43 research outputs found

    Geometric Invariant Semi-fragile Image Watermarking Using Real Symmetric Matrix

    Get PDF
    [[abstract]]In order to improve the detection of malicious tampering of images, it is necessary to decrease the fragility of hidden watermarks, even for digital images which have been distorted incidentally. However, watermarks are sensitive to geometric distortions. In this paper, we propose a new invariant semi-fragile digital watermarking technique based on eigenvalues and eigenvectors of a real symmetric matrix generated by the four pixel-pair. And the multi-rings Zernike transform (MRZT) is proposed to achieve geometric invariance. A signature bit for detecting malicious tampering of an image is generated using the dominant eigenvector. The MRZT method is against the geometric distortions even when the image is under malicious attacks. The experimental results show that this algorithm can resist high quality JPEG compression, and improve the detection performance of various malicious tampering.[[notice]]補正完

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Perspective Chapter: Text Watermark Analysis - Concept, Technique, and Applications

    Get PDF
    Watermarking is a modern technology in which identifying information is embedded in a data carrier. It is not easy to notice without affecting data usage. A text watermark is an approach to inserting a watermark into text documents. This is an extremely complex undertaking, especially given the scarcity of research in this area. This process has proven to be very complex, especially since there has only been a limited amount of research done in this field. Conducting an in-depth analysis, analysis, and implementation of the evaluation, is essential for its success. The overall aim of this chapter is to develop an understanding of the theory, methods, and applications of text watermarking, with a focus on procedures for defining, embedding, and extracting watermarks, as well as requirements, approaches, and linguistic implications. Detailed examination of the new classification of text watermarks is provided in this chapter as are the integration process and related issues of attacks and language applicability. Research challenges in open and forward-looking research are also explored, with emphasis on information integrity, information accessibility, originality preservation, information security, and sensitive data protection. The topics include sensing, document conversion, cryptographic applications, and language flexibility

    Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Get PDF
    In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%

    Watermark Based on Singular Value Decomposition

    Get PDF
    Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD on it, the diagonal matrix is selected to determine its norm. The four norms will be processed to produce one unique number used as a watermark and this number can be developed  in future by exploiting some other features in constructing watermark number other than SVD process to construct two watermark numbers, each one of them owned special methodology, for avoiding some challenges and changings in the transformation process.
    corecore