608 research outputs found

    Information Buried in B2B Contracts: Towards Identifying Interdependencies in IT Service Processes

    Get PDF
    A key aspect of Information Technology Service Management (ITSM) is the monitoring and evaluation of service performance – a task that is complicated by the presence of interrelationships among different service processes in a multiservice contract. While success in the service arrangement requires participant organizations’ knowledge about the nature of service dependency and their subsequent effect on performance measures; such information is often tacitly present in the service level agreement/contract documents. In this context, the aim of our research is extracting information that might be hidden in the service contracts to assist in better process management and contract (re)negotiation. We propose an information extraction driven framework for analyzing Service Level Agreements (SLA) for IT services. Our framework consists of three stages – 1) Service Entity Recognition, 2) Service Entity Context Recognition, and 3) Service Interdependency Analysis. In this article the focus is on stage 1, where we identify interrelationships by using domain ontology on a set of annotated industry-standard SLAs. Our ongoing research is aimed towards the creation and subsequent validation of process models from the information extracted from SLAs that will help both customer and service provider organizations in contract and compensation formulation, resource allocation, and SLA life cycle management

    ONTOLOGY-BASED INFORMATION EXTRACTION FOR ANALYZING IT SERVICES

    Get PDF
    Service Level Agreements (SLA) for multi-service Information Technology (IT) outsourcing contracts contain vast amounts of textual information. The SLAs provide details about a specific service, Key Performance Indicators (KPI) to measure its performance; as well as process elements, such as activities, events, and resources that are integral in achieving performance goals. However, KPIs and the process elements may be interrelated. The knowledge of such interrelationships is often tacitly present in the SLAs. The aim of our research is to extract this hidden information from IT service contracts and analyze them to empower customers of IT services to make better performance management and incentive decisions. We apply an Ontology- Based Information Extraction (OBIE) approach in developing a prototype decision support framework, named SLA-Miner. The results, obtained from analyzing a set of Industry SLAs, demonstrate the utility of SLA-Miner in identifying KPI interrelationships, deficiencies, and impacts of various process elements on individual KPIs

    Managing Service Dependencies in Service Compositions

    Get PDF
    In the Internet of Services (IoS) providers and consumers of services engage in business interactions on service marketplaces. Provisioning and consumption of services are regulated by service level agreements (SLA), which are negotiated between providers and consumers. Trading composite services requires the providers to manage the SLAs that are negotiated with the providers of atomic services and the consumers of the composition. The management of SLAs involves the negotiation and renegotiation of SLAs as well as their monitoring during service provisioning. The complexity of this task arises due to the fact that dependencies exist between the different services in a composition. Dependencies between services occur because the complex task of a composition is distributed between atomic services. Thus, the successful provisioning of the composite service depends on its atomic building blocks. At the same time, atomic services depend on other atomic services, e.g. because of data or resource requirements, or time relationships. These dependencies need to be considered for the management of composite service SLAs. This thesis aims at developing a management approach for dependencies between services in service compositions to support SLA management. Information about service dependencies is not explicitly available. Instead it is implicitly contained in the workflow description of a composite service, the negotiated SLAs of the composite service, and as application domain knowledge of experts, which makes the handling of this information more complex. Thus, the dependency management approach needs to capture this dependency information in an explicit way. The dependency information is then used to support SLA management in three ways. First of all dependency information is used during SLA negotiation the to ensure that the different SLAs enable the successful collaboration of the services to achieve the composite service goal. Secondly, during SLA renegotiation dependency information is used to determine which effects the renegotiation has on other SLAs. Finally, dependency information is used during SLA monitoring to determine the effects of detected violations on other services. Based on a literature study and two use cases from the logistics and healthcare domains different types of dependencies were analyzed and classified. The results from this analysis were used as a basis for the development of an approach to analyze and represent dependency information according to the different dependency properties. Furthermore, a lifecycle and architecture for managing dependency information was developed. In an iterative approach the different artifacts were implemented, tested based on two use cases, and refined according to the test results Finally, the prototype was evaluated with regard to detailed test cases and performance measurements were executed. The resulting dependency management approach has four main contributions. Firstly, it represents a holistic approach for managing service dependencies with regard to composite SLA management. It extends existing work by supporting the handling of dependencies between atomic services as well as atomic and composite services at design time and during service provisioning. Secondly, a semi-automatic approach to capturing dependency information is provided. It helps to achieve a higher degree of automation as compared to other approaches. Thirdly, a metamodel for representing dependency information for SLA management is shown. Dependency information is kept separately from SLA information to achieve a better separation of concerns. This facilitates the utilization of the dependency management functionality with different SLA management approaches. Fourthly, a dependency management architecture is presented. The design of the architecture ensures that the components can be integrated with different SLA management approaches. The test case based evaluation of the dependency management approach showed its feasibility and correct functioning in two different application domains. Furthermore, the performance evaluation showed that the automated dependency management tasks are executed within the range of milliseconds for both use cases. The dependency management approach is suited to support the different SLA management tasks. It supports the work of composite service providers by facilitating the SLA management of complex service compositions

    Managing Service Dependencies in Service Compositions

    Get PDF
    In the Internet of Services (IoS) providers and consumers of services engage in business interactions on service marketplaces. Provisioning and consumption of services are regulated by service level agreements (SLA), which are negotiated between providers and consumers. Trading composite services requires the providers to manage the SLAs that are negotiated with the providers of atomic services and the consumers of the composition. The management of SLAs involves the negotiation and renegotiation of SLAs as well as their monitoring during service provisioning. The complexity of this task arises due to the fact that dependencies exist between the different services in a composition. Dependencies between services occur because the complex task of a composition is distributed between atomic services. Thus, the successful provisioning of the composite service depends on its atomic building blocks. At the same time, atomic services depend on other atomic services, e.g. because of data or resource requirements, or time relationships. These dependencies need to be considered for the management of composite service SLAs. This thesis aims at developing a management approach for dependencies between services in service compositions to support SLA management. Information about service dependencies is not explicitly available. Instead it is implicitly contained in the workflow description of a composite service, the negotiated SLAs of the composite service, and as application domain knowledge of experts, which makes the handling of this information more complex. Thus, the dependency management approach needs to capture this dependency information in an explicit way. The dependency information is then used to support SLA management in three ways. First of all dependency information is used during SLA negotiation the to ensure that the different SLAs enable the successful collaboration of the services to achieve the composite service goal. Secondly, during SLA renegotiation dependency information is used to determine which effects the renegotiation has on other SLAs. Finally, dependency information is used during SLA monitoring to determine the effects of detected violations on other services. Based on a literature study and two use cases from the logistics and healthcare domains different types of dependencies were analyzed and classified. The results from this analysis were used as a basis for the development of an approach to analyze and represent dependency information according to the different dependency properties. Furthermore, a lifecycle and architecture for managing dependency information was developed. In an iterative approach the different artifacts were implemented, tested based on two use cases, and refined according to the test results Finally, the prototype was evaluated with regard to detailed test cases and performance measurements were executed. The resulting dependency management approach has four main contributions. Firstly, it represents a holistic approach for managing service dependencies with regard to composite SLA management. It extends existing work by supporting the handling of dependencies between atomic services as well as atomic and composite services at design time and during service provisioning. Secondly, a semi-automatic approach to capturing dependency information is provided. It helps to achieve a higher degree of automation as compared to other approaches. Thirdly, a metamodel for representing dependency information for SLA management is shown. Dependency information is kept separately from SLA information to achieve a better separation of concerns. This facilitates the utilization of the dependency management functionality with different SLA management approaches. Fourthly, a dependency management architecture is presented. The design of the architecture ensures that the components can be integrated with different SLA management approaches. The test case based evaluation of the dependency management approach showed its feasibility and correct functioning in two different application domains. Furthermore, the performance evaluation showed that the automated dependency management tasks are executed within the range of milliseconds for both use cases. The dependency management approach is suited to support the different SLA management tasks. It supports the work of composite service providers by facilitating the SLA management of complex service compositions

    SLA Establishment Decisions: Minimizing the Risk of SLA Violations

    Get PDF
    This thesis presents an approach for service providers to select an SLA portfolio that minimizes the SLA violation risk. It considers constraints on expected profit and available resources. The problem is addressed by applying decision theory and risk measures, especially by adapting the concept of portfolio selection by Harry Markowitz and the semi-variance. In order to capture a decision maker\u27s attitude towards risk, utility theory and the concept of risk aversion are used

    An interoperable and self-adaptive approach for SLA-based service virtualization in heterogeneous Cloud environments

    Get PDF
    Cloud computing is a newly emerged computing infrastructure that builds on the latest achievements of diverse research areas, such as Grid computing, Service-oriented computing, business process management and virtualization. An important characteristic of Cloud-based services is the provision of non-functional guarantees in the form of Service Level Agreements (SLAs), such as guarantees on execution time or price. However, due to system malfunctions, changing workload conditions, hard- and software failures, established SLAs can be violated. In order to avoid costly SLA violations, flexible and adaptive SLA attainment strategies are needed. In this paper we present a self-manageable architecture for SLA-based service virtualization that provides a way to ease interoperable service executions in a diverse, heterogeneous, distributed and virtualized world of services. We demonstrate in this paper that the combination of negotiation, brokering and deployment using SLA-aware extensions and autonomic computing principles are required for achieving reliable and efficient service operation in distributed environments. © 2012 Elsevier B.V. All rights reserved
    corecore