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Abstract

The increasing development of peer-to-peer networks for delivering and sharing multimedia files

poses the problem of how to protect these contents from unauthorized and, possibly, malicious manip-

ulations. In the past few years, a large amount of techniques, including multimedia hashes and digital

watermarking, have been proposed to identify whether a multimedia content has been illegally tampered

or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been

carried out, with the aim of assessing whether the modified content is still meaningful for the final user

and, hopefully, of recovering the original content semantics. One of the main issues that have prevented

multimedia hashes from being used for tampering identification is the large amount of data required for

this task. Generally the size of the hash should be kept as small as possible to reduce the bandwidth

overhead. To overcome this limitation, we propose a novel hashing scheme which exploits the paradigms

of compressive sensing and distributed source coding to generate a compact hash signature, and apply

it to the case of audio content protection. The audio content provider produces a small hash signature

by computing a limited number of random projections of a perceptual, time-frequency representation

of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied

to the projections. At the content user side, the hash is decoded using distributed source coding tools,

provided that the distortion introduced by tampering is not too high. If the tampering is sparsifiable or

compressible in some orthonormal basis or redundant dictionary (e.g. DCT or wavelet), it is possible to

identify the time-frequency position of the attack, with a hash size as small as 200 bits/second: the bit

saving obtained by introducing distributed source coding ranges between 20% to 70%.
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I. INTRODUCTION

With the increasing diffusion of digital multimedia contents in the last years, the possibility of tampering

with multimedia contents – an ability traditionally reserved, in the case of analog signals, to few people

due to the prohibitive cost of the professional equipment – has become quite a widespread practice.

In addition to the ease of such manipulations, the problem of the diffusion of unauthorized copies of

multimedia contents is exacerbated by security vulnerabilities and peer-to-peer sharing over the Internet,

where digital contents are typically distributed and posted. This is particularly true for the case of audio

files, which represent the most common example of digitally distributed multimedia contents. Some

versions of the same audio piece may differ from the original because of processing, due for example

to compression, resampling, or transcoding at intermediate nodes. In other cases, however, malicious

attacks may occur by tampering with part of the audio stream and possibly affecting its semantic content.

Examples of this second kind of attacks are the alteration of a piece of evidence in a criminal trial, or the

manipulation of public opinion through the use of false wiretapping. Often, for the sake of information

integrity, not only it is useful to detect whether the audio content has been modified or not, but also to

identify which kind of attack has been carried out. The reasons why it is generally preferred to identify

how the content has been tampered with are twofold: on one hand, given an estimate of where the signal

was manipulated, one can establish whether or not the audio file is still meaningful for the final user; on

the other hand, in some circumstances, it may be possible to recover the original semantics of the audio

file.

In the past literature, the aim of distinguishing legitimately modified copies from manipulations of a

multimedia file has been addressed with two kinds of approaches: watermarks and media hashes. Both

approaches have been extensively applied to the case of image content types, whether fewer systems have

been proposed for the case of audio signals. Digital watermarking techniques embed information directly

into the media data to ensure both data integrity and authentication. Even if digital watermarks can be

categorized based on several properties, such as robustness, security, complexity, invertibility, etc. [2], a

common taxonomy is to distinguish between robust and fragile watermarks. It is the latter category that is

particularly useful for checking the integrity of an audio file: a fragile watermark is a mark that is easily

altered or destroyed when the host data is modified through some transformation, either legitimate or not.

If the watermark is designed to be robust with respect to legitimate, perceptually-irrelevant modifications

(e.g. compression or resampling), and at the same time to be fragile with respect to perceptually and

semantic significant alterations, then it is a content-fragile watermark [2]. With this scheme, a possible
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tampering can be detected and localized by identifying the damage to the extracted watermark. Examples

of this approach for the case of image content types are given in [3] and [4]. The authors of [5] propose an

image authentication scheme that is able to localize tampering, by embedding a watermark in the wavelet

coefficients of an image. If a tampering occurs, the system provides information on specific frequencies

and space regions of the image that have been modified. This allows the user to make application-

dependent decisions concerning whether an image, which is JPEG compressed for instance, still has

credibility. A similar idea, also working on the signal wavelet domain, has been applied to audio in

[6], with the aim of copyright verification and tampering identification. The image watermarking system

devised in [7] inserts a fragile watermark in the least significant bits of the image on a block-based

fashion; when a portion of the image is tampered with, only the watermark in the corresponding blocks

is destroyed, and the manipulation can be localized. Celik et al. [8] extend this method by inserting the

watermark in a hierarchical way, to improve robustness against vector quantization attacks. In [9], image

protection and tampering localization is achieved through a technique called “cocktail watermarking”: two

complementary watermarks are embedded in the original image to improve the robustness of the detector

response, while at the same time enabling tampering localization. The same ideas have been applied by

the authors to the case of sounds [10], by inserting the watermark in the host audio FFT coefficients.

For a more exhaustive review of audio watermarking for authentication and tampering identification see

Steinebach and Dittmann [2].

Despite their widespread diffusion as a tool for multimedia protection, watermarking schemes suffer

from a series of disadvantages: 1) watermarking authentication is not backward compatible with previously

encoded contents (unmarked contents cannot be authenticated later by just retrieving the corresponding

hash); 2) the original content is distorted by the watermark; 3) the bit-rate required to compress a multi-

media content might increase due to the embedded watermark. An alternative solution for authentication

and tampering identification is the use of multimedia hashes. Unlike watermarks, content hashing embeds

a signature of the original content as part of the header information, or can provide a hash separately from

the content upon a user’s request. Multimedia hashes are inspired by cryptographic digital signatures, but

instead of being sensitive to single bit changes, they are supposed to offer proof of perceptual integrity.

Despite some audio hashing systems (also named audio fingerprinting) have been proposed in the past

few years [11][12][13], most of the previous research, as for the case of watermarking, has concentrated

on the case of images [14], [15]. In [11], the authors build audio fingerprints by collecting and quantizing

a number of robust and informative features from an audio file, with the purpose of audio identification

as well as fast database lookup. Haitsma and Kalker [12] build audio fingerprints robust to legitimate
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content modifications (mp3 compression, resampling, moderate time and pitch scaling), by dividing the

audio signal in highly overlapping frames of about 0.3 seconds: for each frame, they compute a frequency

representation of the signal through a filter bank with logarithmic spacing among the bands, in order to

resemble the Human Auditory System (HAS). The redundance of musical sounds is exploited by taking

the differences between subbands in the same frame, and between the same subbands in adjacent time

instants; the resulting vector is quantized with one bit, and similarities between each short fingerprint

are computed through the Hamming distance. By concatenating all the fingerprints of each frame, a

global hash is obtained, which is used next to efficiently query a song database of previously encoded

fingerprints. Though in principle such approach could be used for identifying possible localized tampering

in the audio stream, the authors do not explicitly address this problem. An excellent review of algorithms

and applications of audio fingerprinting is presented in [13].

To the best of the authors’ knowledge, no audio hashing technique has been used up to now with

the purpose of detecting and localizing unauthorized audio tampering. One of the main reasons of that

is probably the great amount of bits of the audio hashes required for enabling the identification of the

tampering, when traditional fingerprinting approaches as the ones described above are employed. In fact,

in order to limit the rate overhead, the size of the hash needs to be as small as possible. At the same

time, the goal of tampering localization calls for increasing the hash size, in order to capture as much as

possible about the original multimedia object. Recently, Lin et al. have proposed a new hashing technique

for authentication [15] and tampering localization [16] for images, which produce very short hashes by

leveraging distributed source coding theory: in this system, the hash is composed of the Slepian-Wolf

encoding bit-stream of a number of quantized random projections of the original image; the content user

computes its own random projections on the received (and possibly tampered) image, and uses them as

a side information to decode the received hash. By setting some maximum pre-defined tampering level

on the received image (e.g. a minimum tolerated PSNR between the original and the forged image is

allowed), it is possible to transmit the hash without the need of a feedback channel, performing rate

allocation at the encoder side (a similar bit allocation technique has been adopted by the authors also in

the context of reduced-reference image quality assessment [17]). When decoding succeeds, it is possible

to identify tampered regions of the image, at the cost of additional hash bits. This scheme has been

applied also to the case of audio files [18]: instead of random projections of pixels, the authors compute

for each signal frame a weighted spectral flatness measure, with randomly chosen weights, and encode

this information to obtain the hash. Though this scheme applies well to the authentication task (which can

be attained with a hash overhead less than 100 bits/second), it is not clear how to extend the application
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to identification of general kinds of tampering.

We have recently proposed a new image hashing technique [19] which exploits both the distributed

source coding paradigm and the recent developments in the theory of compressive sensing. The algorithm

proposed in this paper extends these ideas to the scenario of audio tampering. It also shares some

similarities with the works in [16] and [18]: as in [18], the hash is generated by computing random

projections starting from a perceptually-significant time-frequency representation of the audio signal and

storing the syndrome bits obtained by LDPC (Low Density Parity-Check Codes) encoding the quantized

coefficients. With respect to [18], the proposed algorithm is novel in the following aspect: by leveraging

compressive sensing principles, we are able to identify tamperings that are not sparse in the time domain

only, but that can be represented by a sparse set of coefficients in some orthonormal basis or redundant

dictionary. Even if the spatial models introduced in [16] could be thought of as a representation of the

tampering in some dictionary, it is apparent that the compressive sensing interpretation allows much

more flexibility in the choice of the sparsifying basis, since it just uses off-the-shelf basis expansions

(e.g. wavelet or DCT) which can be added to the system for free.

To clear up which are the capabilities and the limitations of the proposed system, Figure 1 shows an

example of malicious tampering with an audio signal. This demonstrations has been carried out on a

piece of audio speech, with a length of approximately 2 seconds, read from a newspaper by a speaker.

The whole recording, which is about 32 seconds long, has also been used as a proof of concept to present

some experimental results on the system in Section VII. Figure 1(a) shows the original waveform, which

corresponds to the Italian sentence: “Un sequestro da tredici milioni di euro” (“A confiscation of thirteen

million euros”). This sentence has been tampered with in order to substitute the words “tredici milioni”

(“thirteen millions”) with “quindici miliardi” (“fifteen billions”), see Figure 1(b). In order to compute

the hash, as explained in Section IV, we compute a coarse-scale perceptual time-frequency map of the

signal (in this case, with a temporal resolution of 1/4 seconds). From the received tampered waveform

and from the information of the hash, the user is able to identify the tampering (Figure 1(d)).

The rest of the paper is organized as follows: Section II provides the necessary background information

about compressive sensing and distributed source coding; Section III describes the tampering model;

Section IV gives a detailed description of the system; Section VI describes how it is possible to estimate

the rate of the hash at the encoder without feedback channel or training; the tampering identification

algorithm is tested against various kinds of attacks in Section VII, where also the different bit-rate

requirements for the hash using or not distributed source coding are compared; finally, Section VIII

draws some concluding remarks.
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(a) A fragment of the original audio signal (b) Tampered audio, where the word s“tredici mil-
ioni” have been replaced by “quindici miliardi”

(c) A coarse-scale perceptual time-frequency map
of the original signal, from which the hash signature
is computed

(d) The tampering in the perceptual time-frequency
domain as estimated by the proposed algorithm

Fig. 1. An example of the result of the proposed audio tampering identification, applied to a fragment of speech read from a
newspaper.

II. BACKGROUND

In this section we review the important concepts behind compressive sensing and distributed source

coding, that constitute the underlying theory of the proposed tampering identification system. In spite of

the relatively large amount of literature published on these fields in the past few years, this is a very

concise introduction; for a more detailed and exhaustive explanation the interested reader may refer to

[20][21][22] for compressive sensing and to [23][24][25] for distributed source coding.

A. Compressive sampling (CS)

Compressive sampling (or compressed sensing) is a new paradigm which asserts that it is possible

to perfectly recover a signal from a limited number of incoherent, non-adaptive linear measurements,

provided that the signal admits a sparse representation in some orthonormal basis or redundant dictionary,

i.e. it can be represented by a small number of non-zero coefficients in some basis expansion. Let x ∈ Rn

be the signal to be acquired, and y ∈ Rm, m < n, a number of linear random projections (measurements)

obtained as y = Ax. In general, given the prior knowledge that x is k-sparse, i.e. that only k out of its
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n coefficients are different from zero, one can recover x by solving the following optimization problem:

min ‖x‖0 s.t. y = Ax (1)

where ‖ · ‖0 simply counts the number of non-zero elements of x. This program can correctly recover a

k-sparse signal from m = k+ 1 random samples [26]. Unfortunately, such a problem is NP hard, and it

is also difficult to solve in practice for problems of moderate size.

To overcome this exhaustive search, the compressive sampling paradigm uses special measurement

matrices A that satisfy the so-called Restricted Isometry Property (RIP) of order k [22], which says

that all subsets of k columns taken from A are in fact nearly orthogonal or, equivalently, that linear

measurements taken with A approximatively preserve the Euclidean length of k-sparse signals. This in

turn implies that k-sparse vectors cannot be in the null space of A, a fact that is extremely useful, as

otherwise there would be no hope of reconstructing these vectors. Merely verifying that a given A has

the RIP according to the definition is combinatorially complex; however, there are well known cases of

matrices that satisfy the RIP, obtained for instance by sampling i.i.d. entries from the normal distribution

with mean 0 and variance 1/n. When the RIP holds, then the following linear program gives an accurate

reconstruction:

min ‖x‖1 s.t. y = Ax. (2)

The solution of (2) is the same as the one of (1) provided that the number of measurements satisfy

m ≥ C · k log2(n/k), where C is some small positive constant. Moreover, if x is not exactly sparse, but

it is at least compressible (i.e. its coefficients decay as a power law), then solving (2) guarantees that the

quality of the recovered signal is as good as if one knew ahead of time the location of the k largest values

of x and decided to measure those directly [22]. These results also hold when the signal is not sparse as

is, but it has a sparse representation in some orthonormal basis. Let Ψ ∈ Rn×n denote an orthonormal

matrix, whose columns are the basis vectors. Let us assume that we can write x = Ψα, where α is a

k-sparse vector. Clearly, (2) is a special case of this instance, when Ψ is the identity matrix. Given the

measurements y = Ax, the signal x can be reconstructed by solving the following problem:

min ‖α‖1 s.t. y = AΨα. (3)

Problem (3) can be solved without prior knowledge of the actual sparsifying basis Ψ for different test

bases, until a sparse reconstruction α is obtained.

In most practical applications, measurements are affected by noise (e.g. quantization noise). Let us
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consider noisy measurements y = Ax + z, where z is a norm-bounded noise, i.e. ‖z‖2 ≤ ε. An

approximation of the original signal x can be obtained by solving the modified problem:

min ‖α‖1 s.t. ‖y −AΨα‖2 ≤ ε. (4)

Problem (4) is an instance of a second order cone program (SOCP) [27] and can be solved in O(n3)

time. Several fast algorithms have been proposed in the literature that attempt to find a solution to (4).

In this work, we adopt the SPGL1 algorithm [28], which is specifically designed for large scale sparse

reconstruction problems.

B. Distributed source coding (DSC)

Consider the problem of communicating a continuous random variable X . Let Y denote another

continuous random variable correlated to X . In a distributed source coding setting, the problem is to

decode X to its quantized reconstruction X̂ given a constraint on the distortion measure D = E[d(X, X̂)]

when the side information Y is available only at the decoder. Let us denote by RX|Y (D) the rate-distortion

function for the case when Y is also available at the encoder, and by RWZ
X|Y (D) the case when only the

decoder has access to Y . The Wyner-Ziv theorem [24] states that, in general, RWZ
X|Y (D) ≥ RX|Y (D)

but RWZ
X|Y (D) = RX|Y (D) for Gaussian memoryless sources and mean square error (MSE) as distortion

measure.

The Wyner-Ziv theorem has been applied especially in the area of video coding under the name of

distributed video coding (DVC), where the source X (pixel values or DCT coefficients) is quantized

with 2J levels, and the J bitplanes are independently encoded, computing parity bits by means of a

turbo encoder. At the decoder, parity bits are used together with the side information Y to “correct” Y

into a quantized version X̂ of X , performing turbo decoding, typically starting from the most significant

bitplanes. To this end, the decoder needs to know the joint p.d.f. (probability density function) pXY (X,Y ).

More recently, LDPC codes have been adopted instead of turbo codes [29][30].

Although the rate-distortion performance of a practical DSC codec strongly depends on the actual

implementation employed, it is yet possible to approximately quantify the gain obtained by introducing

a Wyner-Ziv coding paradigm, in order to estimate the bit saving produced in the hash signature. Let X

and Y be zero-mean, i.i.d. Gaussian variables with variance, respectively, σ2
X and σ2

Y ; also, let σ2
N be

the variance of the innovation noise N = Y −X . Classical information theory [31] asserts that the rate

expressed in bits per sample for a given distortion level D, in the case of a Gaussian source X is given
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by:

RX(D) =
1
2

log2

σ2
X

D
. (5)

The rate-distortion function for the case of Wyner-Ziv encoding, when the conditions of the theorem are

satisfied, is

RWZ
X|Y (D) =

1
2

log2

σ2
Xσ

2
N

D(σ2
X + σ2

N )
(6)

which becomes, in the hypothesis that σ2
X � σ2

N , approximatively equal to the rate needed to encode

the innovation N :

RWZ
X|Y (D) ≈ 1

2
log2

σ2
N

D
. (7)

Subtracting (7) from (5), we obtain the expected coding gain due to Wyner-Ziv coding:

∆RWZ =
1
2

log2

σ2
X

σ2
N

(8)

As we shall see in Section IV, σ2
X relates to the energy of the original signal, while σ2

N to the energy

of the tampering. Equation (8) shows that the advantage of using a DSC approach with respect to a

traditional quantization and encoding becomes consistent when the signal and the side information are

well correlated, i.e. when the energy of the tampering is small relative to the energy of the original sound.

III. TAMPERING MODEL

Before describing in more detail the architecture of the system, we need to set up a model for sparse

tampering. Let x ∈ Rn be the original signal; we model the effect of a sparse tampering e ∈ Rn as

x̃ = x + e, (9)

where x̃ is the modified signal received by the user. We postulate without loss of generality that e has

only k non-zero components (in fact, it suffices for e to be sparse or compressible in some basis or

frame).

Let y = Ax be the random measurements of the original signal and ỹ = Ax̃ be the projections of

the tampered signal: clearly, the relation between the tampering and the measurements is given by

b = ỹ − y = A(x̃− x) = Ae. (10)
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If the sensing matrix A is chosen such that it satisfies the RIP, we have that:

‖b‖2 = ‖Ae‖2 ≈
√
m

n
‖e‖2 (11)

and thus we are able to approximate the energy of the tampering from the projections computed at the

decoder and the encoder-side projections reconstructed exploiting the hash. This fact comes out to be very

useful to estimate the energy of the tampering at the content user side and will be exploited in Section

IV. Furthermore in order to apply the Wyner-Ziv theorem, we need b to be i.i.d. Gaussian with zero

mean. This has been verified through experimental simulations on several tampering examples. Indeed,

a theoretical justification can be provided by invoking the central limit theorem, since each element

bi =
∑n

j=1Aijej is the sum of random variables whose statistics are not explicitly modeled.

IV. DESCRIPTION OF THE SYSTEM

The proposed tampering detection and localization scheme is depicted in Figure 2. The general

architecture of the system is composed by two actors: on one hand, there is the content producer (CP),

which is the entity that publishes or distributes the legitimate and authentic copies of the original audio

content. On the other hand, there is the content user (CU), which is the consumer of the audio content

released by the CP. The CP disseminates copies of the original content X ∈ RN , where N is the total

number of audio samples of the signal, through possibly untrusted intermediaries, which may tamper with

the authentic file manipulating its semantics; at the same time, the CU may get its own copy X̃ of the

audio file from nodes different from the starting CP. In order to protect the integrity of the multimedia

content, the CP builds a small hash signature H of the audio signal. To perform content authentication, the

user sends a request for the hash signature to an authentication server, which is supposed to be trustworthy.

By exploiting the hash, the user can estimate the distortion of the received content X̃ with respect to

the original X. Furthermore, if the tampering is sparse in some basis expansion, the system produces a

tampering estimation ê which identifies the attack in the time-frequency domain. In the following, we

detail the hash generation procedure at the content producer side and the tampering identification at the

content user side.

A. Generation of the hash signature

At the content producer side, given the audio stream X and a random seed S, the encoder generates

the hash signature H(X, S) as follows:
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Fig. 2. Block diagram of the proposed tampering identification scheme

1) Frame based subband log-energy extraction: The original single-channel audio stream X is parti-

tioned into non-overlapping frames of length F samples. The power spectrum of each frame is subdivided

into U Mel frequency subbands [32], and for each subband the related spectral log-energy is extracted. Let

hf,u be the energy value for the u-th band at frame f . The corresponding log-energy value is computed

as follows:

xf,u = log (1 + hf,u) . (12)

The values xf,u provide a time-frequency perceptual map of the audio signal (see Figure 1). The log-

energy values are “rasterized” as a vector x ∈ Rn, where n = UN/F is the total number of log-energy

values extracted from the audio stream.

2) Random projections: A number of linear random projections y ∈ Rm, m < n, is produced as

y = Ax. The entries of the matrix A ∈ Rm×n are sampled from a Gaussian distribution N (0, 1/n),

using some random seed S, which will be sent as part of the hash to the user.

3) Wyner-Ziv encoding: The random projections y are quantized with a uniform scalar quantizer with

step size ∆. As mentioned in Section I, to reduce the number of bits needed to represent the hash, we

do not send directly the quantization indices. Instead, we observe that the random projections computed

from the possibly tampered audio signal will be available at the decoder side. Therefore, we can perform

lossy encoding with side information at the decoder, where the source to be encoded is y and the

“noisy” random projections ỹ = Ax̃ play the role of the side information. The vector x̃ contains the log-
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energy values of the audio signal received at the decoder. With respect to the distributed source coding

setting illustrated in Section II-B, we have X = y, Y = ỹ, N = b = ỹ − y. Following the approach

widely adopted in the literature on distributed video coding [25], we perform bitplane extraction on the

quantization bin indices. Then each bitplane vector is LDPC coded to create the hash.

B. Hash decoding and tampering identification

The content user receives the (possibly tampered) audio stream X̃ and requests the syndrome bits and

the random seed of the hash H(X, S) from the authentication server. On each user’s request, a different

seed S is used in order to avoid that a malicious attack could exploit the knowledge of the nullspace of

A [15].

1) Frame-based subband log-energy extraction: A perceptual, time-frequency representation of the

signal X̃ received by the content user is computed using the same algorithm described above for the

content producer side. At this step, the vector x̃ is produced.

2) Random projections: A set of m linear random measurements ỹ = Ax̃ are computed using a

pseudo-random matrix A whose entries are drawn from a Gaussian distribution with the same seed S as

the encoder.

3) Wyner-Ziv decoding: A quantized version ŷ is obtained using the hash syndrome bits and ỹ as

side information. LDPC decoding is performed starting from the most significant bitplane.

• If a feedback channel is available, decoding always succeeds, unless an upper bound is imposed on

the maximum number of hash bits.

• Conversely, if the actual distortion between the original and the tampered signal is higher than the

maximum tolerated distortion determined by the original content producer, decoding might fail.

4) Distortion estimation: If Wyner-Ziv decoding succeeds, an estimate of the distortion in terms of a

perceptual signal-to-noise ratio is computed using the projections of the subsampled energy spectrum of

the tampering. Let b̂ = ỹ − ŷ be the projections of the subsampled energy spectrum of the tampering;

we define the perceptual signal-to-noise ratio (SNRP ) of the received audio stream as

SNRP = 10 log10

‖ŷ‖22
‖b̂‖22

[dB]. (13)

This definition needs some further interpretation. In fact, we compute the SNRP from the projections in

place of the whole time-frequency perceptual map of both the signal and the tampering. This is justified

by the energy conservation principle stated in (11) and by the fact that, at the content user side, no

information about the authentic audio content is available; hence this is an approximation of the actual
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SNRP , which uses the quantized projections obtained by decoding the hash signature, in the reasonable

hypothesis that ‖ŷ‖ ≈ ‖y‖ and ‖b̂‖ ≈ ‖b‖.

5) Tampering estimation: If the tampering can be represented by a sparse set of coefficients in some

basis Ψi, it can be reconstructed starting from the random projections b = ỹ−ŷ by solving the following

optimization problem, as anticipated in Section II-A:

min ‖α‖1 s.t. ‖b̂−AΨiα‖2 ≤ ε (14)

For a given orthonormal basis Ψi, the expansion of the tampering in that basis, i.e. αi = ΨT
i (x−x̃), might

not be sparse enough with respect to the number of available random projections m and the optimization

algorithm might not converge to a feasible solution. In such cases, it is not possible to perform tampering

identification, and a different orthonormal basis Ψj , j 6= i is tested. If the optimization algorithm does

not converge for any of the tested bases, the tampering is declared to be non-sparse. This is the case,

for example, of quantization noise introduced by audio compression. If the reconstruction succeeds for

more than one basis, we choose the one in which the tampering is the sparsest. While, in principle, this

just means that we should take the basis that returns the smallest `0 metrics, we have in practice to cope

with reconstruction noise, which in fact prevents the recovered tampering to be exactly sparse. A simple

solution is to select the basis that gives the smallest `1 norm; however, this approach has the drawback

of being too sensitive towards high values of the coefficients (e.g. due to different dynamic ranges in the

transform domains). As experimentally shown in Section VII-B, this bias has the side-effect that selecting

the minimum `1 norm reconstruction does not ensure that one is performing the best possible tampering

estimation. A more effective heuristic is to use some `p metrics, with 0 < p < 1, or similar norms, as

the ones devised in [33]. In our experiments, we have computed the norm of the coefficients α as

‖α‖ =
m∑

i=1

arctan
(
|αi|
δ

)
(15)

where δ has been set so that arctan(1/δ) = 1.

V. CHOICE OF THE HASH PARAMETERS

In the hash construction procedure, there are two parameters that influence the quality of tampering

estimation: the number of random projections m used to build the hash, and the number of bitplanes J

which determines the distortion due to quantization on the reconstructed measurements at the user-side.

In this section we analyze the trade-off between the rate needed to encode the hash, which also depends

on the maximum allowed tampering level as explained in Section VI, and the accuracy of the tampering
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estimation: a larger number of bitplanes J and of measurements m correspond to a higher quality of

tampering estimation, and at the same time to a higher rate spent for the hash. In order to find an optimal

tradeoff between m and J , we conducted Montecarlo simulations on a generic sparse signal x, with two

different sparsity levels k/n. We evaluate the goodness of the tampering estimation by calculating the

reconstruction normalized MSE (NMSER) between the original k-sparse signal x and its approximation

x̂ obtained by solving problem (4):

NMSER =
‖x̂− x‖22
‖x‖22

. (16)

The noise z = x̂−x in (4) in this case corresponds to quantization noise, which is uniformly distributed

between −∆/2 and ∆/2, where ∆ is the quantization step size. We measure the impact of quantization

noise by measuring the signal-to-quantization noise ratio

SNRy = 10 log10

‖y‖22
‖y − ŷ‖22

, (17)

where ŷ is the quantized version of the random projections y = Ax. As for the reconstruction basis,

Ψ, we just assign Ψ = I in (4), i.e. we assume that the signal is sparse as is, or equivalently that some

oracle has told us the optimal sparsifying basis in advance. Figure 3 shows the NMSER contour set for

two levels of sparsity (k/n = 0.15 and k/n = 0.25) as a function of the number of projections m and

of the quantization distortion of the measurements (SNRy). We observe a graceful improvement of the

performance by increasing either m or SNRy. For the same values of the parameters, the normalized

MSE of the reconstructed signal is lower for sparser signals (k/n = 0.15). This is justified by the CS result

on the number of projections which requires m ≥ C · k log2(n/k) (see Section II-A): thus the contour

set for k/n = 0.25 appears as it was “shifted” to the right with respect to the case k/n = 0.15 in Figure

3. As for the quantization of the projections, provided that the number of measurements is compatible

with the sparsity level as explained before, we can observe that the value of NMSER decreases as SNRy

becomes larger. In a practical scenario, the quantization step size ∆ should be chosen in such a way to

attain SNRy ≥ 25 dB, in order to be robust with the choice of m, which depends on the actual sparsity

of the tampering and on the constant C and is therefore unknown at the content producer side. In our

experiments in the rest of the paper, we have set C = 1.3.
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Fig. 3. Normalized MSE of the reconstructed tampering as a function of the number of measurements m and the measures
signal-to-quantization noise ratioSNRy, expressed in dB.

VI. RATE ALLOCATION

In Section III we have shown that the correlation model between the original and the tampered random

projections can be written as

ỹ = y + b (18)

Hereafter we assume that y and b are statistically independent. This is reasonable if the tampering is

considered independent from the original audio content.

Let j = 1, . . . , J denote the bitplane index and Rj the bitrate (in bits/symbol) needed to decode the

j-th bitplane. As mentioned in Section III, the probability density function of y and b can be well

approximated to be zero mean Gaussian, respectively with variance σ2
y and σ2

b . The rate estimation

algorithm receives in input the source variance σ2
y , the correlation noise variance σ2

b , the quantization

step size ∆ and the number of bitplanes to be encoded J and returns the average number of bits needed

to decode each bitplane Rj , j = 1, . . . , J . The value of σ2
y can be immediately estimated from the

random projections at the time of hash generation. The value of σ2
b is set to be equal to the maximum

MSE distortion between the original and the tampered signal, for which tampering identification can be

attempted.

The rate allocated to each bitplane is given by:

Rj = H(yj |ỹ,yj−1,yj−2, . . . ,y1) [bits/sample] + ∆R (19)

where yj denotes the j-th bitplane of y. In fact LDPC decoding of bitplane j exploits the knowledge of
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SNRP [dB] Sparsity (k/n) m/n

T 20.3 9 % (1D-DCT) 0.54
F 11.5 26 % (2D-DCT) 0.66

TF 14.5 6 % (Haar) 0.54

TABLE I
PERCEPTUAL SNR, SPARSITY FACTOR k/n IN THE MOST “SPARSIFYING” BASIS (IN PARENTHESES) AND m/n RATIO FOR

THE THREE CONSIDERED TAMPERING EXAMPLE.

the real-valued side information ỹ as well as previously decoded bitplanes yj−1,yj−2, . . . ,y1. Since we

use nonideal channel codes with a finite sequence length m to perform source coding a rate overhead

of approximately ∆R = 0.1 [bit/sample] is added. The integral needed to compute the value of the

conditional entropy in (19) is factored out in detail in our previous work [34].

VII. EXPERIMENTAL RESULTS

We have carried out some experiments on 32 seconds of speech audio data, sampled at 44100 Hz

and 16 bits per sample. The test audio consists of a piece of a newspaper article read by a speaker; the

recording is clean but for some noise added at a few time instants, including the high frequency noise of

a shaken key ring, the wide-band noise of some crumpling paper, and some impulsive noise in the form

of coughs of the speaker. We have set the size of the audio frame to F = 11025 samples (0.25 seconds),

and the number of Mel frequency bands to U = 32, obtaining a total of 128 audio frames corresponding

to n = 4096 log-energy coefficients. We have then assembled a testbed considering 3 kinds of tampering:

• Time localized tampering (T): we have replaced some words in the speech at different positions, for

a total tampering length of 3.75 seconds (about 11.7% of the total length of the audio sequence);

• Frequency localized tampering (F): a low-pass phone-band filter (cut-off frequency at 3400 Hz and

stop frequency at 4000 Hz) is applied to the entire original audio stream;

• Time-frequency localized tampering (TF): a cough at the beginning of the stream and the noise of the

key ring in the middle are canceled out using the standard noise removal tool of the “Audacity” free

audio editing software [35]. The noise removal tool implemented in this application is an adaptive

filter, whose frequency response depends on the local frequency characteristics of the noise. In this

case, the total time length of the attack is 4.36 seconds.

The reconstruction of the tampering has been attempted in 3 different bases, besides the log-energy

domain: 1-D DCT (Discrete Cosine Transform across frequency bands of the same frame: this corresponds

to extracting Mel Frequency Cepstral Coefficients), 2-D DCT (across time and frequency), and 2-D Haar
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wavelet. Table I summarizes the perceptual SNRs and the sparsity of the three tampering examples, in

the domain where its values is the lowest. It also reports the number of computed projections m in terms

of the ratio m/n. Note that this ratio is always less than one (i.e. m < n), thus the adopted setting is

coherent with the compressive sensing framework explained in Section II-A. In the following, we evaluate

two aspects of the system, namely: 1) the rate spent for Wyner-Ziv encoding the hash with respect to

the rate that would have been spent for encoding and transmitting the projections without DSC; 2) the

relation between the `1 and the inverse tangent norms of the quality of the reconstructed tampering in

different domains.

A. Rate-Distortion performance of the hash signature

As described in Section IV, we use distributed source coding for reducing the payload due to the hash.

In this section, we want to quantify the bit-saving obtained with Wyner-Ziv coding of the hash. In order

to do so, we have compared the rate distortion function of Wyner-Ziv (WZ) coding and of hash direct

quantization and transmission, i.e. without using DSC (NO-WZ). Figure 4 depicts these two situations for

the cases of the frequency and time domain tampering. In both the two graphs, the value of quantization

MSE has been normalized by the energy of the measurements y, in order to make the result comparable

with other possible manipulations:

NMSEq =
‖y − ŷ‖22
‖y‖22

(20)

The bold dotted lines represents the theoretical WZ rate-distortion curve of the measurements stated in

(7). The bold solid and dashed lines represent instead the actual rate-distortion behavior obtained by using

a practical WZ codec, either using the feedback channel or directly estimating at the encoder side the rate

as explained in Section VI. For comparison, we have also plotted the rate-distortion functions of an ideal

NO-WZ uniform quantizer (Shannon’s bound), drawn as a thin dotted line, and the rate-distortion curve

of an Entropy-Constrained Scalar Quantization (ECSQ), which is a well-studied and effective practical

quantization scheme (thin solid line).

We can make two main comments on the curves in the two graphs of Figure 4. The first difference

between the frequency and the time tampering is that all the rate-distortion functions in the frequency

attack are shifted upwards to higher rates, and have a steeper descending slope as the distortion increases.

This is due to the fact that the frequency manipulation has a higher sparsity coefficient k/n, i.e. more

measurements are needed for signal reconstruction. Although in the real application no guess about the

sparsity of the tampering can be made at the content producer side, here we have fixed a different sparsity
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Fig. 4. Rate-distortion function of the hash signature with different encoding approaches.

for the two kinds of attacks, in order to visually prove the effect of the number of measures on the hash

length. Thus, even if the rate per measurement is the same in both the cases (it only depends on the signal

energy, as expressed in (5) and (7)), the rate in bits per second has slopes and offsets proportional to the

number of measurements m. Clearly, if we did not use compressive sensing to reduce the dimensionality

of the data (i.e. y = x in our setting), the rate required for the hash would have been equivalent to using

random projections with m = n; therefore, the rate saving due to compressive sensing is approximately

equal to the ratio m/n. The second interesting remark that emerges from Figure 4 is the different gap

between the family of WZ rates (ideal, with feedback and without feedback) and the NO-WZ curves. As

(8) suggests, the coding gain from NO-WZ to WZ strongly depends on the energy of the tampering, i.e.

to SNRP (see Table I). In the case of time attack, we have SNRT
P = 20.3 dB, while SNRF

P = 11.5 dB,

thus according to (8) the bit saving achieved with WZ is smaller in the case of the frequency attack. As

can be inferred from the graphs, this gain ranges from 20% to 70%.

B. Choice of the best tampering reconstruction

In practice, the tampering may be sparse or compressible in more than one basis: this may be the case,

for instance, of piece-wise polynomials signals which are generally sparse in several wavelet expansions.

When this situation occurs, multiple tampering reconstructions are possible, and at the content user side

there is an ambiguity about what is the best tampering estimation. As described in Section IV-B, we are

ultimately interested in finding the sparsest tampering representation. This requires in practice to evaluate
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Log-energy 1D-DCT 2D-DCT Haar Wavelet
T 7.1 · 10−3 4.8 · 10−3 2.5 · 10−2 7.9 · 10−3

F 1.1 · 10−1 3.6 · 10−2 8.6 · 10−3 1.3 · 10−2

TF 2.3 · 10−3 1.5 · 10−3 4.3 · 10−3 1.4 · 10−3

TABLE II
NMSER FOR TAMPERING RECONSTRUCTION WITH A HASH AT A BIT RATE OF 200 BPS.

the sparsity of the tampering in each basis expansion: we use for this purpose the inverse-tangent norm

defined in (15). To validate the choice of this norm, we compare the optimal basis expansion predicted

from the `1 norm and the inverse tangent norm with the actual best basis in terms of `2 reconstruction

quality.

We evaluate the goodness of the tampering estimation by calculating the reconstruction normalized

MSE between the log-energy spectrum of the original tampering and the log-energy spectrum of the

estimated one:

NMSER =
‖ê− e‖22
‖e‖22

. (21)

Reconstruction NMSE values obtained with a fixed bit rate for the hash are shown in Tables II (for 200

bps) and III (for 400 bps). The bit rate depends on the number of measurements m (given in Table I) and

on the number of bitplanes per measurement J . For a resulting rate of 200 bps, the number of bitplanes

for the three kinds of attack (T, F, TF) is, respectively, 7, 5 and 6. When the rate is 400 bps, we have

J = 10 for the time attack, J = 8 for the frequency attack, and J = 9 for the time-frequency tampering.

From the tables it is clear that, by looking for a sparse tampering in other bases besides the canonical

one (log-energy), better results can be achieved using the same hash length, as highlighted by the bold

numbers in the tables. In particular, it can be observed that the wide-band, time-localized tampering is

better reconstructed using the 1D-DCT basis, which is able to capture tampering correlations only along

the frequency axis, avoiding tampering discontinuities over time. The frequency-localized tampering is

better reconstructed using the 2D-DCT basis, due to its time extension and wide-band characterization

which exhibits only a single discontinuity along the frequency axis. Finally, Haar wavelet is a good

compromise to detect time-frequency localized tampering because it is able to deal with discontinuities

along both time and frequency axes.

Tables IV and V show the `1 norms of the reconstructed tampering coefficients in the four analyzed

bases. Note that at a rate equal to 200 bps, the `1 norm suggests, for the time-frequency (TF) tampering,

that the best reconstruction is with the 1D-DCT coefficients. However, Table II indicates that the best
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Log-energy 1D-DCT 2D-DCT Haar Wavelet
T 2.4 · 10−4 2.1 · 10−4 1.6 · 10−2 4.5 · 10−4

F 9.3 · 10−2 1.2 · 10−2 1.9 · 10−3 3.1 · 10−3

TF 4.7 · 10−5 6.0 · 10−5 1.1 · 10−3 4.5 · 10−5

TABLE III
NMSER FOR TAMPERING RECONSTRUCTION WITH A HASH AT A BIT RATE OF 400 BPS.

Log-energy 1D-DCT 2D-DCT Haar Wavelet
T 265.33 183.06 366.05 248.26
F 1219.12 1005.34 251.41 488.08

TF 509.88 256.00 445.95 260.71

TABLE IV
`1-NORM OF THE TAMPERING USING A FIXED BIT RATE FOR THE HASH SIGNATURE OF 200 BPS.

reconstruction is actually in the Haar wavelet domain. This is due to the noise introduced by compressive

sensing recovery at low rates, which makes the use of the `1 norm as an estimator of the sparsity more

error-prone. This effect is partially alleviated using the inverse tangent norm, as shown in Tables VI and

VII.

To have a visual insight of the effect of different bases in the tampering reconstruction, we have

drawn in Figure 5 the log-energy spectrum of the original audio signal and of the frequency-localized (F)

tampering, followed by the log-energy spectrum of the tampering reconstructed in two different domains

using a hash rate of 200 bps. It apparent from the figure that the quality of the estimated tampering

reconstructed using 2D-DCT considerably overcomes the one obtained in the log-energy domain.

VIII. CONCLUSIONS

We presented a hash-based tampering identification system for detecting and identifying illegitimate

manipulations in audio files. The algorithm works with sparse modifications, leveraging the recent com-

pressive sensing results for reconstructing the tampering from a set of random non-adaptive measurements.

Perhaps the most distinctive feature of the proposed system is its ability to reconstruct a tampering that

is sparse in some orthonormal basis or frame, without knowing at the content producer side the actual

content alteration. In practice, such an approach is feasible only if the bit length of the hash is not too

large: we have found that encoding the hash signature through a distributed source coding paradigm

enables a consistent reduction of the transmitted bits, especially when the strength of the tampering

is small compared to the original signal energy. The hash size may be further decreased in the future
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Log-energy 1D-DCT 2D-DCT Haar Wavelet
T 344.57 246.97 543.06 338.81
F 1761.76 1394.95 445.42 731.58

TF 594.46 330.28 639.89 325.64

TABLE V
`1-NORM OF THE TAMPERING USING A FIXED BIT RATE FOR THE HASH SIGNATURE OF 400 BPS.

Log-energy 1D-DCT 2D-DCT Haar Wavelet
T 270.36 166.68 455.10 252.26
F 1115.59 793.15 187.00 323.35

TF 324.44 150.30 349.18 136.60

TABLE VI
INVERSE TANGENT NORM OF THE TAMPERING USING A FIXED BIT RATE FOR THE HASH SIGNATURE OF 200 BPS.

by considering weighted `1 minimization [33] to reduce the number of measurements required by the

algorithm.
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