach for generating unique difference images (DIs)
for unsupervised CD in multispectral RS datasets. First, they used a DBN to learn local
and high-level features from the local neighbour of a given pixel in an unsupervised way.
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Second, a BP method was developed to create a DI based on the selected training samples,
emphasizing the difference between changed and unchanged regions, while suppressing
false changes in unchanged regions. Finally, a simple clustering analysis was used to create
the change detection maps. Their suggested method was tested on the “three Rs” datasets
and achieved superior performance than traditional standard pixel-level approaches.

Atluri et al. [137] proposed MAU-Net architecture for CD in multispectral HR satel-
lite images. Each block in the framework contains filters that extract features at several
resolutions and an attention layer to assist the network in achieving more refined features.
The main advantage of MAU-Net is feature propagation and is achieved through residual
connections; important feature maps are identified using the attention layer. The Onera
dataset was used for comparison purposes. The suggested MAU-Net method achieved
state-of-the-art results in change detection.

Gong et al. [138] proposed a GDCN consisting of generative adversarial and discrimi-
nating classified networks. The DCN separates the input data into three classes—change,
unchanged, and fake class. The DCN may categorize raw image data into two classes
when the network is properly trained to produce the final CM. The suggested approach
effectively distinguishes change pixels from the unchanged ones.

Saha et al. [139] used a novel method for processing multitemporal images by feeding
them separately to a deep network composed of trainable convolutional layers. The training
process does not use any external labels, and segmentation labels are derived from the
final layer’s argmax classification. To detect object segments from individual images and
establish a correspondence between distinct multitemporal segments, a novel loss function
is used.

Wiratama et al. [140] used a feature-level U-Net to create a robust land cover change
segmentation approach in HR multispectral images. The suggested pan-sharpening was
introduced by applying a low-pass filter to remove spectral distortion in an IHS high-
frequency image. Their proposed network consists of a feature-level subtraction block
layer and a U-Net segmentation layer. The feature-level subtraction block layer extracts the
dynamic difference image (DI) for all feature levels. CD with HRMS images outperform ex-
isting CD algorithms, even under noise, such as geometric distortions and different angles.

Seydi et al. [141], using an end-to-end model, built a CNN-based network with three
parallel channels: the first and second extract deep features from the original first- and
second-time images, respectively. The third channel is concerned with the extraction
of “change” deep features from differencing and “staking” deep features. Each channel
also has three types of convolution kernels: 1D, 2D, and 3D-dilated-convolution kernels.
The CD map outputs are also analyzed visually and quantitatively by computing nine
different accuracy indices. The proposed model has excellent accuracy compared to other
traditional methods.

Luo et al. [142] improved the change detection results using deep convolutional gen-
erative adversarial and the DeepLabv3+ network. To address the issue that DL networks
require many samples and that CD samples are difficult to get, they used both nongener-
ative and DCGAN generative approaches for data augmentation. The DCGAN network
data successfully supplement the sample dataset. Then, to achieve an RS image CD, an SP-
DeepLabv3+ was used. The network was upgraded by replacing the deconvolution layer
with subpixel convolutions, which increased the network’s total accuracy. With sub-pixel
convolution, their network predicted RS image change detection. Finally, the generaliza-
tion performance of their network was tested on different datasets, such as Google Earth,
Landsat 8, and OSCD, and showed that the suggested network performs well in terms
of generalization.

5.2.3. Deep Learning-Based Semi-Supervised Method for Multispectral Images

Alvarez, J. et al. [143] proposed a self-supervised conditional generative adversarial
network for multispectral images, trained to generate only the distribution of unchanged
samples. Their main idea was to learn the distributions of unchanged samples through
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adversarial training to supervise the generator. Their experimental results showed the
effectiveness of the proposed model over several CD methods.

Zhang et al. [144] proposed a new FDCNN-based CD approach in which the sub-
VGG16 is used to learn deep features from RS images, the FD-Net is used to generate
feature difference maps, and the FF-Net is used to fuse these maps by training with a small
number of pixel-level samples. Furthermore, to reduce the training time and improve
network performance, they created a change magnitude-guided loss function for training
based on a cross-entropy loss function, which allows using prior knowledge to reduce
pseudo-changes and makes obtaining the final binary change map easier.

Here, we presented some advantages and disadvantages, see Table 10. In [134],
the authors achieved the highest accuracy, 0.99, and precision, 0.97, by using the end-to-end
SSJLN model. These models are used to circumvent the effect of DI, and several attempts
have been made to solve CD tasks in an end-to-end way [132–134,137,138]. However,
the drawback is that these end-to-end CNN models require a massive amount of training
data. To address these problems, GDCN is used. The generator recovers actual data from
the input noise to give more training examples, improve the discriminating classification
network’s performance, and achieve an accuracy of 0.95. Moreover, the performance is
influenced by the clustering algorithm. In [140], the authors handle complicated changes,
distortions, and various angle viewing difficulties to offer feature-level U-Net, including a
feature-level subtraction block and a U-Net segmentation layer. A pan-sharpening approach
was used to improve geometrical and spatial resolutions in addition to controlling minor
changes. In [145], a semi-supervised approach was offered to address the lack of correctly-
labeled data and obtain an accuracy of 0.84. In [142], the authors utilize both non-generative
and DCGAN generative techniques for sample augmentation to address the issue of deep
learning networks requiring a large number of samples and change detection samples,
being challenging to get. Their model had 0.95 accuracy by using different datasets. In [141],
an end-to-end CNN model was used; it did not require any preprocessing and it achieved
high accuracy (OA = 0.99 and KC = 0.80), but this model is time-consuming. It was similar
for [135], who used a supervised technique. It is challenging to generate labeled data;
consequently, unsupervised methods generally outperform supervised ones.

Table 10. Summary of the literature work of change detection techniques based on a multispectral
image dataset.

Author Year Techniques Mode Advantage Disadvantage

Daudt et al. [132] 2018 FCNN Supervised Trained end-to-end Massive amount of training data

Mou et al. [133] 2018 RCNN Supervised End-to-End Model could not extract all the deep features.

Zhang et al. [134] 2019 SSJLN Supervised High performance Large amount of training data

Lin, Y et al. [135] 2020 BCNNs Supervised Trained end to end Challenging to generate labeled data

Cao et al. [136] 2017 DBN Supervised High accuracy Processing time

Atluri et al. [137] 2018 MAU-Net Supervised End-to-end Low performance

Gong et al. [138] 2019 DCN, GDCN Supervised Reduce training sample issue Model complexity

Saha et al. [139] 2020 Deep joint segmentation Unsupervised Not require any labeled training pixel Time consuming

Wiratama et al. [140] 2020 U-Net Unsupervised Solve spectral distortion issue Computational complexity

Syedi et al. [141] 2020 CNN Unsupervised End-to-end Time consuming

Luo et al. [142] 2020 DCGAN, DeepLabv3+ Unsupervised High performance Massive amount of training data

Zhang et al. [144] 2020 FDCNN Pretrained strong robustness and generalization ability Require large pixel-level training samples

Alvarez, J et al. [145] 2020 S2-cGAN Semi Supervised Extract features at multiple resolutions Model complexity

5.3. Hyperspectral Images Change Detection by Using Deep Learning
5.3.1. Deep Learning-Based Supervised Methods in Hyperspectral Images

Syedi, S. et al. [146] proposed a supervised CD method to improve the efficiency
of existing CD approaches by combining similarity and distance-based methods. Their
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approach demonstrated greater than 96 per cent accuracy, a false alarm rate of less than
0.03, and an area under the curve of around 0.986.

Fandino, J. et al. [147] introduced stacked auto-encoders to extract features from
remote sensing HS datasets for multiclass CD. Their experimental results showed the
effectiveness of their method while extracting the relevant features of the fused information.
The mixed-affinity matrix can efficiently manage with multi-source data at the same time,
allowing to learn representative characteristics between the spectra in the GETNET. It not
only delivers more plentiful cross-channel gradient information, but it is also an effective
method for simultaneous processing of multi-source information fusion.

Hou et al. [148] proposed deep learning algorithms to identify CDs on HRRS images
and created a W-Net architecture that recognizes change feature extractions and classifi-
cations using stridden convolution, concatenation, and fast connection techniques. Then,
using W-Net as a generator, a GAN was developed to train a mapping function that showed
the distributions. W-Net and CDGAN both achieved successful outcomes, and CDGAN can
exceed W-Net in terms of performance. In contrast to previous approaches, their proposed
techniques can get a final CM from the two-source imagery.

Using different hyperspectral image datasets, Moustafa et al. [149] proposed CD archi-
tecture known as attention residual recurrent U-Net (Att R2U-Net). This model used four
different variants of U-Net, recurrent U-Net, attention U-Net, and attention residual recur-
rent U-Net. The attention recurrent, the residual model, has the most parameters allocated
and performs best for binary and multi-changes. The recurrent U-Net, the residual U-Net
model, was suitable for binary and multiclass CD for HSI with its excellent performance.
This study supports the notion that DNN can learn complex features and improve HSI CD
performance when combined with HSI data.

5.3.2. Deep Learning-Based Unsupervised Methods in Hyperspectral Images

Tong et al. [150] developed a unique strategy to resolve the multiple CD problem
when few training samples were present in the source image. An unsupervised binary CD
was used to create the binary CM. After that, the source image was classified using active
learning, and then a classification map of the target image was obtained using the transfer
learning method. Finally, post-classification comparison created the multiple CM.

Song et al. [151] proposed Re3FCN, which used LSTM and a 3D convolutional neural
network; the approach integrated the advantages of both deep learning-based FCN and
convolutional LSTM. The training samples were calculated using the SCA value for each
end-way, and the PCA and SCA approaches were coupled to provide highly accurate and
reliable samples. This strategy is advantageous for executing CD in conditions where
there are no training data. Additionally, Re3FCN (1) extracts spectral—spatial–temporal
information from multi-temporal images; (2) effectively identifies binary and multiclass
changes while preserving the spatial structural inputs by substituting convolutional layers
for fully connected layers; and (3) trained end-to-end.

Saha et al. [152] suggested an unsupervised CD approach for hyperdimensional
images that makes use of an untrained deep model as the deep feature extractor. In hy-
perdimensional images, their proposed method effectively distinguishes changing pixels
from unchanged pixels. This article enhances the method for multiple CD by clustering the
changed pixels into various groups using a DCV derived from an untrained model.

Syedi et al. [153] introduced a network that consists of the DTW algorithm and CNN.
They found a binary CD by using a DTW and Otsu’s thresholding technique and multiple
CDs obtained by using CNN. Their proposed method had several advantages over the
previous method, including (1) high accuracy for both binary and multiple CDs; (2) gen-
erating multiple CM using spatial and spectral features; (3) low false alarm rate; and (4)
unsupervised framework without training each dataset.
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5.3.3. Deep Learning Based Semi-Supervised Methods in Hyperspectral Images

Yuan, Y. et al. [154] focused on a semi-supervised CD method to identify the change
in HS images under noisy conditions and, thus, proposed a new distance metric learning
framework. A regular evolution framework was used to identify changes in a “noisy”
environment without eliminating any noise bands, which are influenced by the atmo-
sphere (or water) and are always eliminated manually in other literature. They used a
semi-supervised Laplacian regularized metric learning approach, using massive unlabeled
data to address the ill-posed sample problems. They performed their proposed method-
ology on two multi-temporal HS datasets, where they proved to be best under ideal and
noisy conditions.

Wang et al. [155] provided a GETNET network for an HS image CD. Their research
provides three significant contributions: (1) a mixed-affinity matrix was introduced, which
efficiently manages with multi-source data at the same time, allowing to learn represen-
tative characteristics between the spectra in the GETNET; (2) a two-dimensional convo-
lutional neural network was designed to learn discriminative features and increase the
generalization; and (3) a new hyperspectral image CD dataset was developed for objec-
tive comparison.

Huang, F. et al. [156] presented an HS image CD solution based on tensor and DL.
They used a tensor-based information model to establish features changed in hyperspectral
remote sensing images. They also designed a Boltzmann artificial neural network machine
based on the third-order tensor. Using multilayer Tensor3-RBMs, unlabeled data were
trained, the BP neural network was replaced with an STM, and a deep belief network with
multi-layers was used to improve the accuracy. Their experimental results showed that
tensor remote sensing deep belief networks had higher change detection.

Deep learning technology could potentially be used to resolve HSI-based challenges,
but there are still some limitations presented in different research studies. We briefly
present the research advantages and disadvantage in Table 11. The recurrent, resid-
ual U-Net demonstrating the most outstanding performance, in terms of accuracy, is
0.99 [149]. Some of the previous methods also had good performances, as can be seen in
references [146–150,155,156]. However, ref. [148] showed the lowest performance—0.64
kappa and a missed alarm rate (MAR) of 0.30. The lower performance involved limited
training data, no use of data augmentation, and no pre-trained model used as a backbone.
In addition, their proposed method directly obtained the final change from the two im-
ages. In [156], TFS-Cube consumed much more time than other approaches due to the
extensive usage of DBN deep networks and the TFS-Cube tensor model. TRS-time DBN
consumption can be reduced by enhancing the performance of the computer hardware (for
example, by adding a GPU module) or by simplifying the algorithm procedure. In [155],
pseudo-training sets generated by various CD techniques are necessary to train the network.
The algorithm’s performance will be affected by the inherent noise in the pseudo-training
sets. CNN training has several advantages, one of which is that it simply requires the input
image. In [148], the authors’ proposed approach was entirely supervised and, hence, less
attractive due to the difficulties of human annotation. In [150], the authors used novel
methods, improved the multiple change detection problem, and increased accuracy. How-
ever, the suggested method’s drawback is that the multitemporal image is expected to
have the same land-cover types. Thus new land-cover types in the target image cannot be
identified. In [151], there is insufficient training data to validate the usage of these networks
for low-resolution HSI with a spatial resolution of 30 m.
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Table 11. Summary of the literature work of change detection techniques based on a hyperspectral
image dataset.

Author Year Techniques Mode Advantage Disadvantage

Syedi, S et al. [146] 2017 Similarity based methods Supervised High accuracy Demand for sample data for thresholding

Fandino, J et al. [147] 2018 SAE ELM or SVM Supervised binary and multiclass CD Training ample issue

Hou et al. [148] 2019 W-Net Supervised Better performance Training relies on lots of manually annotated data

Moustafa et al. [149] 2021 ARR-U-Net Supervised Both binary and multiclass CD Computational complexity

Tong et al. [150] 2020 AL TL Unsupervised Multiple CD New land-cover types in the target image cannot be detected.

Saha et al. [152] 2021 deep CVA Unsupervised Better performance Time consuming and model complexity

Seydi et al. [153] 2020 3D CNN Unsupervised Multiclass CD A lot of training data

Yuan, Y et al. [154] 2015 SSDM-CD Semi Supervised High performance Not applicable for Spatial information

Huang, F et al. [156] 2019 TDL Semi Supervised Better performance Only uses spectral feature

Wang et al. [155] 2019 GETNET Semi-Supervised End-to-end 2-D Training difficulty

Song, A et al. [151] 2020 Re3FCN, CD Pretrained High semantic segmentation result Insufficient training data

5.4. VHR Images Change Detection Using Deep Learning
5.4.1. Deep Learning-Based Supervised Methods for VHR Images

Peng et al. [157] presented a more advanced U-Net++ design. The dense skip con-
nections of the U-Net++ model were used to learn multiscale feature maps from several
semantic layers. They employed a residual block strategy to facilitate the deep FCN network
gradient convergence, which was also useful in acquiring more comprehensive informa-
tion. Furthermore, the MSOF approach was utilized to integrate multiscale side-output
feature maps before creating the final change map. They used the weighted binary cross-
entropy loss and the dice coefficient loss to successfully decrease the class imbalance impact.
Fang et al. [158] used bitemporal VHR images and constructed a hybrid DLSF. The network
provides two concurrent streams: DLSFF and Siamese-based CD. The proposed system
learns a cross-domain translation using unique change map references to hide the dif-
ferences of unchanged areas and emphasizes the differences of changed regions in two
domains, respectively. It then concentrates on detecting change regions. Chen et al. [159]
proposed two unique deep siamese convolutional neural networks based on MFCU for
unsupervised and supervised change detection. DSMSCN is trained on data generated by
automated preclassification in unsupervised change detection. DSMS-FCN is capable of
processing imagery of any size and does not require a sliding patch-window in supervised
change detection, therefore accuracy and inference time might be considerably improved.
To address the issue of inaccurate localization, the FC-CRF is used to modify the DSMS-FCN
findings. The FC-CRF is integrated with DSMS-FCN by using the output of DSMS-FCN as
unary potential.

Jing, R et al. [160] developed a unique DL architecture for a CD consisting of a subnet-
work and an LSTM sub-network that used spatial, spectral, and multiphase information
to increase the CD capability in VHR RS images. The experiments revealed that the mul-
tiphase information extracted by the LSTM sub-network was essential for improving the
accuracy of CD results.

5.4.2. Deep Learning-Based Unsupervised Methods for VHR Images

Detecting changes in very high-resolution (VHR) is extremely challenging owing to the
effects of seasonal variations, imaging conditions, etc. Javed et al. [161] proposed an object-
based CD method for VHR images. They generated MBI feature images and used three
different methods of PBCD and proposed a D–S theory theory for detecting the building
CD. Correa et al. [162] employed the CD method VHR image. The integrated technique,
which consists of two principles, deals with multispectral and multitemporal data captured
by different sensors. (i) spectral, radiometric, and geometric homogenization of images
obtained by different sensors; and (ii) detection of numerous changes through features that
ensure homogeneity across time and between sensors. The main idea is to transform images
into some common features using transformation. In this paper, for example, the tasselled
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caps transform is used for image transformation. Experiments with various multispectral
sensor data were used to evaluate the algorithm.

Saha et al. [163] introduced a deep change vector analysis (DCVA) for VHR image CD,
developed by combining CVA with a pre-trained deep convolutional neural network. Deep
features are extracted from a pre-trained multilayer CNN. A feature hype vector is formed
by combining features from different layers of CNN to ensure that the spatial context is
captured at multiple levels of abstraction. Pixel comparisons of deep change vectors from
pre-change and post-change images yield deep change vectors, which are then analyzed to
extract binary and multiple-change information from multitemporal VHR images.

Zhao et al. [164] proposed an attention gates generative adversarial adaptation network
(AG-GAAN) .The AG-contributions GAAN’s are as follows: (1) This method can detect
multiple changes automatically; (2) it includes an attention gates mechanism for spatial
constraint and accelerates change area identification with finer contours; and (3) the domain
similarity loss is introduced to improve the model’s discriminability, allowing the model to
more accurately map out real changes.

5.4.3. Deep Learning-Based Semi-Supervised Methods for VHR Images

Saha et al. [165] used a graph convolutional network (GCN) that recently showed
good performance in semi-supervised single date analysis to improve change detection
performance. To process the parcels into a graph representation that can be handled by
GCN, a novel graph construction approach is applied. GCN optimizes its loss function
solely on labeled parcels. The iterative training method aids in the propagation of label
information from labeled nodes to unlabeled nodes, allowing to detect changes in unlabeled
data. The suggested method is based solely on the analyzed bitemporal scene and does not
require other datasets or pre-trained networks.

Pang et al. [166] suggested a novel Siamese correlation-and-attention-based CD net-
work (SCA-CDNet) for bitemporal VHR images. Data augmentation was used to success-
fully prevent overfitting and increase the training model’s generalization capabilities in the
first stage. Second, ResNet was used to extract the image’s multiscale features and fully use
the network’s current pretraining weights to make subsequent model training easier. Third,
a novel correlation module is being developed to consistently stack the aforesaid bitemporal
characteristics and extract change features with reduced dimensions. Fourth, an attention
model is included between the correlation and decoder modules, causing the network to
pay more attention to areas or channels that have an enormous impact on change analysis.
Fifth, a novel weighted cross-entropy loss function was developed, allowing training to
focus on error detection and improving the training model’s ultimate accuracy.

Papadomanolaki et al. [167] proposed a unique model using fully convolutional LSTM
networks and presented a U-Net-like architecture (LU-Net) that models the temporal
relationship of spatial feature representations by layering integrated fully convolutional
LSTM blocks on top of each encoding level and with an additional decoding branch that
performs semantic segmentation on the available semantic categories presented in the
various input dates, resulting in a multitask framework.

In reference [166], the authors proposed method exhibits excellent performance on
accuracy OA = 0.990. F1 = 0.91, Pre = 0.92, and IOU = 0.83. Some previous methods have
shown good performance [157–159,162], but there exists some challenges. All of the above
deep learning algorithms have one thing in common: they all require a lot of training data,
as mentioned in Table 12. In deep learning, it is commonly known that generalization
to new images suffers greatly if the training data are insufficient. In [162], the authors
mentioned a few future ideas for addressing some of the paper’s limitations at the end,
such as associating clusters with specific sorts of changes and feature selections to further
separate different changes. An improved U-Net++ model with novel deep supervision
was presented to capture subtle changes in challenging scenes. According to the authors,
the model focuses solely on change/no-change information, which is insufficient for some
practical applications [157].
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Table 12. Summary of the literature work of change detection techniques based on the VHR im-
age dataset.

Author Year Techniques Mode Advantage Disadvantage

Peng et al. [157] 2019 U-Net++ Supervised End-to-end Require huge training sample

Fang et al. [158] 2019 DLSF Supervised High detection performance Not focus on spectral information changes.

Chen et al. [159] 2019 SiamCRNN Supervised High performance Large number of labeled sample

Jing, R et al. [160] 2020 TriSiamese LSTM Supervised Improved accuracy Computational complexity

Javed et al. [161] 2020 D–S theory Unsupervised Low false alarm Miss detection of building changes

Correa et al. [162] 2018 Tree of radiometric change Unsupervised Good performance Lot of training sample

Saha et al. [163] 2019 Multi-layered CNN Unsupervised Reduce dependence on changing samples Needs a large number of pixel-level samples.

Zhao et al. [164] 2020 AG-GAAN Unsupervised Improve the detection accuracy Model is greatly challenged by the hazardous environments

Papadomanolakiet al. [167] 2021 LU-Net Unsupervised Novel method Low performance

Saha et al. [165] 2020 GCN Semi-supervised Eliminates many redundant features Time consuming

Pang et al. [157] 2021 SCA-CDNet Pretrained Improve accuracy Insufficient for some practical applications

Ji et al. [168] 2019 Mask R-CNN, CNN Self-trained Reduce the demand of training samples Time complexity

5.5. Heterogeneous Images Change Detection by Using Deep Learning
5.5.1. Deep Learning-Based Supervised Methods for Heterogeneous Images

Yang et al. [169] provided a unique cross-sensor CD approach based on deep canon-
ical correlation analysis (DCCA). Following training with samples from the entire area,
the DCCA transformation allows aligning the spectrum of two heterogeneous multi-spectral
datasets; then, any change detection approach is used. Experiments on commonly used
cross-sensor image datasets show that the suggested strategy outperforms previous ap-
proaches. Furthermore, the parametric form of DCCA is often faster to train than the
non-parametric form of KCCA.

Wang et al. [170] used a supervised CD method based on the deep Siamese convolu-
tional network with a hybrid convolutional feature extraction module (OB-DSCNH) for
multisensor datasets. The suggested approach may extract hierarchical features from input
image pairings that are more abstract and resilient than comparing methods.

Ebel et al. [171] proposed a novel Siamese network and suggested a new bimodal
fusion-based CD model that combines data from both SAR and optical sensors.

5.5.2. Deep Learning-Based Unsupervised Methods for Heterogeneous Images

Liu et al. [172] proposed a SCCN to reduce the limitations of 1D and 2D CNNs
for CD. Their suggested SCCN model is entirely unsupervised, with no labeled pixels.
SCCN has one convolutional layer and multiple coupling layers on each side that turn
the two input images (fed to each side) into a feature space with more consistent feature
representations for the two input images. Finally, the difference map is generated directly in
this feature space using pixel-wise Euclidean distances. A coupling function is developed
to drive network parameter learning. They pre-train the network layer-by-layer using DAE
while taking the noise models of the two input images into consideration to give correct
initialization for both network parameters and unchanging labels. The idea proposed
by Niu et al. [173] used a cGAN to convert the heterogeneous SAR and optical images
into a space where their information is more consistently represented, allowing for direct
comparison. The proposed framework includes a cGAN-based translation network that
attempts to translate the optical with the SAR image as a target and an approximation
network that reduces the pixel-wise gap between the SAR image and the translated one.
The two networks are updated alternately. When adequately trained, the two translated
and estimated images may be deemed homogenous, allowing direct comparison of the
final change map.

Zhan et al. [174] proposed a unique approach to a logarithmic transformation feature
learning (LTFL) network to convert the SAR image to the optical image. The modified
image pair can then be used to learn high-level feature representations using joint feature
extraction. The pre-classification result will be raw data, to pick labeled samples, for train-
ing a primary neural network classifier. When this classifier is adequately trained, it will
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label each position, thereby identifying changes on the ground. To solve the binary classifi-
cation problem between heterogeneous pairs of RS images, Touati et al. [175] proposed a
stacked sparse autoencoder unsupervised method and trained the temporal image features.
The constructed anomaly detection model reconstructs the input from its representation in
the latent space to identify pixels of new unseen image pairs. First, a stacked hidden repre-
sentation is used to encode the probing (new) image (i.e., the bitemporal heterogeneous
image pair as the input request) in this normal compact space. The reconstruction error is
calculated in the residual normal space using the L2 norm, in which modest reconstruction
errors distinguish non-change patterns as belonging to the normal class. In contrast, change
patterns are distinguished by high reconstruction errors, as belonging to the abnormal class.
The changed/unchanged classification map is produced in the residual space by grouping
the reconstructed errors using a Gaussian mixture.

Jiang et al. [176] used a new DHFF method for detecting changes in the heteroge-
neous image. The suggested deep homogeneous feature fusion approach considers the
homogeneous transformation, which converts heterogeneous images into the same feature
space as an IST issue. In contrast to the standard IST methodology, which transfers image
styles, the proposed DHFF method measures and then achieves feature homogeneity in
additional new feature subspaces, using the IIST strategy to fulfill the feature homogeneity
requirements for CD in homogeneous images.

Prexl et al. [177], used an unsupervised CD approach and extended DCVA where
pre-change and post-change imagery were obtained with differing spatial resolutions and
spectral bands.

Sun, Y et al. [178] developed a CD approach focused on image similarity measurements
in heterogeneous images. The approach generated a graph for each patch based on a
nonlocal patch similarity to create a link between heterogeneous data and then measured
the change level by assessing how much the graph structure of one image still confronted
that of another image. The graph structure was compared in the same domain, the leakage
of heterogeneous data were avoided, resulting in more robust change detection findings.
Experiments show that the suggested nonlocal patch similarity-based heterogeneous CD
approach works well.

For detecting changes in heterogeneous RS images, Li et al. [179] proposed SSPCN
analyses, two heterogeneous images in a high-dimensional feature space, completely
unsupervised, with no explicitly labeled examples. A classification-based method was used
to establish the pseudo-labels in the proposed method, and each sample was provided
a weight to reflect the ease of the sample. Then, SPL was used to learn simple samples
initially and then gradually incorporate more detailed data. During the training process,
the sample weights were dynamically adjusted based on the network parameters. Finally,
a trained convolutional neural network was used to build a binary change map.

Yang et al. [180] developed a new selective adversarial adaptation method for SAR
images. The major contribution was to transfer knowledge from different source domains
to aid in the identification of changes in the target domain. In their proposed method,
they first used a discriminator to choose a sample that fit in the target domain and another
discriminator was used to minimize the domain discrepancy by adversarial learning.

5.5.3. Deep Learning-Based Semi-Supervised Methods for Heterogeneous Images

Wu et al. [181] proposed a semi-supervised CD strategy based on GCN and a multiscale
object-oriented analysis to solve CD problems better (in homogeneous and heterogeneous).
Their proposed approach first performs image segmentation, then constructs image blocks
into a graph, and uses GCN to detect which blocks are changed.

Jiang et al. [176] used a new DHFF method to detect changes in the heterogeneous
image. The suggested deep homogeneous feature fusion approach considers the homoge-
neous transformation, which converts heterogeneous images into the same feature space as
an IST issue. In contrast to the standard IST methodology, which transfers image styles,
the proposed DHFF method measures and then achieves feature homogeneity in addi-
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tional new feature subspaces using the IIST strategy to fulfill the feature homogeneity
requirements for CD in homogeneous images.

Saha et al. [182] presented a unique self-supervised learning method for CD in a
bitemporal scene; they used different concepts of self-supervised learning literature, such
as deep clustering, augmented view, contrastive learning, and the Siamese network, while
only utilizing the available target unlabeled scene. Their proposed method can train a
network that can effectively exploit these concepts and modify them appropriately for the
target multisensor bitemporal data.

Various methods show high performances in [169,172–176,178,179]. However, there
are still some limitations, as presented in Table 13. In [172], the authors show the method’s
superiority over several existing approaches. This type of method relies on pre-classification
and does not need labeled data. However, it is still incapable of utilizing an enormous
amount of remote sensing data that are currently available and can be used to improve
performance. Furthermore, the method’s limitation is that it only considers the unchanged
pixels. In [173], fully linked layers that receive pixels as input reduce pixel-wise variances in
their networks. These types of model networks do not take the neighborhood information
around a pixel, and they have many learnable parameters—connected layers that accept
a pixel as input. Furthermore, the selections of training samples are dependent on naive
existing approaches. Thus, the subsequent process may be harmed by resulting errors.

Table 13. Summary of the literature work, of change detection techniques based on the heterogeneous
image dataset.

Author Year Techniques Mode Advantage Disadvantage

Yang et al. [169] 2018 DCCA Supervised DCCA typically faster to train than KCCA High computational cost

Wang et al. [170] 2020 OB-DSCNH Supervised High accuracy Did not consider if central pixel and its neighborhoods are not in the same category

Ebel et al.[171] 2021 Siamese network Supervised Novel data Time consuming and low performance

Liu et al. [172] 2016 SCCN, DAE Unsupervised High performance spatial complexity

Niu et al. [173] 2018 cGAN Unsupervised Higher accuracy Huge amount of learnable parameters

Zhan et al. [174] 2018 LTFL Unsupervised High detection accuracy High cost of manual operation

Touati et al. [175] 2020 DSRM Unsupervised better performance Require huge training sample

Saha et al. [182] 2021 DC,AV,CL,SN Self-supervised Better performance Time consuming

Yang et al. [180] 2021 SAA Unsupervised Novel and high performance Training is difficult

Li et al. [179] 2021 SSPCN Unsupervised Better accuracy Generation of Pseudo labels does not hold in some case ,

Prexl et al.[177] 2021 Extended DCVA Unsupervised Better performance Not Novel

Sun et al. [178] 2021 Patch similarity Unsupervised Better performance Complex when the ground features covers a very large area

Wu et al. [181] 2021 GCN Semi-Supervised Novel framework Time consuming

Jiang et al. [176] 2020 DHFF IST Pre-trained High performance Computational complexity

In [169], the key limitation is the high computational costs. In [174], despite their
high detection accuracies, it requires a high cost of manual operation in practice under
supervision mode or a complicated screening process to select training samples under
unsupervised mode. In [178], The suggested technique learns a more robust distance-
induced probabilistic network adaptively. This local structure consistency uses the fact
that heterogeneous images share the same structural information for the same ground
object; that is, imaging modality invariant. It mainly focuses on changes in local structures.
In [179], the proposed method has several limitations. In the generation of pseudo-labels,
it is assumed that multitemporal images have minor changes, and this assumption does
not hold in some cases.

One interesting direction that is also new involves planetary CD, in which (according
to our knowledge) only a few authors have conducted work. Here, we explain their work:

Kerner et al. [183] developed supervised approaches for planetary CD in depth.
For planetary change detection, they used a convolutional autoencoder with various super-
vised classifiers to detect surface feature changes in a variety of RS datasets, with a small
number of labeled training samples. Despite significant differences in image quality, illumi-
nation, imaging sensors, surface properties, and co-registration, their proposed method
can detect meaningful changes with high accuracy, using relatively small training datasets.
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Saha et al. [184] proposed a patch-level unsupervised CD deep transfer-based method
for planetary exploration. Their proposed method can determine whether a pair of bitem-
poral patches are changed and, furthermore, they proposed a technique using pseudo-
unchanged pairs to determine the threshold for distinguishing changed and unchanged
patches.

6. Evaluation Metrics

CD algorithms deal with extremely unbalanced data concerning the ratio of changed
regions related to the area that has not been changed. The most commonly used evaluation
technique in CD is Accuracy, F1, Precision and Recall, Overall error, per centage of correct
classification (PCC), PRE (represents that of expected agreements), and kappa as shown in
Equations (1)–(10).

All evaluation metrics are calculated as:

Precision = TP/(TP + FP) (1)

TP: pixels that are identified as change. TN: pixel identified as unchanged. FP: in
the algorithm, unchanged pixels are incorrectly identified as a change. FN: change pixels
incorrectly classified as unchanged. Precision and recall are two criteria used to assess the
efficacy of a retrieval system. Precision is calculated by dividing the number of correct
instances obtained by the total number of instances retrieved. Sensitivity is defined as the
accuracy calculated as a ratio of reference-changed pixels. It is also known as recall or TPR.
Specificity defines the accuracy of unchanged pixels. It is also known as TNR. The ROC
curve is plotted using sensitivity and specificity measurements. In addition, the model’s
performance is determined by the area under the ROC curve (AUC). The best sensitivity
and specificity is 1.0, the worst is 0.0. Kappa is commonly used to assess classification
performance, with a larger kappa value indicating better performance. F1 is the harmonic
mean between precision and recall. It considers both false positives and false negatives
and performs well with imbalanced data. Accuracy: it measures how many positive and
negative observations are correctly classified [185].

Sensitivity/recall = TP/(TP + FN) (2)

Speci f icity = TN/(TN + FP). (3)

F1Score = F1 = 2 ∗ (precision ∗ recall)/(precision + recall) (4)

Accuracy = Correctpredictions/Totalpredictions = (TP + TN)/(TP + TN + FP + FN) (5)

Kappa = (PCC − PRE)/(1 − PRE) (6)

PCC = (TP + TN)/(TP + TN + FP + FN) (7)

PRE = ((TN + FP) · (TN + FN))/(TP + TN + FP + FN)2 + ((TN + FP) · (TN + FN))/(TP + TN + FP + FN)2 (8)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

IOU = TP/(TP + FP + FN) (10)

Quantitative Results

For assessing the performances of different evaluation matrices, we presented some
previous results as an example that are based on change detection by using deep learning
methods for different datasets. Table 14 and Figure 4 shows the result by using the SAR
dataset. The results were obtained by FCM, NLMFCM, DBN, SCCN, wavelet fusion,
gcForest, and the proposed method. Different types of evaluation matrices are used to
show the performances, such as FN, FP, OE, PCC, and K. Similarly, Table 15 presents the
quantitative results for VHR by using different evaluation matrices, such as precision,
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recall, F1 score, and OA; Figure 5 presents the visual comparison of the VHR image.
Table 16 presents the quantitative results for hyperspectral images by using different
evaluation matrices, such as OA, precision, recall, F1 score, and k; Figure 6 presents the
visual comparison of hyperspectral images. Table 17 presents the quantitative results
for multispectral images by using different evaluation matrices, such as OA, sensitivity,
MD, FA, F1, BA, precision, specificity, and KC. Figure 7 presents the visual comparison
of multispectral images. Similarly, Table 18 presents the quantitative results and Figure 8
shows visual comparison for heterogeneous images by using different evaluation matrices,
such as FA, MA, OE, OA, and KC.

Figure 4. Visual comparison of CD results using various methods for Farmland C : (a) reference,
(b) FCM, (c) NLMFCM, (d) DBN, (e) SCCN, (f) wavelet fusion, (g) gcForest, (h) proposed method.

Figure 5. Visual comparison of CD results using various DL methods for area 6: (a) image T1,
(b) image T2, (c) reference change map, (d) CDNet, (e) FC-EF, (f) FC-Siam-conc, (g) FC-Siam-diff,
(h) FC-EF-Res, (i) FCN-PP, and (j) U-Net++. The changed parts are marked in white while the
unchanged are in black.
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Figure 6. CD results for hyperspectral hermiston images (a) ground-truth, (b) U-Net, (c) RU-Net,
(d) Att U-Net, (e) R2U-Net, and (f) Att R2U-Net.

Figure 7. CD results for multispectral-Saclay images (a) CVA-SVM, (b) MAD-SVM, (c) PCA-SVM,
(d) IR-MAD-SVM, (e) SFA-SVM, (f) 3D-CNN, and (g) Proposed Method. Black, red, and blue colors
indicate TP and TN, FN, and FP pixels.
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Figure 8. CD results for the heterogeneous images. (a,b) Images acquired by different observation
times, (c) reference image. (d) PCC, (e) SCCN, (f) ASDNN, (g) FL-based, (h) LTFL.

Table 14. Quantitative results for SAR images [117].

Methods FN FP OE PCC K

FCM 12,126 813 12,939 85.47 34.95

NLMFCM 687 668 1355 98.48 86.36

DBN 697 841 1538 98.27 84.29

SCCN 768 779 1547 98.26 84.38

wavelet fusion 931 1377 2308 97.41 75.76

gcForest 124 685 809 99.09 91.41

Proposed method 163 630 793 99.11 91.66

Table 15. Quantitative results for VHR images [157].

Methods Precision Recall F1-Score OA

CDNet 0.7395 0.6797 0.68 82 0.9105

FC-EF 0.8156 0.7613 0.7711 0.9413

FC-Siam-conc 0.8441 0.8250 0.8250 0.9572

FC-Siam-diff 0.8578 0.8364 0.8373 0.9575

FC-EF-Res 0.8093 0.7881 0.7861 0.9436

FCN-PP 0.8264 0.8060 0.8047 0.9536

U-Net++ 0.8954 0.8711 0.8756 0.9673

Table 16. Quantitative results for hyperspectral images [149].

Methods OA Precision Recall F1-Score K

U-Net 0.945470 0.935675 0.951087 0.942151 0.950427

R U-Net 0.989402 0.948417 0.923722 0.935821 0.945470

Att U-Net 0.986232 0.900143 0.908169 0.893870 0.930937

R2 U-Net 0. 953387 0.978676 0.920067 0.919009 0.900139

Att R2U-Net 0.991611 0.958538 0.946333 0.952342 0.957096
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Table 17. Quantitative results for multispectral images [157].

Methods OA Sensitivity MD FA F1 BA Precision Specificity KC

CVA 94.09 19.50 80.50 4.16 13.15 57.67 9.92 95.84 0.104

MAD 91.05 42.48 57.52 7.81 17.88 67.34 11.32 92.19 0.148

PCA 92.55 19.25 80.75 5.72 10.61 56.77 7.32 94.28 0.075

IR-MAD 91.1 40.56 59.44 7.70 17.31 66.43 11.00 92.30 0.142

SFA 92.48 31.06 68.94 6.07 15.94 62.49 10.72 93.93 0.128

3D-CNN 98.15 29.19 70.81 0.23 42.02 64.48 74.96 99.77 0.413

Proposed method 99.18 75.40 24.60 0.25 80.99 87.58 87.46 99.75 0.805

Table 18. Quantitative results for heterogeneous images [174].

Methods FA MA OE OA KC

PCC 2947 1187 4134 95.86 0.4651

SCCN 2094 538 2632 97.36 0.6532

ASDNN 1939 525 2464 97.53 0.6695

FL-based 2027 627 2654 97.34 0.6434

LTFL 1104 841 1945 98.05 0.6950

7. Discussion

There are numerous applications on deep learning methods for CD in remote sensing,
and deep learning-based techniques have proven to be highly successful. However, there
are numerous problems in the processes, and they are illustrated as follows:

7.1. Training Sample

Although DL algorithms may learn highly abstract feature representations from raw
remote sensing images, detection and identification success is dependent on a large num-
ber of training samples. However, because collecting labeled high-resolution images is
challenging, there is (frequently) a scarcity of high-quality training. Under these conditions,
retaining the representation learning performance of DL algorithms with fewer appropriate
training samples remains a significant problem. To properly train systems, DL researchers
employ a variety of strategies, including transfer learning [186–192], data augmentation,
GAN [148,155], AE, and SSAE [193]. While these techniques alleviate some of the problems
associated with a lack of samples, further improvement is needed. One DL method [194]
involves trusting small training datasets for supervised CD. This approach appears to be
quite interesting as it minimizes the requirements of labeled training data.

7.2. Prior Knowledge

Due to the change location and direction ambiguity, the total area on the change map
is greater than the changing area in the change detection. Due to a lack of prior information,
conventional unsupervised approaches are unable to rapidly solve this. Thus, weak and
semi-supervised approaches are used, but advanced study is required to increase their
performances.

7.3. Image Registration

In recent years, deep learning RS image registration has become an active research area.
The main limitation of deep learning in image registration is the lack of available public
training datasets, which should be a future endeavor of the remote sensing community.
There are many challenges to be addressed, especially in remote sensor datasets. Due to
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the diversity of remote sensing images acquired at different resolutions and at different
times (or by different modalities), it will be an important challenge and laborious task
to establish huge public training datasets for image registration [163]. Non-nadir image
registration [50], for example, from rovers, satellites, or airborne sensors, remain unresolved
challenges. The use of robust prediction algorithms to deal with registration errors is one
possible solution to the problem. Some algorithms have been proposed to reduce the
registration errors [195]. Moreover, accurate registration of remote sensing imagery, such
as multitemporal images, is very challenging. To better understand how to minimize the
influence of residual misregistration on the change detection process, [196] investigated the
behaviors of registration noise that affect multitemporal VHR datasets. More research on
robust and reliable registration methods is required.

7.4. Rs Image Complexity

RS data are complex due to the various radiation and scattering characteristics of
visible light, microwave, and infrared; image behavior varied greatly with diverse ground
features. In contrast to natural scene images, high-resolution remote sensing images contain
a variety of objects with various colors, sizes, rotations, and locations in a single scene.
In contrast, unique scenes from other categories may resemble each other in many ways.
The complexity of RS images significantly contributes to the challenge of learning stable
and discriminative representations from scenes and objects using DL. The RS community
recognizes that the basic problems of distant observations will never be solved. Separat-
ing data from noise to recover a specific set of geophysical characteristics, for example,
and precise sensor calibrations are ongoing issues. Technological developments enhance
the information content of the observations, but the data are never entirely sufficient to
uniquely identify all of the geophysical characteristics of interest; the list of needed “observ-
ables” expands inexorably with scientific progress. As a result, RS remains a fundamentally
ill-posed issue that must be properly characterized and limited by theoretical models,
prior knowledge, and auxiliary observations. These are crucial factors to consider while
developing new scientific aims. In [197,198], the authors present some challenges and a
few helpful suggestions to overcome RS problems, which are helpful for researchers.

7.5. Multiple Change Maps

Most CD algorithms only identify binary changes and neglect multiple change detec-
tions in remote sensing images, mostly researches are concentrated on binary CD, and only
discriminate between the presence and absence of change. There is limited work on multi-
ple CDs, in which the change class is further subdivided into several types of change. Few
studies, such as [149,150,152,153,163], have focused on multiple change maps. Furthermore,
hyperdimensional images are used for binary CDs; to the best of our knowledge, only one
study has used hyperdimensional images, i.e., [152], for multiclass CD. Thus, there is a
need for further research. Scholars should introduce a new method for multiple change
maps on different datasets, because in the past, some researchers only used hyperspectral
images for multiple CDs, so there is also a need for more experiments on other RS images,
such as VHR images and hyperdimensional images.

8. Conclusions

We reviewed some of the most well-known RS datasets and the latest DL algorithms
for change detection in the literature that achieved outstanding performances. In addition,
a deeper review was conducted to describe and discuss the use of DL algorithms in its
categories, such as supervised change detection methods, unsupervised change detection
methods, and semi-supervised methods; we also presented their advantages and disadvan-
tages, which differentiates our study from previous reviews. The systematic analysis and
commonly used networks in DL adopted for change detection show that great progress
has been made for change detection, but there are still many challenges in CD due to a
lack of training data, prior knowledge, image complexity, etc. Nevertheless, even if these
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challenges are overcome, due to evolving demands and diverse data, there are still many
core issues in RS datasets that have been not focused on as yet, such as heterogeneous data,
multiresolution images, and global information of high-resolution and large-scale images.
Therefore, further studies with more focus on these challenges is strongly suggested.
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DCGAN Deep convolutional generative adversarial network
SSJLN spectral–spatial joint learning network
HRMS high-resolution multispectral
SCCN symmetric convolutional coupling network
DHFF deep homogeneous feature fusion
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FCN fully convolutional network
DLSF dual learning-based Siamese framework
FC–CRF fully connected conditional random field
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SSPCN spatially self-paced convolutional network
SPL self-paced learning
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188. Risojević, V.; Momić, S.; Babić, Z. Gabor descriptors for aerial image classification. In International Conference on Adaptive and
Natural Computing Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–60.

189. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets.
arXiv 2014, arXiv:1405.3531.

190. Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature
combination. Int. J. Remote Sens. 2012, 33, 2395–2412.

191. Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How deep learning extracts and learns leaf features for plant classification.
Pattern Recognit. 2017, 71, 1–13.

192. Lee, S.H.; Chan, C.S.; Wilkin, P.; Remagnino, P. Deep-plant: Plant identification with convolutional neural networks. In
Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September
2015; pp. 452–456.

193. Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral
imagery classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442.

194. Saha, S.; Banerjee, B.; Zhu, X.X. Trusting small training dataset for supervised change detection. arXiv 2021, arXiv:2104.05443.
195. Schaum, A. Local covariance equalization of hyperspectral imagery: Advantages and limitations for target detection. In

Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 2001–2011.
196. Marchesi, S.; Bovolo, F.; Bruzzone, L. A context-sensitive technique robust to registration noise for change detection in VHR

multispectral images. IEEE Trans. Image Process. 2010, 19, 1877–1889.
197. Dubovik, O.; Schuster, G.; Xu, F.; Hu, Y.; Boesch, H.; Landgraf, J.; Li, Z. Grand challenges in satellite remote sensing. Front.

Remote Sens. 2021, 2, 1.
198. Wilson, R. Complexity in Remote Sensing: A Literature Review, Synthesis and Position Paper. 2 June 2011. Available online:

https://ieeexplore.ieee.org/document/9069898 (22 December 2021).

https://ieeexplore.ieee.org/document/9069898

	Introduction and Background
	Contribution of This Study
	Organization of This Work

	Research Inclusion/Exclusion Criteria
	Remote Sensing Datasets for Change Detection
	Sensors for Collecting Change Detection Datasets
	Datasets for Change Detection
	SAR Images
	Multi-Spectral Images
	Wide-Area Datasets
	Local Area Datasets
	Hyperspectral Images
	Limited Labeled Data
	High-Dimensionality
	Mixed Pixels Problem

	Very High Spatial Resolution (VHR) Images
	Limited Spectral Information
	Spectral Variability
	Information Loss
	Heterogeneous Datasets


	Change Detection Architecture
	Pre-Processing
	Data Collection
	Geometric Cegistration
	Radiometric Correction
	Despeckling
	Denoising

	Change Detection in Remote Sensing Datasets by Using DL-Based Networks
	SAR Image Change Detection by Using Deep Learning
	Deep Learning-Based Supervised Methods for SAR Image
	Deep Learning-Based Unsupervised Methods for SAR Image
	Deep Learning-Based Semi-Supervised Methods for SAR Image

	Multispectral Images Change Detection Using Deep Learning
	Deep Learning-Based Supervised Methods for Multispectral Images
	Deep Learning-Based Unsupervised Methods for Multispectral Images
	Deep Learning-Based Semi-Supervised Method for Multispectral Images

	Hyperspectral Images Change Detection by Using Deep Learning
	Deep Learning-Based Supervised Methods in Hyperspectral Images
	Deep Learning-Based Unsupervised Methods in Hyperspectral Images
	Deep Learning Based Semi-Supervised Methods in Hyperspectral Images

	VHR Images Change Detection Using Deep Learning
	Deep Learning-Based Supervised Methods for VHR Images
	Deep Learning-Based Unsupervised Methods for VHR Images
	Deep Learning-Based Semi-Supervised Methods for VHR Images

	Heterogeneous Images Change Detection by Using Deep Learning
	Deep Learning-Based Supervised Methods for Heterogeneous Images
	Deep Learning-Based Unsupervised Methods for Heterogeneous Images
	Deep Learning-Based Semi-Supervised Methods for Heterogeneous Images


	Evaluation Metrics
	Discussion
	Training Sample
	Prior Knowledge
	Image Registration
	Rs Image Complexity
	Multiple Change Maps

	Conclusions
	References

