433 research outputs found

    Managing interoperability and complexity in health systems

    Get PDF
    In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations’ resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories

    The Semantic Web as a Platform Against Risk and Uncertainty in Agriculture

    Get PDF
    In this article, we discuss existing literature on DSS in agriculture, on DSS that use data available in the Semantic Web, and on Semantic Web initiatives focusing on agriculture information. Our goal is to assess the readiness of the Semantic Web as a platform to empower DSS that can keep risk and uncertainty in agriculture under control. Key agricultural activities targeted by DSS reported in literature are nutrient management, insect and pest management, land use and planning, environmental change and forecasting, and water and drought management. The most relevant use of Semantic Web in DSS, is in data analysis, as a means of making DSS more intelligent. There are initiatives to produce vocabularies and semantic repositories in the domain of agriculture. However, data and models are still isolated in specific domain repositories, and interoperability is still weak.IFIP Advances in Information and Communication Technology, vol. 506.Laboratorio de Investigación y Formación en Informática Avanzad

    The Semantic Web as a Platform Against Risk and Uncertainty in Agriculture

    Get PDF
    In this article, we discuss existing literature on DSS in agriculture, on DSS that use data available in the Semantic Web, and on Semantic Web initiatives focusing on agriculture information. Our goal is to assess the readiness of the Semantic Web as a platform to empower DSS that can keep risk and uncertainty in agriculture under control. Key agricultural activities targeted by DSS reported in literature are nutrient management, insect and pest management, land use and planning, environmental change and forecasting, and water and drought management. The most relevant use of Semantic Web in DSS, is in data analysis, as a means of making DSS more intelligent. There are initiatives to produce vocabularies and semantic repositories in the domain of agriculture. However, data and models are still isolated in specific domain repositories, and interoperability is still weak.IFIP Advances in Information and Communication Technology, vol. 506.Laboratorio de Investigación y Formación en Informática Avanzad

    A Novel Ontology and Machine Learning Driven Hybrid Clinical Decision Support Framework for Cardiovascular Preventative Care

    Get PDF
    Clinical risk assessment of chronic illnesses is a challenging and complex task which requires the utilisation of standardised clinical practice guidelines and documentation procedures in order to ensure consistent and efficient patient care. Conventional cardiovascular decision support systems have significant limitations, which include the inflexibility to deal with complex clinical processes, hard-wired rigid architectures based on branching logic and the inability to deal with legacy patient data without significant software engineering work. In light of these challenges, we are proposing a novel ontology and machine learning-driven hybrid clinical decision support framework for cardiovascular preventative care. An ontology-inspired approach provides a foundation for information collection, knowledge acquisition and decision support capabilities and aims to develop context sensitive decision support solutions based on ontology engineering principles. The proposed framework incorporates an ontology-driven clinical risk assessment and recommendation system (ODCRARS) and a Machine Learning Driven Prognostic System (MLDPS), integrated as a complete system to provide a cardiovascular preventative care solution. The proposed clinical decision support framework has been developed under the close supervision of clinical domain experts from both UK and US hospitals and is capable of handling multiple cardiovascular diseases. The proposed framework comprises of two novel key components: (1) ODCRARS (2) MLDPS. The ODCRARS is developed under the close supervision of consultant cardiologists Professor Calum MacRae from Harvard Medical School and Professor Stephen Leslie from Raigmore Hospital in Inverness, UK. The ODCRARS comprises of various components, which include: (a) Ontology-driven intelligent context-aware information collection for conducting patient interviews which are driven through a novel clinical questionnaire ontology. (b) A patient semantic profile, is generated using patient medical records which are collated during patient interviews (conducted through an ontology-driven context aware adaptive information collection component). The semantic transformation of patients’ medical data is carried out through a novel patient semantic profile ontology in order to give patient data an intrinsic meaning and alleviate interoperability issues with third party healthcare systems. (c) Ontology driven clinical decision support comprises of a recommendation ontology and a NICE/Expert driven clinical rules engine. The recommendation ontology is developed using clinical rules provided by the consultant cardiologist from the US hospital. The recommendation ontology utilises the patient semantic profile for lab tests and medication recommendation. A clinical rules engine is developed to implement a cardiac risk assessment mechanism for various cardiovascular conditions. The clinical rules engine is also utilised to control the patient flow within the integrated cardiovascular preventative care solution. The machine learning-driven prognostic system is developed in an iterative manner using state of the art feature selection and machine learning techniques. A prognostic model development process is exploited for the development of MLDPS based on clinical case studies in the cardiovascular domain. An additional clinical case study in the breast cancer domain is also carried out for the development and validation purposes. The prognostic model development process is general enough to handle a variety of healthcare datasets which will enable researchers to develop cost effective and evidence based clinical decision support systems. The proposed clinical decision support framework also provides a learning mechanism based on machine learning techniques. Learning mechanism is provided through exchange of patient data amongst the MLDPS and the ODCRARS. The machine learning-driven prognostic system is validated using Raigmore Hospital's RACPC, heart disease and breast cancer clinical case studies

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Data mart based research in heart surgery

    Get PDF
    Arnrich B. Data mart based research in heart surgery. Bielefeld (Germany): Bielefeld University; 2006.The proposed data mart based information system has proven to be useful and effective in the particular application domain of clinical research in heart surgery. In contrast to common data warehouse systems who are focused primarily on administrative, managerial, and executive decision making, the primary objective of the designed and implemented data mart was to provide an ongoing, consolidated and stable research basis. Beside detail-oriented patient data also aggregated data are incorporated in order to fulfill multiple purposes. Due to the chosen concept, this technique integrates the current and historical data from all relevant data sources without imposing any considerable operational or liability contract risk for the existing hospital information systems (HIS). By this means the possible resistance of involved persons in charge can be minimized and the project specific goals effectively met. The challenges of isolated data sources, securing a high data quality, data with partial redundancy and consistency, valuable legacy data in special file formats, and privacy protection regulations are met with the proposed data mart architecture. The applicability was demonstrated in several fields, including (i) to permit easy comprehensive medical research, (ii) to assess preoperative risks of adverse surgical outcomes, (iii) to get insights into historical performance changes, (iv) to monitor surgical results, (v) to improve risk estimation, and (vi) to generate new knowledge from observational studies. The data mart approach allows to turn redundant data from the electronically available hospital data sources into valuable information. On the one hand, redundancies are used to detect inconsistencies within and across HIS. On the other hand, redundancies are used to derive attributes from several data sources which originally did not contain the desired semantic meaning. Appropriate verification tools help to inspect the extraction and transformation processes in order to ensure a high data quality. Based on the verification data stored during data mart assembly, various aspects on the basis of an individual case, a group, or a specific rule can be inspected. Invalid values or inconsistencies must be corrected in the primary source data bases by the health professionals. Due to all modifications are automatically transferred to the data mart system in a subsequent cycle, a consolidated and stable research data base is achieved throughout the system in a persistent manner. In the past, performing comprehensive observational studies at the Heart Institute Lahr had been extremely time consuming and therefore limited. Several attempts had already been conducted to extract and combine data from the electronically available data sources. Dependent on the desired scientific task, the processes to extract and connect the data were often rebuilt and modified. Consequently the semantics and the definitions of the research data changed from one study to the other. Additionally, it was very difficult to maintain an overview of all data variants and derived research data sets. With the implementation of the presented data mart system the most time and effort consuming process with conducting successful observational studies could be replaced and the research basis remains stable and leads to reliable results

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display

    Process of change in organisations through eHealth: 2nd International eHealth Symposium 2010, Stuttgart, Germany, June 7 - 8, 2010 ; Proceedings edited by Stefan Kirn

    Get PDF
    Foreword: On behalf of the Organizing Committee, it is my pleasure to welcome you to Hohenheim, Stuttgart for the 2nd International eHealth Symposium which is themed 'Process of change in organisations through eHealth'. Starting with the inaugural event in 2009, which took place in Turku, Finland, we want to implement a tradition of international eHealth symposia. The presentations and associated papers in this proceedings give a current and representative outline of technical options, application potentials, usability, acceptance and potential for optimization in health care by ICT. We are pleased to present a high-quality program. This year we convey a unique opportunity for academic researchers and industry practitioners to report their state-of-the-art research findings in the domain of eHealth. The symposium aims to foster the international community by gathering experts from various countries such as Australia, Great Britain, Finland and Germany. A first step is done by this symposium which considers this interaction and delivers an insight into current advances made and open research questions. The organizers would like to take the opportunity to thank all the people which made the Symposium possible. We are pleased if both attendance to the 2nd International eHealth Symposium 2010 and reading of this proceedings give you answers to urging questions, a basis for critical discussions, references on interesting tasks and stimulations for new approaches. Table of Contents: Martin Sedlmayr, Andreas Becker, Hans-Ulrich Prokosch, Christian Flügel, Fritz Meier: OPAL Health - A Smart Object Network for Hospital Logistics // Rajeev K. Bali, M. Chris Gribbons, Vikraman Baskaran, Raouf NG Naguib: Perspectives on E-Health: the human touch // Falk Zwicker, Torsten Eymann: Why RFID projects in hospitals (necessarily) fail. Lesson from comparative studies // Nilmin Wickramasinghe, F. Moghimi, J. Schaffer: Designing an intelligent risk detection framework using knowledge discovery techniques to improve efficiency and accuracy of healthcare care decision making // Volker Viktor, Heiko Schellhorn: In search of an appropriate service model for telehealth in Germany // Simone Schillings, Julia Fernandes: Towards a reference model for telemedicine // Reima Suomi: Towards rewards awareness in health care information systems // Manuel Zwicker, Jürgen Seitz, Nilmini Wickramasingh: Adaptions for e-kiosk systems to develop barrier-free terminals for handicapped persons --

    The Semantic Web as a Platform Against Risk and Uncertainty in Agriculture

    Get PDF
    In this article, we discuss existing literature on DSS in agriculture, on DSS that use data available in the Semantic Web, and on Semantic Web initiatives focusing on agriculture information. Our goal is to assess the readiness of the Semantic Web as a platform to empower DSS that can keep risk and uncertainty in agriculture under control. Key agricultural activities targeted by DSS reported in literature are nutrient management, insect and pest management, land use and planning, environmental change and forecasting, and water and drought management. The most relevant use of Semantic Web in DSS, is in data analysis, as a means of making DSS more intelligent. There are initiatives to produce vocabularies and semantic repositories in the domain of agriculture. However, data and models are still isolated in specific domain repositories, and interoperability is still weak.IFIP Advances in Information and Communication Technology, vol. 506.Laboratorio de Investigación y Formación en Informática Avanzad

    Transactions of 2015 International Conference on Health Information Technology Advancement Vol.3, No. 1

    Get PDF
    The Third International Conference on Health Information Technology Advancement Kalamazoo, Michigan, October 30-31, 2015 Conference Chair Bernard Han, Ph.D., HIT Pro Department of Business Information Systems Haworth College of Business Western Michigan University Kalamazoo, MI 49008 Transactions Editor Dr. Huei Lee, Professor Department of Computer Information Systems Eastern Michigan University Ypsilanti, MI 48197 Volume 3, No. 1 Hosted by The Center for Health Information Technology Advancement, WM
    • …
    corecore