
Managing Service Dependencies in
Service Compositions

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

M.Sc. Matthias Winkler
geboren am 14. August 1979

in Dresden

Betreuender Hochschullehrer:
Prof. Dr. rer. nat. habil. Dr. h.c. Alexander Schill

Gutachter:
Prof. Dr. rer. nat. habil. Dr. h.c. Alexander Schill TU Dresden
Prof. Dr. Jorge Cardoso University of Coimbra

Tag der Einreichung: 09.04.2010
Tag der Verteidigung: 21.06.2010

Dresden im Juni 2010

Acknowledgment

The research for this thesis was executed as part of my work at SAP Re-
search Center Dresden in collaboration with the Institute for Systems Ar-
chitecture at the TU Dresden. I would like to thank Prof. Dr. rer. nat. habil.
Dr. h.c. Alexander Schill for the supervision of this thesis, especially for
the discussions and comments that helped to improve the quality of this
thesis. Furthermore I would like to thank Prof. Dr. Jorge Cardoso and Prof.
Dr. rer. pol. Susanne Strahringer for their feedback and encouragement.

I would also like to thank Dr. Thomas Springer and Dr. Steffen Göbel for
the many discussions we had and for helpful comments, furthermore Se-
bastian Schneider, Edmundo David Trigos, and Anna Grebeneva for their
work as interns and thesis students, as well as my wife Viktoria, Kon-
rad Voigt, Matthias Heinrich, Birgit Grammel, and Eldad Louw for proof-
reading my papers and my thesis.

During my time at SAP Research Center Dresden I was part of the EMODE
and THESEUS TEXO project teams. During these projects I had the chance
to work with some great colleagues, who not only put a lot of enthusiasm
into our daily work, but also created a very nice working environment.
Special thanks go to Matthias Heinrich and Konrad Voigt for bringing lots
of fun into our daily work.

Finally, I would like to thank my wife and my whole family for support-
ing me during these last years and for understanding that my time was
often occupied by work. I especially like to thank my parents Maria and
Christian who helped me in many ways.

Dresden, April 2010

Matthias Winkler

Contents

List of Figures vii

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Background Information . 2

1.2 Problem Statement . 3

1.3 Motivation . 3

1.4 Thesis Scope and Research Questions 4

1.5 Research Methodology . 6

1.6 Outline of this Document . 7

2 Foundations and Requirements Analysis 8

2.1 Services in the Internet of Services 8

2.1.1 Composite Services . 9

2.1.2 The Service Lifecycle 11

2.1.3 The Need for Service Description 12

2.2 Service Level Agreements . 14

2.2.1 Defining Service Level Agreements 15

2.2.2 A SLA Lifecycle for the Internet of Services 16

2.3 Monitoring services . 17

2.4 Use Cases . 19

2.4.1 Use Case: Logistics . 20

2.4.2 Use Case: Healthcare 22

iv CONTENTS

2.5 Introduction of Service Dependencies 23

2.5.1 Examples of Dependencies in Service Compositions . 24

2.5.2 Requirements for a Solution 25

2.6 Summary . 29

3 Related Work 30

3.1 Formalizing Service Level Agreements 30

3.1.1 First Research on SLA Specification 30

3.1.2 Web Service Offerings Language 31

3.1.3 WS-Policy . 32

3.1.4 Rule-Based Service Level Agreements 32

3.1.5 WS-Agreement . 33

3.1.6 Discussion . 35

3.2 Approaches to SLA (Re-)Negotiation and Monitoring 37

3.2.1 WSAG4J . 37

3.2.2 Cremona . 38

3.2.3 The GRIA SLA Management Service 39

3.2.4 SALMon . 40

3.2.5 ASG Project . 40

3.2.6 Renegotiation of Service Level Agreements 40

3.2.7 Discussion . 42

3.3 Foundations and Approaches of Dependency Management . 42

3.3.1 Relevance of Dependencies 43

3.3.2 Types of Dependencies 45

3.3.3 Approaches to Handling Dependencies 47

3.4 Summary and Discussion . 61

4 A Concept for Managing Dependencies of Business Services 63

4.1 Solution Overview . 64

4.2 The Nature of Service Dependencies 65

4.2.1 Defining Dependencies 66

4.2.2 Horizontal and Vertical Dependencies 67

CONTENTS v

4.2.3 Dependency Classes 69

4.2.4 Symmetry and Transitivity of Service Dependencies . 71

4.2.5 A Classification of Service Dependencies 71

4.2.6 Relevance of Dependency Management 76

4.2.7 Summary . 77

4.3 Implicit and Explicit Representation of Service Dependencies 78

4.3.1 Dependency Related Information in SLAs 78

4.3.2 Service Dependency Model Concept 80

4.4 Managing Service Dependencies 92

4.4.1 Lifecycle of Dependency Models 92

4.4.2 Creation and Recomputation of Dependency Models 93

4.4.3 Dependency Model Validation 110

4.4.4 Dependency Model Usage 111

4.4.5 Dependency Model Retirement 114

4.5 A Platform for Service Dependency Management 115

4.5.1 An Architecture for Service and SLA Management . 115

4.5.2 Dependency Management Extensions 127

4.6 Summary . 133

5 Validation 135

5.1 Validation Approach . 135

5.2 Prototypical Implementation of the System 136

5.2.1 Eclipse Architecture Overview 136

5.2.2 Prototype Implementation 137

5.2.3 Discussion of Prototype Capabilities and Limitations 143

5.3 Scenario-based Validation . 144

5.3.1 Dependency Model Creation and Recomputation . . 145

5.3.2 Dependency Model Validation 147

5.3.3 Dependency Model Usage 152

5.3.4 Dependency Model Retirement 161

5.3.5 Discussion of Test Cases 161

5.4 Performance Evaluation . 162

vi CONTENTS

5.4.1 Theoretical Discussion of Complexity 162

5.4.2 Performance Measurements for Use Cases 165

5.4.3 Discussion of Performance Evaluation Results 170

5.5 Evaluation of Requirements and Discussion of Results 172

5.6 Summary and Discussion . 174

6 Summary and Outlook 176

6.1 Summary and Discussion of Contributions 176

6.2 Future Work . 179

References 181

A Validation Test Cases 194

B WS-Agreement SLA Document 200

C Logistics Scenario Evaluation Documents 217

D Health Care Scenario Evaluation Documents 230

List of Figures

2.1 Trading services via a service marketplace 9

2.2 The TEXO service lifecycle . 11

2.3 Building blocks of a service level agreement 16

2.4 The SLA lifecycle . 18

2.5 Logistics scenario . 20

2.6 Healthcare scenario . 22

3.1 SLA template structure . 34

3.2 WS-Agreement negotiation 36

3.3 Aggregation of QoS (based on Jaeger et al.) 56

4.1 Overview of dependency handling 65

4.2 Horizontal and vertical dependencies 67

4.3 Dependencies for QoS renegotiation 73

4.4 Dependencies for price renegotiation 73

4.5 Dependencies for pickup time renegotiation 74

4.6 Dependencies for location renegotiation 75

4.7 Dependencies regarding resource SLA violation 76

4.8 Dependency model class diagram 86

4.9 Dependency model lifecycle 93

4.10 Creation and recomputation process for dependency models 95

4.11 Resolving loosely grouped subprocess 106

4.12 Resolving workflow subprocess 106

4.13 Dependency model creation and validation within process . 109

4.14 Dependency evaluation during service provisioning 113

viii LIST OF FIGURES

4.15 Abstract architecture for service infrastructure 116

4.16 SLA Manager and interfaces to other components 120

4.17 SLA negotiation procedure 122

4.18 SLA renegotiation process . 123

4.19 Evaluation of monitoring data 125

4.20 Architecture overview of service infrastructure components 126

4.21 Conceptual architecture of dependency management 128

4.22 Validation of dependency model and SLAs 129

4.23 Dependency discovery steps 131

4.24 Modeling of dependencies at design time 132

4.25 Evaluation of dependencies at runtime 133

5.1 Implementation specific architecture 138

5.2 Overview of implemented components 139

5.3 SLA Template Generation wizard and USDL editor 140

5.4 ISE SLA Wizard . 141

5.5 Tree-based editor for dependency modeling 143

5.6 Illustration of test cases TC-1 to TC-6 146

5.7 Illustration of test cases TC-8 to TC-12 150

5.8 Illustration of test cases TC-13 to TC-15 158

List of Tables

3.1 Approaches to formalizing SLA information 37

3.2 Approaches to SLA (re-)negotiation and monitoring 42

3.3 Approaches for handling dependency information 62

4.1 Dependency classification . 72

4.2 Comparison of dependency model approaches 85

5.1 Test cases for dependency model creation 147

5.2 Linear path samples . 148

5.3 Dependencies of logistics process 149

5.4 Dependencies of healthcare process 149

5.5 Test cases for dependency model validation 150

5.6 Test cases for SLA renegotiation 153

5.7 Test cases for handling SLO violations 157

5.8 Test case termination . 161

5.9 Overview attributes of analyzed use cases 166

5.10 Performance analysis results for dependency discovery . . . 167

5.11 Performance analysis for dependency evaluation - 1 168

5.12 Performance analysis for dependency evaluation - 2 168

5.13 Overview of analyzed processes 169

5.14 Performance analysis path creation 169

5.15 Performance of horizontal dependency analysis 170

5.16 Performance of vertical dependency analysis 171

List of Algorithms

1 createPaths . 98

2 analyzeHorizontalTimeDependencies 100

3 analyzeHorizontalResourceDependencies 100

4 analyzeVerticalTimeDependencies 101

5 analyzeVerticalResourceDependencies 102

6 addTimeDependency . 105

7 validateDependencyModel . 112

8 getAffectedServices . 114

Abstract

In the Internet of Services (IoS) providers and consumers of services en-
gage in business interactions on service marketplaces. Provisioning and
consumption of services are regulated by service level agreements (SLA),
which are negotiated between providers and consumers. Trading compos-
ite services requires the providers to manage the SLAs that are negotiated
with the providers of atomic services and the consumers of the composi-
tion. The management of SLAs involves the negotiation and renegotiation
of SLAs as well as their monitoring during service provisioning. The com-
plexity of this task arises due to the fact that dependencies exist between the
different services in a composition. Dependencies between services occur
because the complex task of a composition is distributed between atomic
services. Thus, the successful provisioning of the composite service de-
pends on its atomic building blocks. At the same time, atomic services
depend on other atomic services, e.g. because of data or resource require-
ments, or time relationships. These dependencies need to be considered for
the management of composite service SLAs.

This thesis aims at developing a management approach for dependencies
between services in service compositions to support SLA management. In-
formation about service dependencies is not explicitly available. Instead it
is implicitly contained in the workflow description of a composite service,
the negotiated SLAs of the composite service, and as application domain
knowledge of experts, which makes the handling of this information more
complex. Thus, the dependency management approach needs to capture
this dependency information in an explicit way. The dependency infor-
mation is then used to support SLA management in three ways. First of
all dependency information is used during SLA negotiation the to ensure
that the different SLAs enable the successful collaboration of the services
to achieve the composite service goal. Secondly, during SLA renegotiation
dependency information is used to determine which effects the renegoti-
ation has on other SLAs. Finally, dependency information is used during
SLA monitoring to determine the effects of detected violations on other ser-
vices.

Based on a literature study and two use cases from the logistics and health-
care domains different types of dependencies were analyzed and classified.

xii Abstract

The results from this analysis were used as a basis for the development of
an approach to analyze and represent dependency information according
to the different dependency properties. Furthermore, a lifecycle and ar-
chitecture for managing dependency information was developed. In an
iterative approach the different artifacts were implemented, tested based
on two use cases, and refined according to the test results Finally, the pro-
totype was evaluated with regard to detailed test cases and performance
measurements were executed.

The resulting dependency management approach has four main contribu-
tions. Firstly, it represents a holistic approach for managing service de-
pendencies with regard to composite SLA management. It extends existing
work by supporting the handling of dependencies between atomic services
as well as atomic and composite services at design time and during ser-
vice provisioning. Secondly, a semi-automatic approach to capturing de-
pendency information is provided. It helps to achieve a higher degree of
automation as compared to other approaches. Thirdly, a metamodel for
representing dependency information for SLA management is shown. De-
pendency information is kept separately from SLA information to achieve
a better separation of concerns. This facilitates the utilization of the de-
pendency management functionality with different SLA management ap-
proaches. Fourthly, a dependency management architecture is presented.
The design of the architecture ensures that the components can be inte-
grated with different SLA management approaches. The test case based
evaluation of the dependency management approach showed its feasibil-
ity and correct functioning in two different application domains. Further-
more, the performance evaluation showed that the automated dependency
management tasks are executed within the range of milliseconds for both
use cases.

The dependency management approach is suited to support the differ-
ent SLA management tasks. It supports the work of composite service
providers by facilitating the SLA management of complex service compo-
sitions.

1
Introduction

During the last years Service-Oriented Architecture (SOA) as an architec-
tural style for building enterprise applications has become an important
topic. The SOA reference model by OASIS describes SOA as ”a paradigm
for organizing and utilizing distributed capabilities that may be under the
control of different ownership domains” [MLM+06]. One important exam-
ple is SAP’s Enterprise Service-oriented Architecture (ESOA) [Mal07]. Ap-
plications are built from reusable components - services - which are stored
in an enterprise service repository.

Within the TEXO project [Pre08] the vision of the Internet of Services (IoS)
[HAW08] is explored. In the IoS vision, services are tradable goods that can
be offered by service providers and consumed by service consumers. Inter-
net service marketplaces act as a platform for trading services where con-
sumers and providers of services are brought together to engage in busi-
ness interactions [CVW08].

Services are offered via a marketplace where consumers can search for ser-
vices that are suitable for their needs. Once a consumer has found a suitable
service it will negotiate a formal contract with the provider of the service.
Such a contract, which is called a Service Level Agreement (SLA), specifies,
among other aspects, which service is provided, how provisioning takes
place, and what the rights and duties of the consumer and the provider
are. Any such statement is called a Service Level Objective (SLO). Multi-
ple SLOs make up the SLA. Based on this contract the service provisioning
takes place. During the provisioning of the service, constant monitoring of

2 Introduction

the service execution is necessary to make sure that the single SLOs within
the SLA are met.

1.1 Background Information

When services are available as tradable goods in a service marketplace,
they can be purchased either for direct utilization by consumers or to be
integrated into a service composition. The creation of service compositions
enables the development of more complex services by reusing existing ser-
vices. Service compositions can then be offered as services on the service
marketplace. Consumers of a service may not be aware of the fact that they
are consuming a composite service.

One important aspect of offering composite services is the requirement to
manage the different services in such a way that they fulfill the overall goal
of the composition. This means that achieving the composite service goal
depends on the different services forming the composition. Achieving the
composite service goal also depends on the proper collaboration between
the composed services. This collaboration implies that the composed ser-
vices also have dependencies among them. Examples are the requirement
of one service for certain goods or data, which are made available by a dif-
ferent service, or the need to finish the execution of one task before another
one starts.

To ensure a proper collaboration, the composite service creator negotiates
SLAs with the providers of services contributing to the composition as well
as with each customer of the composite service. The composite service
provider needs to ensure that all these SLAs enable achieving the goal of
the composite service and that the fulfillment of the different contracts can
be achieved. As a simplification of terms, the services, which are used to
form the composition, are considered as atomic services throughout this
thesis. A SLA, which was negotiated for a composite service, is called com-
posite SLA (CSLA). SLAs negotiated for the services forming the compo-
sition are called atomic SLAs (ASLA). These terms are adopted from the
work done by Ludwig [Lud09].

Throughout the lifecycle of a composite service the CSLA and ASLAs need
to be managed [Lud09]. This includes the negotiation, renegotiation, and
monitoring of SLAs. This is a challenging task because of the dependen-
cies that exist between the different services and thus between the differ-
ent SLAs. Existing approaches to manage SLAs mostly focus on the han-
dling of individual SLAs [LDK04, BPSMS07, AF08, FTS06]. However, some
first work exists, which considers service dependencies in a limited fashion.
Ludwig [Lud09] and Bodenstaff et al. [BWRJ08] provided first approaches

1.2 Problem Statement 3

to the handling of dependencies between atomic services and the service
composition. Karänke et al. discuss SLA management of service resources
in value chains [KMK09]. The handling of dependencies often requires the
explicit modeling of dependency information. Few approaches enable the
automatic discovery of some dependency information (e.g. [Lud09]). In
order to improve the handling of dependencies, further steps are necessary
to cover additional types of dependencies and to enhance the automatic
handling of dependencies.

1.2 Problem Statement

The management of service level agreements of service compositions is a
challenging task because of dependencies that exist between the different
services. However, current approaches for managing SLAs in service com-
positions only provide limited or no support for the handling of depen-
dencies. These approaches are limited with regard to the supported depen-
dency types as well as the efficient handling of dependency information.
Most approaches require explicit modeling of dependency information, i.e.
the level of automation is rather low. Furthermore, they have a tight inte-
gration of SLA management and dependency management, which makes it
more difficult to reuse dependency handling with other SLA management
approaches.

1.3 Motivation

The goal of this thesis is to enhance the functionality of composite service
SLA management by providing advanced support for the handling of ser-
vice dependency information. The handling of dependency information
will enable the determination of effects of problems created by one ser-
vice. Such problems can affect the composite service as well as the atomic
services that are a part of the composition. This will enable providers of
composite services to better manage the composition:

1. Reduction of analysis overhead for users: The solution will point
users to relevant SLAs and SLOs which need to be considered for fur-
ther handling. The user will then be able to determine possible steps
to handle the situation. It relieves the composite service provider
from having to do a full analysis of the composite service, i.e. search-
ing for SLAs that are affected by violation or renegotiation events.

2. Reduced chance of errors: Whenever different SLA management
tasks require a specific handling, there is a chance that the person

4 Introduction

responsible for handling the event misses something, e.g. forgets to
adapt a contract with an involved party. Automating parts of this
process will help to reduce the chance for errors.

3. Faster handling of occurring violation events and renegotiation re-
quests: Information regarding all services, which are affected by a vi-
olation event or renegotiation request, is available immediately. This
helps to speed up the process of triggering a suitable reaction.

Moreover, improving the dependency handling functionality will facilitate
the work of the composite service provider. A partial automation of the
process of capturing dependency information reduces the necessary work,
which is introduced when dependency information is considered for SLA
management. Enhancing the scope of considered dependencies improves
the management of SLAs.

1.4 Thesis Scope and Research Questions

It is the goal of this thesis to develop an approach for the management of
dependencies between services in service compositions. The focus of the
approach is to utilize dependency information to support the composite
SLA management. In this thesis dependency information is used to sup-
port the following SLA management activities:

• SLA negotiation: ensure that negotiated contracts enable a proper col-
laboration between the different services as well as the fulfillment of
all negotiated contracts

• SLA renegotiation: evaluate the impact of changing one SLA on other
SLAs

• Monitoring: determine the effects of service failure on other services
in the composition

In order to do so, an approach is proposed where the dependencies be-
tween services in a composition are analyzed in a semi-automatic fashion
at design time. They are captured in a dependency model. The depen-
dency model is used at design time to validate the compatibility of the SLAs
under negotiation. At runtime the dependency model is applied in order
to determine services that are affected by events such as service failure or
SLA renegotiation. This information supports providers of composite ser-
vices to determine possible steps in order to react to the different events.
The determination of resulting actions is not part of the thesis scope. The

1.4 Thesis Scope and Research Questions 5

dependency management approach is integrated with SLA management
functionality.

While there is some related work, which deals with the handling of ser-
vice dependencies in the light of composite SLA management, this thesis
extends the state-of-the-art by answering the following core research ques-
tions:

1. What would be a suitable method for managing dependencies in

service compositions at design time and during service provision-

ing? The handling of service dependencies covers different tasks in-
cluding the capturing of dependency information and the evaluation
to support composite SLA management. The different tasks occur
during different stages of the service lifecycle. A suitable approach
needs to coordinate the different dependency and SLA management
tasks.

2. How can dependencies between services be determined in an effi-

cient manner? Information regarding dependencies between differ-
ent services is implicitly contained in the ASLAs and the CSLA as
well as the process description of the composite service. Further in-
formation may be available as domain knowledge. Capturing this in-
formation in an explicit representation facilitates the handling of de-
pendencies during SLA management. The modeling of dependency
information is one way to achieve that. However, automating this
process or parts of it would improve its efficiency.

3. What is a suitable way to represent dependency information? In
order to facilitate the handling of dependencies, a suitable represen-
tation of dependency information is necessary. A representation is
suitable if it captures all the information required for the manage-
ment of dependencies in service compositions with regard to manag-
ing composite service SLAs. At the same time a separation of depen-
dency information from service and SLA information helps to ensure
the separation of concerns and provides sufficient independence of
dependency management and SLA management. This will help to
facilitate changes of one aspect, while minimizing effects on the re-
spective other aspects. For example, changes to the languages for
describing services or expressing SLAs should not require changes to
the model for describing dependency information.

4. What would be a suitable architecture to support the handling of

service dependencies? It is important that the dependency manage-
ment functionality is integrated with components for SLA manage-
ment. However, they should also be sufficiently decoupled from the

6 Introduction

specific SLA management approach to provide flexibility to work to-
gether with different SLA management approaches.

1.5 Research Methodology

In order to achieve the goals of this thesis, the design science paradigm was
applied. Hevner et al. [HMP04] describe design science as “. . . a problem
solving paradigm”. The goal of design science research is the creation of
an innovative artifact that solves a specific problem. Hevner et al. provide
seven guidelines for good design science research [HMP04]:

1. Design as an artifact: The research goal is the creation of an innova-
tive artifact.

2. Problem relevance: The artifact is created to solve a specific problem.

3. Design evaluation: A thorough evaluation needs to show that arti-
fact fulfills the purpose for which it was designed.

4. Research contributions: the artifact solves an unsolved problem or
provides a better solution than existing work. The novelty of the ar-
tifact provides a contribution to science.

5. Research rigor: During the design and evaluation process rigorous
methods are applied.

6. Design as a search process: The solution is created in an iterative
design process of artifact generation and testing.

7. Communication of research: The research results are presented to
technical as well as management-oriented audiences.

The research work for this thesis was executed based on these guidelines.
(1) The goal of this thesis was the creation of a method for managing service
dependencies in service compositions (see Section 4.4). A prototype imple-
menting this method was developed (see Section 5.2). The method as well
as the prototype are both artifacts in a design science perspective. Further
artifacts created as part of this thesis include a metamodel for representing
dependency information and methods for the discovery, validation, and
evaluation of service dependencies. (2) The different artifacts were devel-
oped to solve the problem of missing support for dependency handling for
composite SLA management (see Section 1.2). (3) In order to demonstrate
the suitability of the different artifacts to solve this problem, they were eval-
uated based on a detailed set of test cases (see Section 5.3). The different

1.6 Outline of this Document 7

test cases were developed based on two use cases from the logistics and
healthcare domain. (4) The developed artifacts extend existing work by
improving several shortcomings (see Section 6.1). Thus, the results of this
thesis provide a novel and valuable contribution to the existing work. (5)
These results build on existing work in the area of SLA management, work-
flow description, and dependency handling. A formal validation of the
research results was executed. The suitability of the solution was demon-
strated based on different test cases. A performance evaluation showed the
applicability of the approach. (6) The research for this thesis was executed
in an iterative approach. Early artifacts were tested regarding their suit-
ability to solve the problem. They were then improved based on the test
results. (7) The results of this research work have been published in the sci-
entific community. They have also been communicated to project partners
and the project sponsor.

1.6 Outline of this Document

This thesis is structured as follows:

• Chapter 2 provides information about the Internet of Services vision
and introduces the topics of SLA management as well as service de-
pendencies. Furthermore, two scenarios are presented, which serve
as guiding examples for this thesis. Finally, different requirements
are discussed for the dependency management approach.

• Chapter 3 provides an overview of the state-of-the-art of SLA man-
agement and the handling of dependency information. Different ap-
proaches for the handling of dependency information are discussed
and compared to the proposed dependency management approach.
Shortcomings of existing solutions are outlined.

• Chapter 4 presents the dependency management approach. A life-
cycle for handling dependency information is outlined and the dif-
ferent phases are detailed. Furthermore, a conceptual architecture is
presented, which realizes the different lifecycle phases.

• Chapter 5 presents the validation of the different concepts developed
as part of this thesis.

• Chapter 6 summarizes the thesis and discusses the main achieve-
ments. Furthermore, an outlook on future work is presented.

2
Foundations and Requirements

Analysis

This chapter provides background information regarding services in the
IoS vision (Section 2.1), the handling of service level agreements (Section
2.2), and service monitoring (Section 2.3). Furthermore, two use cases from
the field of logistics and healthcare are introduced (Section 2.4). Based on
the two use cases a first introduction to service dependencies is provided
and requirements for managing service dependencies are derived (Section
2.5).

2.1 Services in the Internet of Services

In the IoS service consumers and providers engage in business interactions
by offering and consuming services. While the internet serves as a medium
to offer and search for services, the provisioning of these services is not nec-
essarily via the internet. Instead, services may be provided based entirely
on human tasks, as a combination of automated and human tasks, or fully
automated. According to [CVW08] services (also referred to as business
services), e-services, and Web services can be distinguished. Business ser-
vices are described by [BGO04] as “. . . business activities that often result
in intangible outcomes or benefits; they are offered by a service provider
to its environment.” An example would be the painting of a house or the
transport of goods from one location to another.

2.1 Services in the Internet of Services 9

E-services are described by [HBCS03] as “. . . a collection of network-
resident software services accessible via standardized protocols, whose
functionality can be automatically discovered and integrated into appli-
cations or composed to form more complex services.” An example for an
e-service would be a B2B service via EDI [OEC06].

Finally, Web services are considered to be e-services which are accessed us-
ing standard web based protocols [CVW08], e.g. HTTP. Examples would be
SOAP or RESTful Web services providing a credit card check. As such, Web
services are a subclass of e-services, which are again a subclass of (business)
services. Within the IoS vision (business) services are offered on service
marketplaces. This also includes e-services and Web services. Throughout
this thesis the term service is used to talk about any kind of service includ-
ing e-services and Web services.

Figure 2.1 illustrates how providers and consumers of services interact via
a marketplace. Providers offer their services on a marketplace in order to
make them available for consumers.

Provider & Consumer

Provider

S8
S3S1

S6

S2

Consumer

service
marketplace

Consumer

Figure 2.1: Trading services via a service marketplace

2.1.1 Composite Services

Providers of services may also act as consumers of other services. This
is the case when the consumed service is integrated with other services
to form a service composition and the composition is sold, again via the
marketplace.

When services are integrated into a composition, they form a business pro-
cess. The process describes how the different services collaborate in or-
der to achieve the composite service goal. Cardoso and Lenič describe a
business process as “. . . a set of activities that represent all the alternative
methods of performing the work needed to achieve a business objective. . . ”

10 Foundations and Requirements Analysis

[CL06]. The business process is described by a workflow graph. According
to Vanhatalo et al. a workflow graph G = (N,E) is described by a set of
nodes (N) and a set of edges (E) connecting these nodes [VVL07]. The set
of nodes contains start and end nodes, a number of activities, and a set of
fork, join, decision, and merge nodes.

Different notations for representing workflows exist. Two examples are
petri nets and the Business Process Modeling Notation (BPMN). According
to [Aal97] a petri net is a 3-tuple (P , T , F) where P represents a set of places,
T represents a set of transitions, and F represents a set of arcs connecting
places with transitions and transitions with places. The state of a petri net
is described by its marking M , i.e. the assignment of tokens to its places.
The firing of a transition leads the petri net from one state to another one.
A sequence of transitions leading from M1 to Mn is called a firing sequence
[Aal97]. Petri nets have a well defined mathematical base. For that reason
they are applied by various approaches to proof the formal correctness of
workflows [Aal97, RPU+07].

The BPMN Specification is a standard, which defines a graphical notation
for the modeling of workflows [Gro09]. It was developed by the Object
Management Group (OMG). BPMN is targeted at business users. Sample
BPMN elements are shown in the following list. More details can be found
in the BPMN Specification [Gro09].

• The Start Event and End Event represent the starting and the end point
of a workflow.

• The Task element is used to represent the different activities of a work-
flow.

• The Sub-Process element enables the specification of sub-processes
within a workflow containing a set of tasks.

• A Sequence Flow connects activities and gateways and thus shows the
order of activity execution.

• Exclusive, Inclusive, and Parallel Gateway (also XOR, OR, AND) allow
the splitting and joining of the sequence flow in a workflow.

The handling of composite services and their underlying workflow is an
important aspect of this thesis. As a base for the development of the con-
cepts of this thesis the BPMN notation was used because it is now well
known and widely accepted in the business community. More precisely,
only a small subset of the BPMN elements was used including start and
end events, tasks, sub-process, sequence flow, AND/OR/XOR splits and
joins. Furthermore, the workflow descriptions are limited to one start and
one end event. Loops are not supported.

2.1 Services in the Internet of Services 11

The formal mathematical base of petri nets, which is useful e.g. for work-
flow verification, is not required for this thesis. However, it is important to
note that the concepts are not designed for or limited to BPMN. It could be
replaced by other workflow modeling languages.

2.1.2 The Service Lifecycle

In order to enable the vision of tradable services, it is necessary that new
services are developed according to the needs of future consumers. Ser-
vices are then offered so that consumers may find and consume them. The
consumption of services needs to be monitored. There are a number of
important phases that a service goes through, forming the lifecycle of a
service. The service lifecycle of the TEXO project [OBB09] comprises five
different phases. It is presented in Figure 2.2.

Service
Innovation

Service
Offering

Service
Matchmaking

Service
Usage

Service
Feedback

Figure 2.2: The TEXO service lifecycle

1. Service Innovation: During the service innovation phase new ideas
for services are collected and evaluated. This can be done e.g. by the
identification of relevant interests or needs of potential consumers in
internet forums and blogs and their subsequent evaluation [SFRM08].

2. Service Offering: During the service offering phase a new service
is developed. The service functionality is realized by e.g. by a ser-
vice composition of different (atomic) services. The description of the

12 Foundations and Requirements Analysis

service properties, which are needed during later phases of the life-
cycle, is created. This information includes quality of service (QoS)
information, legal aspects, and pricing information, to mention only
a few (see Section 2.1.3 for more details). The new service can then be
registered and offered in a service marketplace.

3. Service Matchmaking: Once a service is registered in a service mar-
ketplace, users can find the service. During the service matchmak-
ing phase users search for services according to different criteria (e.g
functionality, pricing information, rating). Different approaches for
searching services are applied based on the service description and
the search query of a user. The search results are presented to the user,
who can then explore the resulting set of services and select the ser-
vice which best fits his needs. To use the service a service level agree-
ment needs to be negotiated between the consumer and the provider
of the service.

4. Service Usage: During the service usage phase the service is exe-
cuted. Monitoring data is collected to assure that the negotiated ser-
vice level agreement is respected by all parties.

5. Service Feedback: After the execution of a service the user may pro-
vide feedback about the service execution. This information can be
used for the rating of a service, which informs potential future users
about the satisfaction of prior consumers of the service. It can also
serve as a base for future improvements of the service by the provider.

2.1.3 The Need for Service Description

The trading of services in marketplaces involves, among other steps, the
offering and search for services. To enable providers to offer their services
and consumers to find them, it is necessary to describe them in a suitable
way. Traditionally service description is done using the Web Service De-
scription Language (WSDL) [CMRW07], which enables the specification of
the service functionality. Different researchers have stated, though, that
there is a strong need for service description including not only its function-
ality but also its non-functional properties [O’S06, BDB05]. Non-functional
properties include quality of service (QoS) aspects, support for legal issues
(e.g. terms of use), as well as pricing and payment models for service con-
sumption. The quality of service describes the performance of a service us-
ing a set of QoS parameters [Lud09]. Typical examples of QoS parameters
include reliability, execution time, throughput, availability, and encryp-
tion level [BKLW95, CMSA04, JRGM04, Lud09]. Throughout this thesis
the term QoS is often used instead of always listing a selection of different

2.1 Services in the Internet of Services 13

QoS parameters. However, to provide more concrete examples when ex-
plaining the different concepts of this thesis, the QoS parameters response
time, availability, throughput, and encryption level are used. They were
taken from the COSMA approach, which forms the base for the handling
of QoS information in the dependency management approach presented in
this thesis.

Besides supporting the offering and search for services, the service descrip-
tion can serve as a basis for negotiating service level agreements and mon-
itoring the service at the time of provisioning.

The Unified Service Description Language

The Unified Service Description Language was developed as a language
for describing business, technical, and operational aspects of services
[CWV09]. It covers aspects that are common for most services indepen-
dent of their nature (rather technical or more business oriented).

There are a number of existing approaches to describe services. Many of
these approaches cover mainly technical service aspects. The Web Service
Description language (WSDL) [CMRW07] allows the description of service
interfaces including their input and output parameters, the communication
protocol for accessing the service, as well as the endpoint where the service
can be found. SA-WSDL [FL07] uses semantic annotations to WSDL el-
ements to describe the meaning of input and output parameters as well
as faults and thus provides an understanding of the functionality of the
operations. These formal annotations allow machines to reason about the
service. Zschaler [Zsc04] presents an approach for the semantic description
of quality of service aspects. All these approaches lack the capability to
describe business related service aspects.

While there are many different approaches to describing technical service
aspects, there is also some work available which focuses on the descrip-
tion of non-functional service properties with a strong focus on the busi-
ness perspective. O’Sullivan provides a comprehensive taxonomy of non-
functional service properties, covering business aspects including pricing
and payment information, legal aspects, and quality of service, to mention
a few [O’S06]. Another service description approach, the Publicly Available
Specification 1018 [MH01], was created as a specification for describing ser-
vices for tender offers. It covers non-functional service aspects as well as a
functional service description.

The special objective that distinguishes USDL from other service descrip-
tion approaches is the combination of the technical and the business per-
spective, while other approaches are rather limited in their scope. At the

14 Foundations and Requirements Analysis

same time USDL only covers the most important aspects which are neces-
sary to describe services independent of their nature (business vs. technical
service) or their specific application domain.

USDL was designed with the objective to trade services in service market-
places. Thus, it was important to consider a number of service aspects to
be described. The following list summarizes the three USDL perspectives
and the descriptive aspects that are covered.

Business perspective:

• Provider and consumer information: Information about the service
provider and a profile of targeted consumers are provided.

• Service level: The service level includes QoS information (i.e. perfor-
mance, dependability and security parameters), and a service rating.

• Legal information: The rights and obligations of consumers and
providers are described, as well as penalties that occur in the case of
any party not respecting their obligations or the other party’s rights.

• Pricing and payment: Information regarding different pricing op-
tions as well as payment methods for service usage are described.

• Interaction: The means for invocation and execution of services are
described. They may be realized in technical or non-technical ways.

Operational perspective:

• Functional description: The functional description allows describing
what the service does, e.g. by using a classification scheme.

• Operations: The operations of a service are described by interfaces
with input and output parameters.

Technical perspective: The description of how a service is invoked and
how service execution takes place is achieved via the specification of dif-
ferent protocols to be used for this interaction.

2.2 Service Level Agreements

In the IoS vision service level agreements (SLA) provide a formal contract reg-
ulating the provisioning and consumption of services between the service
provider and consumer. This section provides a formal definition for the
term SLA and describes the lifecycle of SLAs in the Internet of Services.

2.2 Service Level Agreements 15

2.2.1 Defining Service Level Agreements

Various definitions of service level agreements exist. Modica et al. describe
a SLA as “. . . a formal negotiated agreement between a Service Provider
and a Service Customer . . . " [MTV09]. Bianco et al. [BLM08] describe a
SLA as ”. . . a specification of the verifiable quality characteristics that the
service will provide”. A SLA is formally negotiated between a provider
and a consumer of a service prior to service provisioning and consump-
tion. It describes the provided service and a number of quality attributes
that are guaranteed during service provisioning. It also specifies informa-
tion regarding the different parties involved in service provisioning and
consumption as well as their rights and obligations concerning the provi-
sioning and consumption process. Finally, pricing information and penal-
ties for not conforming with the negotiated SLA are specified.

SLAs are used to regulate the processes of service provisioning and con-
sumption. In order to verify that an SLA is met, it needs to be monitored.
This is realized by monitoring and evaluating the single service level objec-
tives of a SLA.

SLOs are important building blocks of SLAs. They are the single measur-
able guarantees of a SLA. Service level agreements contain one or more
service level objectives. SLOs refer to a quality attribute called key perfor-
mance indicator (KPI), such as the response time of a service. They specify
a value or value range and a unit (e.g. milliseconds) for the KPI along with
an operator (e.g. greater than, equals, ...) to express the expected value of
the KPI. Examples for simple service level objectives are listed below:

responseT ime ≤ 500ms (2.1)

availability ≥ 95% (2.2)

In many cases SLOs specify more refined information, e.g. that a KPI will
be met in 95% of all cases, or a time frame is given within which the KPI is
guaranteed and can be evaluated.

responseT ime ≤ 500ms − 95%executions (2.3)

availability ≥ 95% − 1month (2.4)

Rosario et al. proposed an alternative approach to specifying SLOs using
percentage values (quantiles). They argue that the usage of probability

16 Foundations and Requirements Analysis

functions to express values for KPIs will enable more optimistic specifi-
cation of guaranteed terms [RBHJ07].

The general building blocks of a SLA, as described above, are presented in
Figure 2.3.

Service Level Agreement

Service Consumer and Provider Info

Service Level Objectives

Service Description

Rights and Obligations

Price and Penalties

Figure 2.3: Building blocks of a service level agreement

Since SLA describes the service and a number of different aspects of provi-
sioning, it can be seen as a special instance of a service description, namely
one that describes a single instance of a service at runtime. The negotiated
parameters are based on a more general service description, e.g. based on
USDL (see Section 2.1.3).

2.2.2 A SLA Lifecycle for the Internet of Services

The work presented in this thesis is based on a lifecycle for handling service
level agreements (see Figure 2.4) [WS09]. It was developed based on the
work presented in [BLM08]. A few adaptations were made. A first change
was the integration of support for SLA renegotiation. For that reason the
SLA negotiation phase was extended to allow for SLA renegotiation in case
the SLA needs to be adapted.

A second adaptation was the integration of a loop from the Execution &
Monitoring phase to the SLA (Re-)Negotiation phase to enable the adaptation
of a SLA based on monitoring information. This enables a composite ser-
vice provider to react to problems while the service is still in execution. This
is only possible for limited SLA aspects, but it is nevertheless an important
aspect of SLA management for business services. SLA renegotiation is only
successful if both involved parties agree.

Finally, the assessment phase presented in [BLM08], which enables the
long-term evaluation of SLA fulfillment as well as strategic considerations,

2.3 Monitoring services 17

was removed from the SLA lifecycle. It is rather seen as an aspect of service
management and should be handled as part of the Service Feedback phase of
the service lifecycle.

The following phases are the building blocks of the adapted SLA lifecycle:

1. SLA Template Development: The SLA template forms the base for
SLA negotiation. It is created as part of the service engineering pro-
cess and is made available for SLA negotiation during the deploy-
ment of a service.

2. SLA (Re-)Negotiation: This phase supports the initial negotiation of a
SLA based on a SLA template as well as the adaptation of an existing
SLA. During this phase the different quality of service parameters,
pricing and legal information, as well as other details about service
execution are negotiated between the service provider and the con-
sumer.

3. Preparation: During the preparation phase the information regard-
ing the newly negotiated SLA or the update through renegotiation
is propagated to relevant components (e.g. monitoring components).
They will then retrieve the new SLA and prepare the service execu-
tion and monitoring.

4. Execution and Monitoring: The execution of a service is triggered
once a consumer with a valid SLA requests the service. The moni-
toring of the service execution and the validation of the SLA and its
contained service level objectives occurs at the same time. Once in-
formation regarding SLO violations is available, further actions can
be initiated, e.g. the adaptation of the service.

5. Termination and Decommissioning: SLAs are usually valid for a pre-
defined period of time (e.g. single service call, one month). Once this
period is over, the SLA cannot be used as the basis for service execu-
tion any more. If the provider of a service decides to discontinue the
service offering under the current terms, the SLA template for the ser-
vice is removed. This way no new contracts can be negotiated based
on that specific SLA template.

2.3 Monitoring services

Services that are traded on a service marketplace undergo a service life-
cycle. In [BRS+08] a service lifecycle of four phases is described: service

18 Foundations and Requirements Analysis

SLA Template
Development

SLA (Re-)
Negotiation

Preparation
Execution

&
Monitoring

Termination
&

Decommisioning

Figure 2.4: The SLA lifecycle

modeling, service usage preparation, service usage, and service usage post-
processing. One important task during service usage is the monitoring of
guarantees that the involved parties agreed upon in the SLA.

The IT Infrastructure Library V3 (ITIL V3) is a framework for service man-
agement, which was developed by the Office of Government Commerce. It
is currently available in Version 3. ITIL V3 provides best practices for man-
aging IT services which support the execution of business processes. ITIL
V3 describes a service lifecycle [BVGM07] consisting of five phases: service
strategy, service design, service transition, service operation, and continual
service improvement. Monitoring is seen as one important part of the ser-
vice operation phase where the operation of services is managed, in order
to assure stable service provisioning. To ensure good quality and enable
the optimization of the provisioning process ITIL emphasizes the need to
monitor the KPIs [BVGM07].

There are a number of reasons why monitoring is a very important task in
the service lifecycle:

• Pay for what you get: Consumers of services have certain quality
expectations regarding service provisioning. Service providers may,
for example, offer the same service with different quality attributes
for different prices. Once a service consumer has decided for a cer-
tain quality, payment for the service will depend upon reaching the
agreed quality. Otherwise the amount due may be reduced. In or-

2.4 Use Cases 19

der to determine if the guaranteed quality was achieved a suitable
monitoring strategy is necessary.

• Trust between service consumer and provider: On a service market-
place providers and consumers of services are brought together on a
national or international scale. This implies that in many cases they
will not know each other. Thus, it is very important to establish trust
between the parties involved in a business interaction. Monitoring
can help to establish trust by making the achieved quality as well as
possible problems visible to all involved parties.

• Guarantee of quality: When services are provided by an external
party, the consumer cannot control the quality of service provision-
ing. This imposes a high risk especially when a service consumer acts
as a service provider at the same time by making the consumed ser-
vice available to consumers within a service composition. Therefore,
it is important that service consumers have a good insight into the
quality aspects of the service provisioning procedure. This enables
them to manage risks on their side.

• Continuous improvement of service quality: Services are offered to
consumers under a certain quality. While it is important to meet qual-
ity goals specified in a SLA, this is not sufficient. ITIL V3 describes
the Continual Service Improvement phase as part of the service life-
cycle [BVGM07]. The goal is to continually improve service quality
over time. Monitoring can deliver the necessary information serv-
ing as the basis for decisions regarding what needs to be improved.
To achieve that, the right performance figures need to be monitored.
Also, in [MPA+07] the authors emphasize the importance of business
process monitoring to ensure competitive advantage as well as stan-
dards compliance.

2.4 Use Cases

As guiding examples for this thesis two composite services from the logis-
tics and healthcare domains will now be introduced. A composite service
provider creates the underlying business process from a number of services
offered by other service providers on a service marketplace. The two sce-
narios will help to illustrate the vision of tradable services and provide a
better understanding of the problem space of this thesis, namely the man-
agement of dependencies between different services within a service com-
position. Furthermore, they will be used to validate the concepts developed
as part of this thesis.

20 Foundations and Requirements Analysis

2.4.1 Use Case: Logistics

Logistics is described as the “. . . process of planning, implementing and
controlling the efficient, cost-effective flow and storage of raw materials,
in-process inventory, finished goods, and related information from point of
origin to point of consumption for the purpose of conforming to customers’
requirement” by the American Council of Logistics Management [Bri].

Truck DD

Truck DE

HH Local

Sea Shipping
DE-US

OTML
Warehouse NYC

Eastern Truck
US

Auto Trans DD

Warehouse DD

Truck HH

Warehouse HH

HH Star Truck

OTML Warehouse Port HH

Receive
Goods

Prepare
Shipment

Export
Handling Security Check Ship Goods

Figure 2.5: Logistics scenario

The scenario describes a multimodal process for transporting goods (see
Figure 2.5) between Dresden, Germany and Philadelphia, US. Different lo-
gistics services (e.g. goods transport as well as storage) are offered by dif-
ferent service providers on the i-o-Log marketplace for logistics services. The
transportation process is organized and managed by OnTheMove Logistics

2.4 Use Cases 21

(OTML). It is partially realized by OTML as well as by services contracted
via the i-o-Log marketplace.

This general scenario of an IoS-based logistics marketplace, the different
stakeholders as well as the transportation process are fictional and were de-
signed specifically for the purpose of illustrating different research aspects
of the internet of services vision. However, different steps of the transporta-
tion process are based on scenarios as they occur in reality.

OnTheMove Logistics is a provider of national and international logistics
solutions including the transportation and storage of goods (e.g. OTML
TransWorld). It offers its services via the i-o-Log marketplace. Dresden Spare
Parts (DSP), a manufacturer of spare parts for cars, received an order from
a customer in Philadelphia, US. In order to ship goods to the customer, DSP
searches for a provider of logistics services, who can realize the shipment.
DSP selects the OTML TransWorld service.

After receiving the precise information for transportation from DSP, OTML
selects suitable services and creates a logistics process realizing the trans-
port. Next to its own services, e.g. Warehouse HH and Truck DE, it also
subcontracts other services. This is due to the fact that certain services are
not available from OTML (e.g. goods transport via ship). At the same time
it does not have enough local capacity to support the transportation pro-
cess, e.g. for the transportation within the cities of Dresden and Hamburg.
OTML subcontracts services via the same i-o-Log marketplace, where it also
offers its own services to customers. When the setup of the transportation
process is finished, the goods are shipped.

The transportation process starts with the pickup of goods at the site of
Dresden SpareParts. The two services AutoTrans DD and Truck DD pick up
the goods and deliver them to a warehouse in Dresden (Warehouse Dresden)
where they are repackaged and made available for further transport with
a larger truck. Service Truck DE is responsible for taking the goods from
Dresden to a warehouse in Hamburg, where they are distributed to smaller
trucks for further transport to the port of Hamburg.

The transport of the goods between Warehouse HH and OTML Warhouse
Port HH is realized by three local transportation services (Truck HH, HH
Star Truck, HH Local). In the port the goods are received by OTML Ware-
house Port HH and prepared for further shipment. The goods have to un-
dergo an export handling procedure and a security check. If all checks
are passed successfully the goods can be transported to New York City via
ship (Sea Shipping DE-US). They are further processed by OTML Warehouse
NYC. The last part of the transport is realized by truck between NYC and
Philadelphia (Eastern Truck US).

22 Foundations and Requirements Analysis

2.4.2 Use Case: Healthcare

The second use case describes a composite healthcare service (see Figure
2.6), which was inspired by a healthcare workflow presented in [RBFD01].

Patient
Examination

Medical
Record

Creation

Determine
Medication

Patient Transport

Check
Examination

Results

Follow-up
Treatment

Determination

Patient
Admission

Patient Data
Collection

Examine
Blood

Patient Transport

Expert
Examination

Procurement of
Medication

Discharge Patient

Give Medication

Create Report

Figure 2.6: Healthcare scenario

The Vita Health Care Center offers complex medical services for patients. A
variety of treatments and related medical services are realized by different
health care providers. They are subcontracted by the Vita Health Care Center
in order to realize complex treatments for patients.

2.5 Introduction of Service Dependencies 23

A patient undergoes a series of stationary checkups organized as a compos-
ite service (Stationary Patient Checkup) by the Vita Health Care Center. After
the admission of the patient to his room (Patient Admission), data about the
patient is collected (Patient Data Collection). This includes information such
as weight, height, age, and blood pressure. Furthermore, a blood sample
is taken. The medical examination including auscultation and a first talk
with a physician takes place (Patient Examination). Later the data collected
during Patient Data Collection and Patient Examination is documented in a
formal medical record document (Medical Record Creation). Based on the
medical record a group of physicians determines the first medication for
the patient (Determine Medication). This medication is ordered from a local
medical provider, who delivers the medicine to the healthcare center (Pro-
curement of Medication). The blood sample, which was taken during (Patient
Data Collection) is sent to the laboratory where it is analyzed. The results are
returned to the ward where the client is attended to (Examine Blood). After
the medical record was created, the patient is transported to another loca-
tion for a special examination (Patient Transport). A specialist executes an
ordered examination and returns the examination results to the unit which
takes care of the patient (Expert examination). After the expert examination
the patient is transported back (Patient Transport) to his ward. After return-
ing from the expert examination and as soon as the ordered medication is
delivered, the medication is given to the patient by a nurse (Give Medica-
tion). Once the results from the blood check and the expert examination are
available, a group of physicians checks the results of the different examina-
tions and determines next steps (Check Examination Results). Based on the
results of this evaluation the status of the patient is determined and a plan
for follow-up treatments is created and integrated into the medical record
of the patient (Follow-up Treatment Determination). Finally, the information
captured during the different examinations as well as the plan for follow-
up treatments are used as a basis to generate two reports for the patient’s
health insurance company as well as for his general practitioner (Create Re-
port). The patient is released from the medical center and the billing process
for the checkup is initiated (Discharge Patient).

2.5 Introduction of Service Dependencies

The previous section presented two use cases that apply the IoS vision of
tradable services. Logistics and healthcare services are traded via service
marketplaces and are composed to form service compositions. These ser-
vice compositions are offered via a marketplace again.

When services are composed to compositions, they are implicitly collabo-
rating to achieve a business goal. The collaboration of services can be con-

24 Foundations and Requirements Analysis

sidered as implicit because typically the single service providers are not
aware of the complete business purpose of the service composition and
the different services involved. Only the composite service provider (e.g.
OTML or Vita Health Care Center) has information about the overall process.
The provisioning of the different atomic services contributes to the overall
goal of the composition. Due to the collaboration of services and the fact
that atomic services realize the composite service functionality, dependen-
cies exist between these services. In this thesis dependencies, which occur
between atomic services, are called horizontal dependencies. Dependen-
cies between atomic services and the composite service are called vertical
dependencies. Please refer to Section 4.2.2 for a definition of horizontal and
vertical dependencies.

As described before, in the IoS the provisioning of services is regulated by
SLAs. It is the responsibility of composite service providers to ensure that
the negotiated ASLAs and the CSLA enable the smooth collaboration be-
tween the different service providers as well as the successful provisioning
of the composite service.

2.5.1 Examples of Dependencies in Service Compositions

In the logistics and healthcare use cases dependencies occur regarding the
goods or data being handled by the different services, start and end times,
start and end locations, service price, and the quality of service. These
aspects are regulated by SLAs. The following examples briefly illustrate
different types of dependencies that occur in the two use cases.

• Resource dependency: If one of the logistics service providers loses
a part of the goods being transported, subsequent service providers
will be affected. Furthermore, the goods will not reach the destina-
tion, i.e. the composite service is affected as well. Resource depen-
dencies also exist in the healthcare scenario. If the Blood Examination
service fails to provide examination results, this information cannot
be used during the evaluation of all examination results.

• Time dependency: The late delivery of goods by AutoTrans DD af-
fects the start time of the Warehouse Dresden service. Another exam-
ple of time dependency would be the renegotiation of the start time
of the composite service Stationary Patient Checkup by the customer.
This would affect the start time of the Patient Admission service.

• Location dependency: In the logistics use case a location dependency
exists, for example, between the delivery location of the composite
service OTML Trans World and the Eastern Truck US service delivery

2.5 Introduction of Service Dependencies 25

location. If the customer changes the delivery location of the com-
posite service, the delivery location of Eastern Truck US also needs to
be adapted. In the healthcare use case a similar location dependency
exists between the Patient Transport end location and the location of
the Expert Examination service.

• Price dependency: The subcontracted logistics provider Truck DD
wants to renegotiate the price of its service. This affects the price of
the composite service offered by OTML.

• Quality of service dependency: An example of a QoS dependency
is the maximum temperature during the transportation process. The
composite service maximum temperature depends on the maximum
temperature of the different atomic services.

2.5.2 Requirements for a Solution

In this thesis an approach will be presented that supports the manage-
ment of dependencies between services in service compositions. Depen-
dencies between services are analyzed at design time. They are captured
in a dependency model. The dependency model contains explicit depen-
dency information. This information is used during service execution to
evaluate the effects of renegotiation requests and SLO violations on other
services. Thus, it supports the composite service provider to manage the
service composition. The approach realizes the management of dependen-
cies between atomic services as well as between atomic services and the
composite service.

As a base for the development of the dependency management approach a
number of requirements were identified. They were mostly derived from
the described use cases and the dependency examples as well as from the
four research questions. The requirements concern the representation of
dependencies (dependency requirements - DR), the overall dependency
management approach (management approach requirements - MAR), and
general requirements (GR).

Requirements Regarding Dependency Representation

A number of requirements were identified with respect to the representa-
tion of dependency information in a dependency model.

DR1: Dependencies need to be expressed with a granularity of single

service properties.

26 Foundations and Requirements Analysis

Dependencies between services occur with respect to different service
properties such as QoS parameters or resource, time, and location con-
straints. While it is sufficient for some application areas of service depen-
dencies to state that two services are dependent on each other (please com-
pare [ZBH08]), this is not the case in the problem domain handled by this
thesis. In order to be able to evaluate the effects of violations of service
provisioning and renegotiation requests, it is necessary to express the de-
pendencies between services at the level of service properties. This is due
to the fact that violations and renegotiation requests occur with respect to
single service properties. The violation or renegotiation of a single service
property does not necessarily affect the dependent service as a whole but
its corresponding service property.

DR2: The representation of dependencies needs to support the expres-

sion of multiple dependencies between two services.

The dependencies between services are captured with regard to single ser-
vice properties (compare DR1). Two services can depend on each other
with regard to multiple service properties. Each dependency needs to be
captured in the dependency model.

DR3: The representation of dependencies needs to support the expres-

sion of multiple dependencies of the same type.

One service can depend on different services with regard to the same ser-
vice property. Each dependency needs to be captured in the dependency
model.

DR4: The representation of dependencies needs to support the expres-

sion of type-specific dependency descriptions.

Dependencies may require a more detailed description which helps to au-
tomate the handling of related events at runtime. The description of de-
pendencies is type-specific.

DR5: The representation of dependencies needs to support the expres-

sion of dependencies between services with 1:1 and 1:n relationships.

A single service may depend on one service (1:1) or multiple different ser-
vices (1:n) with regard to a specific property.

DR6: The representation of dependencies should support the automatic

evaluation of dependencies.

The dependencies between services are captured for the purpose of sup-
porting the determination of effects of SLO violation and SLA renegotia-
tion events. In order to support the automatic evaluation of these events,
the dependencies need to be expressed in a suitable way, which supports
the automatic evaluation by a software component.

2.5 Introduction of Service Dependencies 27

Requirements Regarding the Dependency Management Approach

This section describes requirements which concern the overall approach for
managing service dependencies.

MAR1: Dependencies between atomic services need to be managed.

Different services within a service composition collaborate to achieve the
functionality of the composite service. Dependencies occur between these
services with regard to time and location constraints as well as handled
resources.

MAR2: Dependencies between atomic services and the composite ser-

vice need to be managed. Each service within a service composition con-
tributes to achieving the objective of the composition. Thus, dependencies
occur between the atomic services and the composition.

MAR3: Dependencies between services, which are directly or indirectly

connected, need to be managed.

Dependencies between atomic services do not only occur between services
which are directly connected via a control flow in a process, but between
services distributed over the entire process.

MAR4: The approach should support application domain experts in their

work.

The goal of managing service dependencies is to support the creators of
composite services during the management of their service compositions.
The creators of service compositions are experts from a certain application
domain (e.g. from the field of logistics). The approach needs to take into
consideration that these domain experts may not have a profound back-
ground in any field (e.g. computer science) other than their application
domain.

General Requirements

A number of general requirements for the approach were identified:

GR1: The work necessary to model service dependencies at design time

should be minimized.

At design time, when the service composition is created, the information
regarding the dependencies of services within that composition needs to
be analyzed. A good solution needs to minimize the work overhead for the
user in order to maximize its benefit. If a solution is too complex or too
time consuming users will disregard it.

28 Foundations and Requirements Analysis

GR2: The completeness of the recognized dependencies needs to be as-

sured.

The analysis of service dependencies must deliver a complete list of the
discoverable dependencies. That means, if a certain type of dependency
can be discovered, then all of these specific dependencies, which exist in a
composite service, should be discovered. If the service dependencies were
to be discovered only partially, the system would be more difficult to use.

GR3: The effects of SLO violations as well as SLA renegotiation on other

services need to be determined automatically.

The evaluation of whether the occurrence of SLO violations and SLA rene-
gotiation have effects on other services needs to be executed upon the oc-
currence of such events. A solution should support the user in determining
effects on other services more efficiently. Thus, an automatic approach is
necessary, which is triggered by the occurrence of the respective events.

GR4: The approach should be flexible enough to be applicable for ser-

vices from different application domains.

On internet service marketplaces services from different domains are
traded. The creation of service compositions independent of the domain
as well as the combination of services from different application domains
will enable innovative solutions. The management of such composite ser-
vices is highly relevant for the providers of service compositions.

GR5: The approach should be integrated with the methodology and

toolset for developing and trading services in the Internet of Services.

In order to make the vision of tradable services come true a methodology
and tools for creating services and service compositions as well as runtime
support for service provisioning and monitoring are developed. The ser-
vice engineering methodology and the tool chain enable the creation and
description of services, their deployment to and offering via a service mar-
ketplace, the composition of services of different providers to form business
processes, and the distributed provisioning of services and their monitor-
ing. The management of dependencies between services is a part of this
overall approach. Thus, the proposed approach needs to be integrated with
the IoS methodology and infrastructure.

GR6: The approach should be independent of a specific SLA manage-

ment approach.

Different approaches supporting the management of SLAs exist (e.g.
[LDK04, BPSMS07, AF08, LF08]). It should be possible to apply the service
dependency management approach to enhance the functionality of differ-
ent SLA management approaches instead of designing it to be applied with
one specific approach.

2.6 Summary 29

2.6 Summary

This chapter introduced the vision of the Internet of Services where services
are seen as tradable goods offered and purchased via internet service mar-
ketplaces. To enable this vision there is a need for service descriptions to
express what a service does and under which legal conditions and quality
of service it can be provided.

Service level agreements were introduced as a means for regulating ser-
vice provisioning. They represent a formal contract negotiated between a
service provider and a consumer. During service provisioning the moni-
toring of SLAs is important. It makes violations of SLAs visible to service
providers and consumers.

This chapter also introduced two use cases from the logistics and healthcare
domains. These composite business services are examples of tradable ser-
vices. Based on these two use cases the notion of a service dependency was
introduced and illustrated by different examples. In the context of the IoS
services are composed to form business processes, which fulfill complex
tasks. To do so, they implicitly collaborate. As part of this collaboration
services may depend on other services, i.e. failure or change of one ser-
vice leads to failure or change of other services. The active management of
such dependencies is a task of the composite service provider. Dependency
management is important to ensure the provisioning of the composition.

This thesis describes a management approach for service dependencies in
complex business processes. It supports the work of composite service
providers. The approach was developed with the goal to fulfill the require-
ments that were derived from the two use cases. These requirements serve
as a basis for evaluating the service dependency management approach in
Chapter 5.

3
Related Work

In this chapter various technologies and approaches related to the core con-
cepts of this thesis are discussed. Section 3.1 describes different technolo-
gies enabling the formalization of service level agreements. Related to that,
different approaches to negotiating and monitoring SLAs are presented in
Section 3.2. In Section 3.3 existing work about the analysis, representation,
and management of dependencies is discussed. Each approach is discussed
with regard to the dependency management concepts presented in this the-
sis. Finally, the related work discussion is summarized in Section 3.4.

3.1 Formalizing Service Level Agreements

Service level agreements are formal contracts negotiated between a service
provider and a service consumer (see Section 2.2). Traditionally, service
level agreements were specified using natural language [BLM08, LSE03].
In order to support the automation of SLA handling, a formal represen-
tation of service level agreements is needed, which can be evaluated by
computers. During the last years a number of technologies for the formal
specification of service level agreements were developed.

3.1.1 First Research on SLA Specification

The Web Service Level Agreement (WSLA) language and SLAng were two
early approaches to specifying SLAs. The WSLA language was developed

3.1 Formalizing Service Level Agreements 31

by IBM [LKD+03] as a SLA specification language covering the creation,
negotiation, and monitoring of SLAs. A WSLA document contains three
main sections:

• Parties: Information regarding the signatory parties (i.e. provider
and consumer) as well as supporting parties (e.g. third party moni-
toring service) is listed. The interfaces provided by the different par-
ties are described.

• Service Definition: Service level parameters are described for the op-
erations provided by the different parties. This includes information
regarding how the respective information is measured or computed
at runtime.

• Obligations: Service level objectives present guarantees of SLA pa-
rameters, which were specified in the service definition section. Ac-
tion guarantees describe actions that need to be performed, e.g. when
an SLO has been violated.

The further development of WSLA was stopped in favor of the WS-
Agreement specification for which WSLA served as a basis.

SLAng is a formal XML-based language enabling service level specification
with regard to the quality of service attributes. It was developed as part of
the TAPAS project [LSE03]. SLAng covers the specification of agreements
on different layers ranging from the network and hosting layers to the ap-
plication layer. In the SLAng approach one or more SLAs are embedded in
a SLA contract, which provides information about the (legal) parties, an op-
tional trusted third party and the digital signatures of the parties. Thus, the
SLA contract provides a legally binding frame for service level agreements.
The SLA contains three sections:

• End-point description: Provides a description of the location and fa-
cilities of contracting parties.

• Contractual statements: Presents information like time of validity of
a SLA, pricing and penalty information.

• Service level specifications: Description of quality of service at-
tributes and values.

The SLAng language is not being developed any further.

3.1.2 Web Service Offerings Language

The Web Service Offerings Language (WSOL) was developed as an exten-
sion of WSDL by Tosic et al. [TPP02]. It allows the creation of different

32 Related Work

service offers by a service provider for its customers. A service offering is
described as “. . . a formal representation of one class of service of one Web
Service . . . ”. A service class is created by varying different properties (e.g.
QoS, price and payment method, consumer rights) of a service.

WSOL allows the description of consumer and third party information,
pre- and post conditions of service execution, constraints for different ser-
vice parameters, and related service offers. However, it does not support
negotiating an offer. Instead, a service consumer can select an available
offer [TMPE04].

3.1.3 WS-Policy

The Web Services Policy framework is a W3C Recommendation currently
available in version 1.5 [VOH+06]. It allows the specification of require-
ments or capabilities of e.g. Web service endpoints, messages, or opera-
tions. A policy may contain a set of such requirements or capabilities. They
are concerned with aspects such as security policies or reliable messaging.
The explicit description of policies is not part of the specification. Specific
service description languages need to be applied.

The goal of WS-Policy is not exactly the same as that of different SLA ap-
proaches. A major difference is that SLAs are typically negotiated between
two parties. Policies, as described by WS-Policy, are not negotiated, but
the specified requirements and capabilities of two parties are compared.
If a match is found between the requirements and capabilities of the two
parties, the service consumer may utilize the service. However, since the
functionality provided by the WS-Policy framework is still similar to that
provided by different SLA approaches, it is listed here to provide a better
overview of related approaches.

3.1.4 Rule-Based Service Level Agreements

In [Pas05] the Rule-Based Service Level Agreements (RBSLA) language is
presented. It is an approach to expressing service level agreements as rules
based on formal logics. It provides a formal basis for expressing SLAs,
enabling machine readability and SLA monitoring by a rule engine.

RBSLA is based on the RuleML language, which is an XML based rule lan-
guage driven by the Rule Markup Initiative [Ini09]. The approach extends
RuleML with constructs, which are needed for the formal description of
service level agreements. An example are event-condition-action rules en-
abling the automatic reaction to occurring events.

3.1 Formalizing Service Level Agreements 33

In order to support SLA specific vocabulary (terms such as provider, con-
sumer, metric, . . .), an ontology was developed. The respective types can
be referenced from within the RBSLA document.

Due to RBSLA’s formal and logic base these SLAs can be monitored auto-
matically. RBSLA instances are not directly executable but are translated
into an executable form in order to be monitored by rule engines. This is
an advantage over other approaches, where it is necessary to write specific
code, which extracts SLA information from negotiated SLAs and evaluates
measured information based on the extracted SLA information during the
monitoring process.

While RBSLA defines a language for expressing service level agreements it
does not provide a protocol for SLA negotiation.

3.1.5 WS-Agreement

WS-Agreement is a specification from the Open Grid Forum [ACD+07].
It defines a language and protocol for the offering of capabilities by ser-
vice providers, the negotiation of agreements between service consumers
and providers, and for monitoring the compliance with these agreements.
While the WS-Agreement specification provides a structure for SLA doc-
uments, it does not specify which aspects of a service are described and
how. This needs to be handled by a specific language for service descrip-
tion. This is a major difference compared to WSLA, SLAng, and RBSLA.
WS-Agreement enables the use of a domain specific service description lan-
guage for specifying the single aspects of the service. The WS-Agreement
specification defines three different types of documents involved in the ne-
gotiation process. In the following sections the different documents and
their structure are explained. Following that the negotiation procedure will
be outlined, thus also illustrating the purpose and usage of the different
documents.

Agreement Structure

There are three different documents that are involved in the negotiation
process: the agreement template, the agreement offer, and the agreement.
The general structure of these documents is very similar. All of them con-
sist of a context and terms section. The terms section contains the service
description terms and guarantee terms subsections. In addition the agree-
ment template contains the agreement creation constraints section. Dur-
ing the negotiation process the agreement creation constraints section is
dropped. Information is added to or changed in the other sections. Figure
3.1 shows the structure of the WS-Agreement template.

34 Related Work

• Agreement Context: Specification of information about the involved
parties and their roles (agreement initiator or responder) as well as
the time period validity of the agreement.

• Terms: Description of what the service will provide and a number
of guarantees regarding the service quality specified in the form of
service level objectives.

• Agreement Creation Constraints: Specification of rules for the cre-
ation of a valid agreement offer from the agreement template.

Agreement Template

Context

Terms

Service Description Terms

GuaranteeTerms

Agreement Creation Constraints

Figure 3.1: SLA template structure

Agreement Negotiation Process

A SLA agreement is created through negotiation between an agreement
initiator and a responder. The starting point of the negotiation procedure is
a request for an agreement template, which contains information regarding
the service level available for a service. There are two options regarding
who can offer agreement templates.

1. Agreement templates may be made available by an agreement provi-
der in order to offer services. In that case the agreement provider acts
as the service provider. The service consumer (acting as agreement
initiator) requests the template in order to find out under which ser-
vice levels a service is offered.

2. Alternatively, a template may be used by a service consumer to de-
scribe which service it would need. In this case the agreement initia-

3.1 Formalizing Service Level Agreements 35

tor (the service provider) requests from the agreement responder (the
service consumer) which services it needs.

It becomes clear that the two roles involved in the process of establishing
an agreement, the agreement initiator and the agreement provider, should
not be confused with the service provider and the service consumer roles.
Both, service provider and consumer can take either role in the course of
creating an agreement. Depending on which role the agreement initiator
has, the negotiation process proceeds as follows:

• Case 1 - service consumer acts as agreement initiator: The service con-
sumer requests a template from the service provider, which acts as
agreement provider in this case, to find out which services it offers.
The service provider returns an agreement template. Based on the
agreement template the service consumer creates an agreement offer
by adapting the template according to its needs and the rules speci-
fied in the template. The agreement offer is then sent to the agreement
provider which will either accept or reject it. In case of the agreement
offer being accepted an agreement is created based on it.

• Case 2 - service provider acts as agreement initiator: The service
provider may initiate the negotiation process by requesting from the
service consumer what type of service it needs. The service consumer
returns an agreement template stating its needs. From this agreement
template the service provider will create an agreement offer suggest-
ing what kind of service it could offer and will send it to the con-
sumer. Finally, the service consumer will either agree to the proposal
or reject it.

The SLA negotiation procedure between the agreement initiator and re-
sponder is illustrated in Figure 3.2.

3.1.6 Discussion

The previous section presented a short overview of approaches to specify-
ing service level agreements and policies for services. WSLA and SLAng
are two early approaches to SLA handling, which are not being developed
any further. WS-Agreement is being actively developed by the Open Grid
Forum. Compared to WSLA and SLAng it has the advantage of flexibility
with regard to the language used to describe the service and its properties.
It thus enables the application in different service domains. Two alternative
approaches, RBSLA and WSOL, offer capabilities to express SLAs or offers,

36 Related Work

Agreement
Provider

Agreement
Initiator

Template

getTemplate(serviceKey)

createAgreementOffer

result

createAgreement(Offer)

evaluateOffer(Offer)

Figure 3.2: WS-Agreement negotiation

but do not provide support for SLA negotiation. Thus, for the work pre-
sented in this thesis, WS-Agreement is applied as a language for specifying
and negotiating SLAs.

The establishment of SLAs has its focus on the relationship of two or some-
times three parties. All parties are involved in the same single interaction.
In complex business processes where the creator of the service composition
maintains contracts with the providers of the single services, dependencies
do not only occur between the composite service and the atomic services,
but also between the atomic services of the composition. Means for describ-
ing these relationships are not supported by SLA languages. This is due to
the fact that contracts are supposed to regulate the interaction between two
parties, not the complex construct of contracts in a service composition. An
overview of the different approaches is presented in Table 3.1.

3.2 Approaches to SLA (Re-)Negotiation and Monitoring 37

Table 3.1: Approaches to formalizing SLA information
Approach Description Negotiation Dependencies

WSLA
[LKD+03]

Formalizing and negoti-
ating SLAs

+ -

SLAng
[LSE03]

Formalizing SLAs - -

WSOL
[TPP02]

Formalizing SLAs - -

WS-Policy
[VOH+06]

Specification of service
capabilities and require-
ments

- -

RBSLA
[Pas05]

Formalizing SLAs - -

WS-
Agreement
[ACD+07]

Formalizing and negoti-
ation of SLAs

+ -

Legend: Yes (+), No (-)

3.2 Approaches to SLA (Re-)Negotiation and Moni-

toring

In Section 3.1 an overview of languages for expressing service level agree-
ments was provided. SLAs are negotiated prior to and monitored during
the provisioning and consumption of services. The processes of SLA ne-
gotiation and monitoring, as well as related management tasks are sup-
ported by a variety of SLA management frameworks. In this section dif-
ferent frameworks providing functionality for negotiating, renegotiating,
and monitoring service level agreements are described. For each approach
a brief discussion is provided regarding its relation to the handling of SLAs
and the management of dependencies between services.

3.2.1 WSAG4J

WSAG4J is an implementation of the WS-Agreement specification. It is
being developed by Fraunhofer SCAI [Wae08]. WSAG4J provides infras-
tructure components for agreement providers and consumers supporting
the negotiation of SLAs as well as the retrieval of information about nego-
tiated SLAs. The different infrastructure components are freely available
for usage in SLA projects. However, the extension of WSAG4J with other
functionality is a major effort. One example of an extension would be the
support for SLA template deployment from a tool for designing SLA tem-

38 Related Work

plates. SLA templates can be created during the design process of a service
(compare Section 4.5.1). The deployment of a SLA template from the design
tool would allow a better integration with the SLA infrastructure.

3.2.2 Cremona

Cremona [LDK04] is a middleware, which supports the negotiation, moni-
toring, and management of WS-Agreement-based service level agreements.
It was developed by IBM. The provided functionality supports both parties
involved in the service provisioning and consumption process, i.e. the ser-
vice provider and the service consumer. The Cremona system architecture
consists of three different layers providing different functionality, as well
as interfaces, which can be implemented by custom implementations.

The Agreement Protocol Role Management (APRM) provides functional-
ity for the agreement initiator and the agreement responder focusing on
agreement related aspects. On the agreement provider side the Agree-
ment Factory acts as an access point for the creation of new agreements
from templates. Agreement templates, as well as negotiated agreements,
are held in respective repositories. Information about the negotiated terms
and the agreement fulfillment status at runtime is provided. Also available
are interfaces for agreement status monitoring, decision making regard-
ing the acceptance or rejection of agreement offers, and information prop-
agation regarding new agreements. On the agreement initiator side, the
Agreement Initiator component handles all necessary interaction for the
negotiation process. Information is kept regarding agreement factories that
can be contacted for requesting agreement templates and negotiating new
agreements. Also, a set of all negotiated agreements is available. The Tem-
plate Processor component supports the creation of agreement documents
based on templates. Finally, the Agreement Implementer interface serves
for propagating information regarding newly negotiated agreements.

The Agreement Service Role Management (ASRM) provides functional-
ity for the service provider and consumer roles. It is based on the
APRM, which provides agreement-related functionality to this service
provisioning- and consumption- related layer. The functionality supports
the provisioning of services based on agreements, i.e. different components
help to monitor or enforce that the service level objectives are met. The pro-
cess of evaluating whether or not new agreements can be accepted based
on the available resources of a system is also supported. For the service
consumer the ASRM provides information (e.g. endpoint references) re-
garding how to access a suitable service based on the current service re-
quirements of the consumer.

3.2 Approaches to SLA (Re-)Negotiation and Monitoring 39

The Strategic Agreement Management (SAM) layer supports the process
of selecting agreement templates for negotiation, adapting agreement tem-
plates according to available resources, and enforcement of negotiated
agreements during service provisioning. The functionality of this layer is
very domain specific. In many cases it may not be possible to automate
the functionality of this layer, but instead human involvement may be re-
quired.

The Cremona middleware provides support for SLA handling at different
layers including the agreement negotiation handling, SLA based service
execution, and strategic SLA selection and adaptation support. However,
it does not provide support for managing SLAs in service compositions.
No work was done with regard to handling the dependencies between ser-
vices.

3.2.3 The GRIA SLA Management Service

Within the SIMDAT project the GRIA SLA Management Service was devel-
oped [BPSMS07]. It provides functionality for SLA negotiation, the moni-
toring of agreed SLA, and the enforcement of SLA at runtime. The system
supports the handling of SLA at a technical as well as at the business level.
Technical SLOs cover aspects like CPU time and disk space consumed by
a service consumer while consuming a service. These are the resources
needed to provide a service to the consumer. In most cases service con-
sumers are not interested in these facts. They are rather interested in busi-
ness level aspects, which describe the actual task of the consumer. Business
level SLOs cover for example the number of rendered video frames. In
order for the GRIA system to support business level SLOs the concept of
private constraints was introduced. These are constraints, which are not
visible to the consumer and allow the SLA designer to map the business
level SLOs to technical SLOs, which can then be monitored by the system.
The GRIA system enables the service provider to determine thresholds for
the early detection of upcoming problems. Threshold violations can then
be handled by predefined management actions, such as the deployment of
further services for handling consumer requests or for the controlled viola-
tion of SLAs based on priorities of different SLAs. The GRIA SLA manage-
ment approach does not consider dependencies in service compositions.
If a SLO violation occurs, it is handled only with regard to the violating
service.

40 Related Work

3.2.4 SALMon

In [AF08] the SALMon architecture for monitoring SLAs is presented. It
consists of three main components: Monitors, Analyzers, and Decision
Makers. Monitors use Measure Instruments to measure different attributes
like availability and response time. This information is stored in a data
base. The Monitor manages this process. The Analyzer is responsible for
determining SLA violations. In case of a violation the Decision Maker is
informed. It is responsible for choosing a suitable strategy for reacting to
the SLA violation, e.g. by replacing the service which violated the SLA.
This approach is limited in so far as that it does not handle effects on other
services, but instead tries to apply strategies to fix problems only where
they occur, namely the service violating its SLA. This is not sufficient for
business services in many cases, as they affect other services as well.

3.2.5 ASG Project

Within the Advanced Services Grid (ASG) project a framework for the ne-
gotiation and monitoring of SLAs was created. Service level agreements
regulate technical parameters on different software stack levels including
the operating system, middleware, application server, or the application it-
self. Relevant attributes considered for negotiation and monitoring include
technical aspects such as response time, availability, and database connec-
tivity monitoring [FTS06]. In [Mom06] an architecture for adaptive service
management is presented, which incorporates the components SLA Man-
ager, Service Negotiation, and Service Monitor. They are responsible for the
negotiation and monitoring of SLAs. The presented work does not involve
the handling of service dependencies.

3.2.6 Renegotiation of Service Level Agreements

Earlier in this chapter the WS-Agreement specification was described (see
Section 3.1.5). While WS-Agreement allows for the negotiation of SLAs, it
does not provide a mechanism for the renegotiation of SLAs. However, this
would be useful in many situations.

In [FMA06] the authors present a formal description of the semantics of
different WS-Agreement elements and propose a number of extensions to
the WS-Agreement specification with regard to the valid states of agree-
ments (visible to the service consumer), services (e.g. running, finished),
and the single guarantees of an agreement, as well as transitions between
these states. The goal of the authors was to enable the renegotiation of WS-
Agreement-based SLAs. The WS-Agreement specification assumes that a

3.2 Approaches to SLA (Re-)Negotiation and Monitoring 41

SLA is violated as soon as a single guarantee is violated. The authors ar-
gue that the possibility to renegotiate the single violated guarantee of an
agreement would be beneficial, because it would enable the continuation
of the service provisioning. The states introduced by this extension enable
the specification that a guarantee is close to being violated and thus a reac-
tion is required. In the violated state a guarantee can be renegotiated while
this is not possible in the non_recoverable_violated state.

In [MTV09] the authors describe a framework for managing service level
agreements in service compositions. The focus is on the renegotiation of
SLAs. The renegotiation of SLAs is important to ensure the functioning of
service compositions, even in cases where a single service has problems to
fulfill its SLA. The authors emphasize that the violation of a single agree-
ment within a service composition may affect the other services in the com-
position. Thus, it is important that the SLAs in a composition are not nec-
essarily fixed, but instead should enable the dynamic renegotiation upon
changes in the context of the composition. Another reason for renegoti-
ation can be that one of the parties of a service composition (provider or
consumer) would like to change its contract, for example to receive a better
service quality [MTV09].

To enable renegotiation the authors present an extension to the WS-
Agreement framework. The proposed extension consists of two parts. On
the one hand the structure of an agreement is slightly adopted. A new
type of service level objective is introduced, which states that this SLO can
be renegotiated. It allows for the specification of time constraints regard-
ing when and how many times renegotiation is allowed. On the other hand
the negotiation protocol is extended. Means for creating a renegotiable SLA
are added, as well as functions to ask for the modification or the conditional
modification of a service level objective. The conditional modification re-
quest is necessary for cases where the modification of one contract can de-
pend on multiple other contracts. The presented renegotiation process for
simple scenarios (no dependency on other SLA) consists of two messages
exchanged between the two involved parties: the request to modify a SLO
answered by an accept or a reject message. For more complex cases where
multiple SLAs are affected, a conditional modification request is sent to all
parties. Only after a conditional acceptance by all parties will the initiator
of the renegotiation send a confirmation to all parties.

The work presented in [MTV09] provides a basis for the renegotiation of
SLAs in composite services. The authors emphasize the need to consider
dependencies between services in the composition. The presented protocol
for renegotiation considers this aspect. No work was presented with regard
to determining the dependencies between services. This is the task of the
dependency management approach presented in this thesis. It could help

42 Related Work

to automatically determine which effects the changes of one SLO in one
SLA have on other SLAs. The described work does not support that.

3.2.7 Discussion

There are a number of existing approaches supporting the negotiation,
renegotiation, and monitoring of SLAs. The different approaches are
mainly concerned with single SLAs instead of SLAs in service composi-
tions. An exception is the work by [MTV09], which explicitly considers de-
pendencies between services for the renegotiation of SLAs. However, nei-
ther the work presented by Modica et al. nor any of the other approaches
explicitly handles dependency information. Table 3.2 presents an overview
of the results of this section.

Table 3.2: Approaches to SLA (re-)negotiation and monitoring
Approach (Re-)Negotiation Monitoring Dependencies

WSAG4J [Wae08] + - -
Cremona [LDK04] + + -
GRIA [BPSMS07] + + -
SALMon [AF08] - + -
ASG [FTS06] + + -
Frankova et al.
[FMA06]

+ - -

Modica et al.
[MTV09]

+ - -

Legend: Yes (+), No (-)

3.3 Foundations and Approaches of Dependency

Management

In this section the foundations of dependencies are explored from a more
general perspective. Different types of dependencies, which have been
identified in earlier work, are described. Furthermore, the handling of de-
pendency information for different tasks along the lifecycle of a composite
service is outlined. This illustrates the range of tasks for which the han-
dling of dependency information is relevant. Finally, different approaches
for representing dependency information, as well as for the management
of dependencies, are described.

3.3 Foundations and Approaches of Dependency Management 43

3.3.1 Relevance of Dependencies

In the area of project management time management is an important as-
pect. A project consists of different activities. These activities depend on
each other for various reasons, e.g. it may be necessary to complete one
activity before another one can start. In [PMI08] three different types of de-
pendencies (mandatory, discretionary, external) are distinguished. Manda-
tory dependencies are based on natural constraints (e.g. one cannot paint
a house before it is built) or contractual requirements. Discretionary de-
pendencies are based on specific domain knowledge or experiences. They
express preferences that lead to a certain sequencing of activities, while
other activity sequences would also be possible. External dependencies are
requirements of project activities on activities, which are not part of the
project and usually cannot be controlled by the project team. When man-
aging a project it is important to consider these dependencies. The man-
agement of times of the different activities is required to ensure the com-
pletion of a project in a timely fashion. The management of times involves
the definition of activities, the sequencing of activities based on dependen-
cies among them, the estimation of resources and time needed for each
activity, and the development and controlling of a project schedule. For
the handling of time dependencies the sequencing of activities is of special
importance. It is defined as “. . . the process of identifying and document-
ing relationships among the project activities” [PMI08]. These relationships
can be seen as dependencies between activities. In order to illustrate project
activities and the relationships between them, project schedule network di-
agrams are used.

In their interdisciplinary study on coordination [MC94] Malone and Crow-
ston define coordination as “. . . managing dependencies between activi-
ties”. They provide an overview of dependencies and coordination ap-
proaches in different scientific fields including e.g. computer science, eco-
nomics, and organization theory. An important aspect, which they took
from the latter discipline, is that in cases where complex activities are di-
vided between different actors, there is a need for “. . . managing the inter-
dependencies among the different activities . . . ” [MC94]. Possible ways to
achieve this include the usage of a set of rules, the handling by a central
actor, and the individual handling by the participants of the complex activ-
ity. The approach presented in this thesis assumes the existence of a central
actor, namely the composite service provider, which is responsible for the
management of dependencies. This decision is based on two aspects. First
of all the individual actors of composite services do not have enough in-
formation about the overall activity they are involved in or the other actors
with whom dependencies exist. Thus, they are not in the position of man-
aging their dependencies with other entities. Secondly, the automatic de-

44 Related Work

termination of the right actions for resolving dependencies based on rules
is a complex task. It requires the handling of dependency information in
order to determine which activities depend on each other. Furthermore, it
requires the creation of a rule set for handling different situations. This the-
sis is concerned with the handling of dependency information. However,
it does not cover the creation and handling of rules for resolving problems
which occur due to dependencies. The presented approach supports com-
posite service providers to capture dependency information and to utilize
this information for the determination of the effects of events at the time of
service provisioning. Resulting actions can then be determined either by
human beings or by a rule set. The creation of suitable rules for the au-
tomatic determination of actions requires a detailed understanding of the
application domain. This is not the focus of this thesis.

In the area of service-oriented architectures dependencies occur between
services in service compositions. Information about dependencies is used
to achieve a variety of tasks throughout the lifecycle of a service.

• Creation of processes: In [Tol03] an approach to model service de-
pendencies is presented. The goal is to support a management system
to automatically create service flows based on dependency descrip-
tions. Other approaches to automatically create service compositions
are presented in [OS08] and [ZPPN07].

• Optimizing sequencing constraints: In [ZBH08] and [WPSB07] de-
pendencies between atomic services are used to optimize sequencing
constraints between diffent services. The authors argue that business
processes are often over-specified with regard to sequencing con-
straints. A proper understanding of the real dependencies (e.g. data
or control dependencies) enables an improved handling of services
during the analysis, modeling, and execution of business processes.

• Root cause analysis: In [BWRJ08] and [EK02] dependencies between
atomic and composite services are used to support root cause analysis
in the case of service failure. Dependencies between SLAs are moni-
tored with the goal to support the creator of a composite application
to analyze problems of the composite service.

• Management of service level agreements in service compositions:

Ludwig and Franczyk provided a solution for the management of
SLAs in service compositions. They handle dependencies between
atomic and composite services [LF08], which occur regarding differ-
ent quality of service attributes as well as pricing information. The
approach supports the composite service provider in validating the
different SLAs to assure a proper provisioning of the composite ser-
vice.

3.3 Foundations and Approaches of Dependency Management 45

• SLO Violation Effects: Dependencies between atomic services in ser-
vice compositions may lead to situations where problems during the
provisioning of one service influence or even render impossible the
provisioning of other services. In many cases those dependencies
cannot be avoided. Instead it is necessary to actively manage them.
The approach described in [BCD08] deals with effects of service fail-
ure on other services. Also, the approach described in this thesis sup-
ports the determination of SLO violation effects.

• SLA Renegotiation: There are situations where a stakeholder of
a service composition (atomic service provider, composite service
provider, service consumer) needs to renegotiate an existing SLA.
This is the case when some replanning takes place at the respective
stakeholders side. Here it is important to identify the potential ef-
fects of renegotiation on other SLAs within the service composition
before renegotiation is executed. The evaluation of renegotiation re-
quests is supported by the approach presented in this thesis. To the
best knowledge of the author no other approach handles this issue.

3.3.2 Types of Dependencies

There are different types of dependencies that are distinguished by differ-
ent researchers. Malone and Crowston [MC94] describe different kinds of
dependencies and respective coordination approaches, which are applied
in different scientific fields (e.g. economics, social sciences, computer sci-
ence) to manage these dependencies.

• Shared resources: This type of dependency occurs when different
activities need to use the same limited resources such as processor
time or storage space. The management of resource dependencies
can be realized by mechanisms for allocating the limited resources to
the different activities.

• Producer / consumer relationship: When an activity A1 has a need
for physical goods or information, which are the outcome of a dif-
ferent activity A2, the consumer A1 is dependent on producer A2.
Producer / consumer relationships can be coordinated e.g. by noti-
fication strategies, where the producer informs the consumer that it
finished its task.

• Simultaneity constraints: Two activities can be dependent on each
other with regard to the time when they take place. They can be re-
quired to happen at the same or at a different time. The coordination
of simultaneity constraints can be realized e.g. by a suitable schedul-
ing mechanism.

46 Related Work

• Task / subtask dependency: This type of dependency occurs when
the achievement of a complex activity is realized by the execution
of different activities. According to Malone and Crowston, suitable
coordination mechanisms for handling task / subtask dependencies
are task decomposition or goal selection mechanisms.

Wu et al. categorize different dependency types that occur in business pro-
cesses [WPSB07]:

• Data dependencies: Data dependencies occur when a consumer of
data is dependent on the provisioning of data from a producer.

• Control dependencies: These dependencies occur when the execu-
tion of a part of a process is dependent on a flag (i.e. the value of a
variable).

• Service dependencies: The interaction between a process and a re-
mote service defines service dependencies. They may, for example,
require the scheduling of a listener for an asynchronous service call
or the sequential calling of different ports as part of the service inter-
action.

• Cooperation dependencies: In order to achieve a certain goal, differ-
ent activities (A1 and A2) need to cooperate. In case there are con-
straints regarding their synchronization (e.g. A1 before A2), which
are not covered through other dependencies, there is a cooperation
constraint.

While the work of Malone and Crowston is rather general and concerns de-
pendencies which occur in different scientific disciplines, the work by Wu
et al. is specific to business processes. Nevertheless, there are certain types
of dependencies which are very similar. Data dependencies form a sub-
set of producer / consumer relationships. Also, cooperation dependencies
cover similar aspects as simultaneity constraints.

The different types of dependencies, which are handled by the dependency
management approach presented in this thesis (see Section 4.2), overlap
partly with the dependencies discussed by Malone and Crowston. Re-
source dependencies are equivalent to the producer / consumer relation-
ship. Dependencies regarding start and end times of services correspond to
simultaneity constraints. Dependencies regarding the location, price, and
quality of goods transport are not covered by the work of Wu et al. or
Malone and Crowston.

3.3 Foundations and Approaches of Dependency Management 47

3.3.3 Approaches to Handling Dependencies

Various approaches to handling service dependencies exist in scientific lit-
erature. A brief overview regarding the different purposes for handling
dependency information was presented in Section 3.3.1. In the following
sections different approaches, which are more relevant for this thesis, are
presented and discussed with regard to the core contributions of this thesis.
The different approaches vary regarding the dependencies they handle (i.e.
horizontal or vertical) as well as the purpose of handling dependency in-
formation. A further difference is the approach for capturing dependency
information, e.g. via modeling or discovery of dependency information.

HP Discovery and Dependency Mapping

The Discovery and Dependency Mapping (DDM) is a software tool devel-
oped by Hewlett-Packard [HP08]. It supports change management in IT in-
frastructures. Together with the HP Universal Configuration Management
Database (UCMDB), it is a part of the Predictive Change Impact Analysis
solution.

It enables the discovery of components in an IT infrastructure as well as
dependencies between the different components. Dependencies occur be-
tween components on the same or on different levels of the network stack.
Examples of inter-dependent components include business applications,
J2EE and .NET components, databases, storage devices, and network ports.

Dependencies are discovered by running different types of queries against
standard interfaces of the system to be analyzed [HP07]. This way, depen-
dencies such as “infrastructure monitor relationship” or “DB Client” can be
discovered. In collaboration with the UCMDB, impact analysis functional-
ity for planned changes to the infrastructure is provided.

The DDM and UCMDB functionality differs from the work presented in
this thesis regarding several aspects. DDM and UCMDB target at provid-
ing impact analysis functionality to manage changes in the infrastructure,
whereas the dependency management approach aims at supporting com-
posite SLA management. Thus, the basic goals of the two approaches are
fundamentally different. Furthermore, there is a difference in the depen-
dency information that is handled. DDM and UCMDB handle component
dependencies such as “infrastructure monitor relationship” or “DB Client”.
The dependency management approach introduced in this thesis handles
detailed dependency information regarding services and their SLAs by de-
scribing time, location, resource, pricing and QoS related dependencies.
Finally, the dependency discovery approach of DDM differs from the de-
pendency management approach. Instead of exploring dependencies in

48 Related Work

an IT infrastructure by sending queries to its components, the dependency
management approach analyzes composite service workflow descriptions
and SLA information.

Dependency Analysis Based on Message Logs

In [BCD08] the authors present an approach for the discovery of service
dependencies for the management of a service-oriented architecture. They
argue that knowledge about service dependencies is fundamental to enable
the determination of effects of service failure on other services in a compo-
sition as well as for the analysis of the root-cause of problems. The work
is presented in the context of the HP SOA Manager1, which enables the
handling of dependencies but requires the manual specification of depen-
dencies.

The suggested approach enables the analysis of logged messages between
services. A number of assumptions have been made regarding the mes-
sages being analyzed. One assumption is that there is no information inside
the messages available which enables their correlation. Also, the analysis of
information in the message body is disregarded due to the high workload
for logging this information. Furthermore, for a message only limited in-
formation regarding its origin and destination is available (e.g. IP address
info), but no detailed information regarding the services. Finally, it should
be possible to consider dependencies with services, which are not running
in a managed container, but are rather legacy systems wrapped by a Web
service interface. Thus, a modification of the messages is not possible.

The discovery of dependencies consists of the following four steps:

• Analysis of dependencies between messages: For the analysis of
causal dependencies between messages the authors present three dif-
ferent approaches. The first approach considers the probability that
a message was sent based on the fact that another message was sent
before, taking into consideration a certain time window. The second
approach assumes a statistical distribution for the duration of service
executions and analyzes in how far the distribution of time differ-
ence between two messages fits the service execution time distribu-
tion. The last approach computes a histogram for all message pairs
with respect to the time difference between the two messages. The
assumption is that if few time difference intervals occur with a high
probability then these two messages are likely to be dependent.

• Dependency graph construction: A dependency graph is con-
structed from the analyzed data. Services are represented as nodes.

1http://h20229.www2.hp.com/products/soa/

3.3 Foundations and Approaches of Dependency Management 49

Edges between the nodes represent the dependency. These depen-
dencies are annotated with probabilities for the level of confidence.
This is necessary due to the fact that dependencies are not calculated
with absolute certainty.

• Dependency graph reduction: As a next step the dependency graph
is reduced by applying a threshold to the confidence levels. All edges
with a lower confidence level are removed.

• Frequent path determination: Based on the dependency graph and
the original log information paths of dependencies are created and
evaluated regarding the frequency of their occurrence. The deter-
mined paths represent patterns of identified Web service conversa-
tions, which can then be used to e.g. identify root-causes of problems.

The approach for analyzing dependencies based on message exchange in-
formation is very different from the approach presented in this thesis. It
assumes the execution of services as the basis for the analysis. This is, how-
ever, not feasible for the dependency management approach presented in
this thesis, since all dependencies should be captured prior to service exe-
cution. Also, a dependency graph should be able to distinguish dependen-
cies based on different SLOs in order to be able to determine the effects of
different SLO violations as well as renegotiation requests for certain SLOs.
That means that the representation of dependencies of the approach is not
powerful enough to fulfill all requirements discussed in Section 2.5. Fi-
nally, the overall approach presented by [BCD08] is not concerned with the
negotiation and renegotiation of SLAs.

Managing Service Dependencies in Distributed Systems

Ensel and Keller [EK02] introduce an approach to manage dependencies
between services (e.g. web application server, database, operating system)
in distributed systems. The goal is to support root cause as well as impact
analysis for service failure situations. Dependencies are represented in a
RDF based dependency model, which captures services and dependencies
along with their attributes. An architecture of a dependency management
system for querying dependency information from distributed managed
resources is also presented.

The approach to capture dependency information in a dependency model,
as well as the specific design of the model, is similar to the dependency
management approach presented in this thesis. But while the basic struc-
ture of the dependency model is similar to the metamodel presented in this
thesis (i.e. explicit representation of services, dependencies, antecedents,

50 Related Work

dependents), there are differences in the relevant attributes of the different
entities being modeled. This is due to the different domains of use (man-
aging services in distributed systems vs. composite service SLA manage-
ment). Also, the formalization of the dependency model is different. En-
sel and Keller use RDF (compare [BM04]) for representing the dependency
model instead of a XML Schema-based metamodel. Furthermore, there are
architectural differences. In the approach by Ensel and Keller the depen-
dency model is not stored in a central place, but is instead created from
dependency information available at the different managed resources, i.e.
each resource keeps information about its dependencies. This is different
from the approach presented in this thesis, where dependency information
is managed centrally by the composite service provider and the individual
services do not have detailed information about the context in which they
are provided. The reason for this is the assumption that a composite service
provider has no information about the inner functioning of services he con-
sumes. A further difference is that Ensel and Keller make no assumptions
with respect to the creation of the dependency model. The authors mention
a number of different existing approaches including explicit modeling of
dependencies or the discovery via monitoring the activity of service pairs
over time. This is, however, very different from the dependency discovery
approach presented as part of this thesis.

Scheduling Business Process Activities

Wu et al. present an approach for modeling and optimizing the synchro-
nization dependencies of activities in business processes [WPSB07]. A syn-
chronization model, which contains dependency information, is used to
support activity scheduling in business processes. The authors emphasize
that scheduling activities based on dependency information has the po-
tential to parallelize the execution of activities and thus improve business
process performance.

Dependency information, which is needed to create a dependency model,
is assumed to be available from design time constructs such as UML activ-
ity diagrams or other models as well as from domain experts.

The authors introduce four types of dependencies: data, control, service,
and cooperation dependencies. The different types of dependencies can
be explicitly modeled based on the DAG Synchronization Constraint Lan-
guage (DSCL). DSCL is a modeling language for the synchronization of ac-
tivities. Dependency information for each type of dependency is captured
in a separate model. The information about the different dependencies is
then merged into a single model and reduced to create a minimal set of
dependencies for a business process. When the different types of depen-

3.3 Foundations and Approaches of Dependency Management 51

dencies are captured, some of these dependencies may cause the same con-
straints on synchronization. The reduction process removes such depen-
dencies. The outcome is a minimal set of necessary dependencies which
results in a better handling, i.e. less resources are needed for the evalu-
ation of dependencies as well as for the management of the dependency
set. The DSCL representation of the minimal set of dependencies can be
transformed into a Petri Net representation for the validation of the de-
pendencies. The validated model is then used to create a BPEL process
description.

In the presented approach, the authors are concerned with dependencies
between the single services of a business process. Dependencies between
the atomic services and the composite service (i.e. the business process) are
not considered, though. Also, in the approach by Wu et al., dependencies
are explicitly modeled. The dependency management approach enables
the semi-automatic creation of a dependency model. Several types of de-
pendencies are discovered automatically. Another important aspect, which
distinguishes the work of Wu et al. from the work presented in this the-
sis, is the reduction of the set of dependencies, i.e. removing dependencies
leading to the same synchronization constraints. It is an important aspect
when applying dependencies for activity scheduling, which helps to op-
timize their handling. On the other hand, this hides the original source
of the dependency. While this information is not important for activity
scheduling, it is essential for the management of service compositions with
regard to service monitoring and SLA negotiation as well as renegotiation.
Furthermore, the representation of dependencies via synchronization con-
straints is not applicable for the dependency management approach. This
model can not hold all the information needed to manage composite ser-
vices.

Optimization of Sequencing Constraints

In [ZBH08] the authors discuss control and data dependencies in business
processes and argue that they form the basis for sequencing constraints
in business processes. However, business processes, e.g. in the form of
a BPEL process, are often overspecified with regard to sequencing con-
straints. Capturing the different dependencies in a suitable model and thus
having a clear understanding of the real dependencies would help to han-
dle these dependencies during modeling, analysis, and execution of busi-
ness processes.

The authors present an approach for deriving control dependencies
from semantically annotated business activities by evaluating their pre-
conditions and effects. Data dependencies are separated into mandatory

52 Related Work

and optional dependencies. Input and output parameters of business ac-
tivities comprise mandatory dependencies while data used for the evalu-
ation of conditions on business activities forms the basis for optional data
dependencies. Control and data dependencies are recorded in separate de-
pendency graphs. Direct dependencies occur when one business activity
directly depends on another. Indirect dependencies occur when a number
of direct dependencies lead from one business activity to another. As a next
step the different graphs are merged and optimized by removing double
dependencies (control and data dependency occurring between two busi-
ness activities) as well as direct dependencies which can be expressed by
indirect ones. The authors argue that control and data dependencies can be
used to support process modeling, as well as for identifying that a process
is overspecified (i.e. unnecessary sequencing constraints), and to help to
relax those constraints at runtime.

The approach is related to the dependency management approach with re-
gard to two aspects. First of all the approach captures the dependencies
between atomic services in a service composition. Secondly, the depen-
dency model creation occurs as an automated process at the design time of
the composition. However, Zhou et al. have a completely different goal.
They apply dependency information to relax sequencing constraints be-
tween services at runtime. The goal of the dependency management ap-
proach presented in this thesis supports SLA negotiation and the evalua-
tion of SLO violations and renegotiation requests with the goal to support
the management of the composition. The different goals bring along differ-
ent requirements for the dependency model as well as for the approach of
creating dependency model instances.

In order to capture the dependencies between services with the goal of sup-
porting business process modeling, analysis, and execution with regard to
relaxing sequencing constraints, it is necessary to capture dependency in-
formation on a service level. More detailed dependency information, e.g.
with regard to which data or precondition one service depends on another
one, is not necessary. However, in order to support e.g. SLA negotiation,
detailed information is necessary regarding the aspect by which two ser-
vices depend on each other. Only with this information is it possible to de-
termine the effects of specialized events, such as violations or renegotiation
requests of specific service attributes. Thus it is clear, that the dependency
model requires more detailed information.

The requirement for more detailed dependency information does not only
result in a more fine-grained dependency model, but also affects the depen-
dency model creation process. Zhou et al. propose a minimal dependency
model, which results from merging the independent control and data de-
pendency models. If one service depends on another one with regard to

3.3 Foundations and Approaches of Dependency Management 53

control and data dependencies, only the general information about an ex-
isting dependency is kept, while the detailed information for the sources of
these dependencies is disregarded. Applying this merging process to the
dependency management approach of this thesis would result in the loss
of important dependency information. If a data dependency is removed,
effects of violations or renegotiation requests with regard to this data de-
pendency cannot be determined any more. It is thus necessary to keep all
dependencies along with information about the dependency type for better
evaluation at runtime.

Furthermore, the two approaches differ concerning the information regard-
ing which dependencies exist, regarding the information which is repre-
sented in the dependency model, as well as the artifacts used for deter-
mining the dependencies. While Zhou et al. analyze control and data de-
pendencies this thesis is concerned with resources handled by a service,
time and location constraints, as well as the quality of service and pric-
ing information. In order to analyze the dependencies between services a
semi-automatic process was developed. It captures dependency informa-
tion based on SLAs and the BPMN process description of a service compo-
sition. Zhou et al. base their work on semantic service descriptions and a
BPEL process description.

Dependency Markup Language

The Dependency Markup Language (DML) is a language for specifying de-
pendencies between Web services [Tol03]. It was developed to provide an
alternative way of describing composite services. While a Web service in-
terface provides a fairly coarse grained description of a service, a BPEL de-
scription specifying the control flow of a Web service is a very fine grained
description. DML was developed to provide a solution with a granularity
between these two approaches. It models different types of dependencies
between services. The model of dependencies can then be used to support
tasks such as service coordination, discovery, and classification.

The DML was specified as a metamodel in the form of an XML Schema.
It has two main building blocks: the description of different dependency
types and the specification of a process. The dependency type descrip-
tion enables the modeling of different types of dependencies, which can be
used to describe the dependency between two services within a process,
e.g. temporal constraints such as strictSequence, task-subtask relationships,
and producer-consumer dependencies. A dependency type can be derived
from another one, which enables the specialization of dependencies. A
process allows the specification of different dependencies between the ele-
ments it consists of. Similar to dependencies, processes can specialize other

54 Related Work

more abstract processes. Thus, hierarchies of processes with different levels
of abstraction can be created.

A DML model can be used for the coordination of services by a manage-
ment system. Its task is to create a suitable service flow based on the mod-
eled dependencies. To enhance service discovery, the author suggests us-
ing the dependency model of a service to provide the user with information
about the internal functioning of the underlying process and the effects of
that on the user, e.g. which steps are to be executed at the beginning or later
in the process. This information may have an influence on the decision of a
user regarding whether or not to consume a service. Finally, a classification
of processes can be created. This is supported by the fact that processes can
be created as a specialization of other processes. This classification may
be useful information for the consumers of services when searching for a
certain kind of service.

The DML was developed to enable the modeling of dependencies between
the different services within a composition. This is different from the ap-
proach presented in this thesis, where dependencies between services are
captured in a semi-automatic approach. DML allows the capturing of dif-
ferent types of temporal dependencies, resource related dependencies, and
dependencies concerning the abstraction and refinement of processes. The
model is open in so far as that it allows the specification of new types of
dependencies besides the supported ones. However, the description of the
different dependency types is limited. Detailed specifications of depen-
dency description information are not modeled. However, this is a require-
ment for the dependency management approach presented in this thesis.
Finally, DML was developed with the goal of supporting service discovery
and coordination. The goal of this thesis is, however, to manage dependen-
cies in service compositions with respect to the negotiation, renegotiation,
and monitoring of SLAs. DML served as a basis for the development of
the metamodel, which is used in this thesis to model dependency informa-
tion. However, modeling constructs for the creation of processes was left
out while more detailed descriptions for dependencies were introduced.

Aggregation of QoS in Service Compositions

Cardoso et al. [CMSA04] present an approach for the calculation of QoS
properties of workflows from task QoS properties. Using the Stochastic
Workflow Reduction (SWR) algorithm, workflows can be reduced in a step-
wise process leaving only one remaining task with the QoS of the workflow
at the end of the process. Six different reduction rules are applied by the
SWR algorithm. They are called sequential, parallel, conditional, fault-tolerant,
loop, and network. The authors present formulas to calculate aggregated

3.3 Foundations and Approaches of Dependency Management 55

cost, time, and reliability of tasks for each of these reduction rules. As a
prerequisite the workflow under consideration needs to contain tasks that
have QoS estimates assigned to them. Furthermore, workflow transitions
between the different tasks have transition probabilities assigned to them.
Atomic QoS values, as well as transition properties, are used by the QoS
aggregation formulas during the workflow reduction process.

Jaeger et al. [JRGM04] present an approach to aggregating QoS proper-
ties (execution time, cost, encryption, throughput, uptime probability) of
atomic services in service compositions, which is very similar to the work
of Cardoso et al. [CMSA04]. The approach was developed to serve two ma-
jor purposes. On the one hand the selection of services during the process
of creating a service composition at design time requires the consideration
of the QoS values of the selected atomic services with respect to the QoS re-
quirements of the composite service. At runtime, on the other hand, a ser-
vice composition may be modified by adding or replacing services. Such
modifications also require the consideration of composite service QoS re-
quirements. Based on workflow patterns described by [VDATHKB03], the
authors define seven different composition patterns, including e.g. AND-
AND, OR-OR, Sequence, which are used to represent a composite service.
For each composition pattern a number of formulas are defined for aggre-
gating the different QoS properties. The composition patterns and associ-
ated formulas are used to calculate the composite QoS properties of a com-
posite service in a stepwise process. Services, which are connected via a
certain composition pattern, are aggregated to a single node. The different
QoS properties of the services are aggregated to a composite QoS value us-
ing the specific formulas associated with the composition pattern and the
respective QoS properties. During this process the graph of the composite
service is reduced to a single node, which has the composite QoS properties
assigned to it. The approach is illustrated in Figure 3.3. In a first step two
services connected via an AND-AND composition pattern are aggregated
followed by the aggregation of a Sequence pattern.

In [CP04] the authors present an approach to creating service composi-
tions under QoS constraints. The selection of atomic services occurs based
on QoS constraints, which enable fulfilling composite service QoS require-
ments. The approach for the calculation of composite service QoS proper-
ties is based on the work of Cardoso [CMSA04], with minor modifications
(e.g. replacing probability value for loop statements with concrete number
of loop executions). In order to find a valid selection of atomic services im-
plementing the composite service, the authors apply a Genetic Algorithm
approach. For each abstract service in a workflow a possible candidate is
selected from a set of available ones. The different composite QoS proper-
ties (e.g. cost, response time) are calculated. A fitness function is used to
evaluate the overall quality of the created composition in the light of the

56 Related Work

AND
Split

AND
Join

Figure 3.3: Aggregation of QoS (based on Jaeger et al.)

different QoS properties. Using the Genetic Algorithm different solutions
are found and compared with each other based on the fitness function.

The approaches developed by Cardoso et al. [CMSA04], Jaeger et al.
[JRGM04], and Canfora et al. [CP04] enable the calculation of different
composite QoS properties. All approaches cover QoS relationships be-
tween the composite service and its atomic services. These QoS relation-
ships (dependencies) play an important role for the management of depen-
dencies between services in service compositions. Thus, these works form
the basis for a part of the approach presented in this thesis. Dependencies
between atomic services within a composition are not handled by these ap-
proaches.

MoDe4SLA

The MoDe4SLA (Monitoring Dependencies for SLAs) approach presented
in [BWRJ08] was developed with the goal of supporting the creators of a
composite services to analyze problems of the composite service. The ap-
proach does not only support the monitoring of composite service SLAs,
which were established between the composite service provider and the
service consumer, but enables the analysis of why violations occurred with
regard to the atomic services forming the composition. In order to enable
this analysis, Bodenstaff et al. suggest the analysis of SLAs at design time
and the monitoring of dependencies based on event logs after the service
execution.

The MoDe4SLA [BWRJ08] approach supports the handling of dependen-
cies between a composite service and its atomic services. More precisely,
dependencies of the type response time and price are supported. For each
type of dependency and, thus, for the single service level objectives a sepa-

3.3 Foundations and Approaches of Dependency Management 57

rate dependency model is created. These models express on which atomic
services a composite service depends. They do not qualify how it depends
on them. The modeling of dependencies is realized by two domain specific
dependency modeling languages, which have only slight variations. Both
languages allow the modeling of constructs, such as service S1 depends on
service S2. The usage of the constructs AND as well as XOR enables the
modeling of a composite service depending on two or more services, or on
one service out of a set of services respectively.

In order to capture information regarding how a composite service de-
pends on different atomic services, the dependency models are refined to
an impact model. In order to achieve that, the different dependency mod-
eling constructs of the dependency models are analyzed. An equation for
calculating the impact of each node connected to the modeling construct is
inserted into the impact model.

To enable the evaluation of dependencies, monitoring information mea-
sured for the composite service, as well as for all atomic services involved
in the provisioning of the composite service, is applied. Based on the col-
lected monitoring information, the dependency models, and the impact
models, the approach allows the evaluation of how much each service con-
tributed to the success or failure of the composition.

The authors target the analysis of composite service execution and man-
agement of compositions. This enables composite service providers to re-
move unreliable services from a composition or to offer better QoS values
in SLAs. This is a different goal than the management of service composi-
tions with a focus on SLA negotiation, renegotiation, and monitoring.

The overall approach of MoDe4SLA, which allows dependency modeling
at design time and evaluation at runtime, is similar to the general approach
presented in this thesis. Nevertheless, there are many differences. In the de-
pendency management approach the dependency model is only partially
modeled, as other parts are generated automatically based on SLAs and
the process model of the composite service. Also, the evaluation of the de-
pendency model at runtime is done at the moment when SLO violations or
SLA renegotiation requests occur. In the MoDe4SLA approach the evalua-
tion is done after a period of time regarding which SLOs were agreed upon
(e.g. average response time=X within 1 month).

The types of dependencies supported by MoDe4SLA are also different.
It does not support dependencies between atomic services (i.e. time, re-
source, location dependencies).

58 Related Work

Adaptive SLA Management in Value Chains

In [KMK09] an architecture for the management of service level agree-
ments is presented. The focus is on SLA-based resource management in
hierarchies of agreements for services with individually negotiated SLAs.
The authors present an agent-based architecture consisting of resource
agents (resource providers), dispatcher agents (service providers), and cus-
tomer agents (customers). Resource agents encapsulate resources, e.g. a
bus for transporting people, which they offer to dispatcher agents. Dis-
patcher agents offer services to customers. These services are realized by
resources. Dispatcher agents manage the available resource offers from re-
source agents and service requests from customer agents and match them.
Customer agents request services from dispatcher agents.

Dispatcher agents cannot only offer resources which they manage them-
selves, but may subcontract other service providers to fulfill their contracts
with customers. To achieve that, they ask other service providers for an of-
fer, and evaluate the offers in order to find the most suitable offer according
to their needs.

SLAs are created in order to regulate the relationship between service
providers on the one side and customers (service provisioning), resource
providers (usage of resources), and service providers (subcontracting) on
the other side. A contracting component of the service provider handles
the creation of SLAs from received offers upon the selection of resources
and subcontracted services. Also the monitoring and billing of the con-
tracted services is handled by the dispatcher agent.

The communication between the different agents is realized by means of
web service standards. This enables the integration with SOA-based sys-
tems. The usage of agent technology allows the application of an agent-
based coordination mechanism for the negotiation of SLAs.

Dependencies between SLAs on different levels of value chains, i.e. verti-
cal dependencies, are handled. Dispatcher agents can react to changes in
customer requirements (e.g. the need for more transportation resources)
as well as to changes in resource provider’s and subcontracted service
providers capabilities (e.g. resource broken). The approach does not handle
dependencies between the different resource providers and subcontracted
services.

The authors do not present any work regarding the discovery of dependen-
cies. This is different to the dependency management approach presented
in this thesis. Also, Karänke et al. put the focus on different dependency
aspects. They support the handling of the underlying resources needed for
service execution (e.g. a bus to realize a transportation service) rather than
the handled resources of services (input/output).

3.3 Foundations and Approaches of Dependency Management 59

Composite SLA Management (COSMA)

One challenge which providers of composite services are facing is the man-
agement of SLAs negotiated between providers of atomic services and the
consumers of the composite service. This problem is described by Ludwig
and Franczyk [LF08]. The authors describe the COSMA (Composite SLA
Management) approach, which provides support for automatic manage-
ment of SLAs in service compositions.

The COSMA approach supports SLA management during the SLA lifecy-
cle [Lud09]. It covers the dependencies of QoS attributes as well as pricing
information between atomic and composite services within a service com-
position. The COSMA approach consists of three building blocks, namely
COSMAdoc, COSMAframe, and COSMAlife.

COSMAdoc is a document which is bound to one composite service and
used by different framework components during the SLA lifecycle. It con-
tains all atomic and composite SLAs of the service as well as dependency
information of different SLOs of these SLAs. The COSMAdoc contains the
following sections:

• Header: expresses generic meta information such as the owner of the
document instance, version information as well as information re-
garding languages and semantic models used within the document.

• ServiceComposition: presents the orchestration script of all services
within the composition which ". . . governs the mapping and depen-
dencies between SLA parameters of composite and atomic SLAs . . . ".

• SlaSetAssembly: contains all SLAs of the composite service

• SlaSetUsageValidation: contains constraints and requirements infor-
mation regarding all SLA document elements (not regarding the spe-
cific data instances).

• SlaSetDataValidation: allows the expression of constraints regarding
the data contained in the SLA (e.g. fixed value, boundaries for data
values). Constraints may be expressed by formulas for the aggrega-
tion of SLA parameter values from atomic SLAs to composite SLAs.
These formulas are expressed in a separate section and are referenced
from the SlaSetDataValidation section.

• AggregationFormulas: formulas expressing the calculation of com-
posite SLA parameters from atomic ones.

COSMAframe is a conceptual framework for managing the SLA lifecycle of
composite services. It describes different components, which are involved
in the handling of the SLA lifecycle:

60 Related Work

• COSMA Manager: triggers different lifecycle steps of the COSMAdoc
and provides validation functionality.

• COSMAdoc Creator: creates COSMAdoc instances based on a given
composition.

• COSMAdoc Integrator: integrates relevant SLA contents (parame-
ters) into COSMAdoc instances as well as restrictions based on con-
tained parameters.

• COSMAdoc Repository: provides the means for storing COSMAdoc
instances.

• COSMAdoc Validator and Violation Detector: provides validation
functionality for COSMAdocs and handles the evaluation of SLO
measurements. Violations of composite SLAs are determined based
on SLO measurements and aggregation formulas. Also suggests ac-
tions when SLA violations are detected.

COSMAlife describes different practices for the management of SLAs based
on COSMAdoc during its lifecycle. Three different lifecycle phases of the
COSMAdoc are described. During the creation and integration phase a
COSMAdoc instance is created from a template. Each COSMAdoc instance
is specific to its related service composition. The COSMAdoc instance is
then enriched with pre-set SLA data, information regarding validation and
constraints, and service composition information. During the negotiation
phase the concrete atomic services, which are to be used to implement the
composition, are determined. The validity of the COSMAdoc instance is
validated during the negotiation process to ensure that the negotiated pa-
rameters fulfill the constraints described in the COSMAdoc. Finally, during
the validation phase, the COSMAdoc instance is validated based on mon-
itoring data, which was collected during the process execution. In case of
detecting violations actions are determined for reacting to the violations.

The COSMA approach allows the handling of vertical dependencies be-
tween services. Dependencies occur with respect to QoS parameters of
atomic services and a service composition as well as price information. The
dependencies between these services are expressed via functions, which
form the basis for calculating QoS and price values of a composite service
from its atomic building blocks. COSMA does not support the handling
of horizontal dependencies between the atomic services of a service com-
position. In business service compositions horizontal dependencies play
an important role. They occur with regard to handled resources as well as
time and location constraints. Their handling is an important aspect, which
is one of the key contributions of this thesis.

3.4 Summary and Discussion 61

A further difference is the representation of dependency information. The
COSMAdoc captures all information including negotiated SLAs, composi-
tion script (i.e. workflow description), and dependency information in one
document. In contrast to that the dependency management approach pre-
sented in this thesis captures SLAs, composite service workflow descrip-
tion, and dependency information separately. This results in a better sep-
aration of concerns. It enables easier changes to the different parts of the
composite SLA management and dependency handling, e.g. using a differ-
ent format for expressing SLAs or extending the dependency model.

The COSMA approach is closely related to the work presented in this the-
sis. In fact, the automatic creation of calculation formulas was integrated
into the dependency management approach as part of the solution.

3.4 Summary and Discussion

In this chapter different approaches to formalizing service level agreements
were presented. None of the presented approaches offers functionality for
capturing information about service dependencies in service compositions.
Also most existing approaches to negotiating, renegotiating, and monitor-
ing SLAs do not consider dependencies between services. Some work ex-
ists (e.g. [LF08, KMK09, BWRJ08]) which deals with dependencies between
a composite service and its atomic services in the light of managing SLAs.
However, none of these approaches handle dependencies between differ-
ent atomic services in a service composition.

Several existing approaches support the discovery of dependencies. The
calculation of composite QoS values ([CMSA04, JRGM04, CP04, LF08]) also
serves as one building block of the dependency management approach.
The work by Zhou et al. [ZBH08] has some similarities to the discovery
of horizontal dependencies as presented in this thesis. However, the ap-
proach uses different artifacts for the discovery process. Furthermore, the
discovery process creates a reduced dependency model with only limited
dependency information. This is not sufficient to support the negotiation,
renegotiation, and monitoring of SLAs. Finally, the discovery process pre-
sented by Basu et al. [BCD08] is based on service runtime message informa-
tion. This is not feasible for the dependency management approach, since
all dependency information is needed at design time.

Table 3.3 gives an overview of the different approaches in relation to the
work presented in this thesis. It provides information regarding the cov-
erage of horizontal and vertical dependencies, the support for discovering
dependencies, and the types of dependencies which are supported.

62 Related Work

Table 3.3: Approaches for handling dependency information
Author Horizontal Vertical Discovery Dependencies

SLA management

This thesis + + + QoS, price, resource,
time, location

Ludwig
[Lud09]

- + + QoS, price

Karänke et al.
[KMK09]

- + - Resources for ser-
vice execution

QoS aggregation

Cardoso et al.
[CMSA04]

- + + QoS, price

Jaeger et al.
[JRGM04]

- + + QoS, price

Canfora et al.
[CP04]

- + + QoS, price

Root cause and impact analysis

Bodenstaff et
al. [BWRJ08]

- + - QoS, price

Ensel and
Keller [EK02]

+ - - general dependency

Basu et al.
[BCD08]

+ - + general dependency

HP (DDM)
[HP08]

+ - + infrastructure moni-
tor relationship, DB
client, . . .

Activity scheduling

Tolksdorf
[Tol03] classi-
fication

+ + - time, resource, re-
finement, . . .

Zhou et al.
[ZBH08]

+ - + data, control flow

Wu et al.
[WPSB07]

+ - - data, control flow

Legend: Yes (+), No (-)

4
A Concept for Managing

Dependencies of Business Services

In service compositions, dependencies exist between the different services.
These dependencies originate from the fact that services, which are as-
signed to a service composition, are implicitly collaborating while con-
tributing to the goal of the service composition. The providers of the col-
laborating services will not be aware of the different services and how they
are collaborating. In fact they may not even be aware that service pro-
visioning occurs as part of a composition. However, the composite ser-
vice provider creates the composition and is responsible for managing the
collaboration. This means, he creates the underlying process and selects
and integrates relevant services. He also negotiates SLAs with the service
providers, which regulate how each atomic service contributes to the com-
position. The SLA negotiated with the consumer of the composition guar-
antees which outcome can be expected from the service, the quality of ser-
vice provisioning, and its price.

The fact that service dependencies exist implies that they need to be man-
aged appropriately. The concepts presented in this thesis are concerned
with the management of service dependencies in the context of the han-
dling of SLAs within service compositions. Three different aspects are con-
sidered. First of all, service level agreements need to be negotiated in such a
way that proper collaboration is possible between the different atomic ser-
vices, the goal of the composition can be achieved, and the different SLAs
will be fulfilled. A second aspect is that problems during the provision-

64 A Concept for Managing Dependencies of Business Services

ing of one service may influence or even make impossible the provision-
ing of other services. It is the task of the composite service provider to
manage such situations. Finally, there are situations where a stakeholder
of the service composition (i.e. atomic service provider, composite service
provider, service consumer) needs to renegotiate an existing SLA. This is
the case when some replanning takes place at the respective stakeholders
side. Here it is important to identify the potential effects of renegotiation
on other SLAs before the renegotiation is executed.

This chapter describes the concepts for managing dependencies between
services in service compositions. As a first step, Section 4.1 outlines the
proposed dependency management solution. In Section 4.2 a formal defi-
nition for service dependencies is given. Furthermore, the properties of dif-
ferent types of dependencies are analyzed. As a third step, Section 4.3 dis-
cusses the implicit representation of service dependencies in service level
agreements. A metamodel is presented for capturing service dependencies
explicitly. The implicit and explicit representation of dependencies form
an important basis for the management of dependencies. In Section 4.4
the dependency management approach is discussed in detail. Finally, Sec-
tion 4.5 presents an architecture, which realizes the presented dependency
management concepts.

4.1 Solution Overview

In order to manage the dependencies in service compositions an approach
was developed, which supports composite service providers in their work.
The dependency management approach is illustrated in Figure 4.1.

Information, which is relevant for the management of dependencies, is con-
tained in the workflow description of the composite service as well as in the
negotiated ASLAs and the CSLA. The workflow description describes the
sequence flow and thus provides information regarding the order in which
services are executed. The SLAs contain information regarding e.g. the
negotiated QoS attributes. In order to enable the easier handling of this in-
formation it is captured in a dependency model. The Dependency Analysis
components realize a semi-automatic approach for creating a dependency
model. They analyze the underlying process of a composite service and the
SLAs negotiated for each of the contained services as well as the composite
service. Based on this information different dependencies (e.g. regarding
time, resource, QoS, price) can be discovered automatically. However, there
are other dependencies (e.g. regarding location) that need to be modeled
explicitly. This is also supported by the Dependency Analysis components.

4.2 The Nature of Service Dependencies 65

The creation of the dependency model happens at the design time of the
service composition. As a result a formal dependency model is created.

Design Time

SLA

Run Time

Dependency
Analysis

Process Dependency
Model

Runtime
Dependency
Evaluation

Renegotiation
Request

Renegotiation
Effects

SLO
Violation

SLO Violation
Effects

Dependency
Model Validation

Artifact

Event

Information

Component
with input
and output

SLA 1

Figure 4.1: Overview of dependency handling

The dependency model captures information regarding the different ser-
vices of the composition, the SLAs negotiated for these services, and details
about the different dependencies.

During design time the dependency information is used by the Dependency
Model Validation component to validate the negotiated SLAs, i.e. to ensure
that the services will be able to work together properly and achieve the
common goal. During the time of service provisioning the dependency in-
formation is used to evaluate the effects of SLO violations and SLA renego-
tiation requests. Upon the occurrence of SLO violations the Runtime Depen-
dency Evaluation components evaluate the violation information with the
goal to determine the services which are affected by the violation. Similarly,
the information from SLA renegotiation requests is evaluated using the de-
pendency model to determine which services are affected by this renegoti-
ation.

In the following sections the service dependency model, the creation of the
dependency model and its usage for managing service level agreements, as
well as the architecture of the approach are described in more detail.

4.2 The Nature of Service Dependencies

Service dependencies are the underlying cause for the fact that events re-
garding single services influence other services in service compositions. In
this section a formal definition for service dependencies is provided. The

66 A Concept for Managing Dependencies of Business Services

nature of these service dependencies is analyzed with regard to their occur-
rence within a composition as well as symmetric and transitive properties.
Furthermore, different classes of dependencies are described and used to
classify the different types of service dependencies mentioned in Section
2.5.1. The different properties of service dependencies form the basis for
the discovery and modeling of dependencies as well as their evaluation
during service provisioning.

4.2.1 Defining Dependencies

Dependencies play an important role in several disciplines including
not only computer science (e.g. [BCD08, EK02, WPSB07, ZBH08, Tol03,
BWRJ08]) but also economics and social sciences [MC94] as well as project
management [PMI08].

A general definition of the word dependence can be found in [MFT+09]. The
notion of dependence is described as “the state of relying on or being con-
trolled by someone or something else”.

The following definition of dependencies between services forms the basis
for the work presented in this thesis:

A service dependency is a directed relation between ser-
vices. It is expressed as a 1:n relationship where one ser-
vice (dependent) depends on one or multiple services (an-
tecedent). A service s1 is dependent on a service s2 if the
provisioning of service s1 is conditional to the provisioning
of service s2, i.e. if a property of service s1 is affected by a
property of s2.

Let S = (s1, s2, . . . , sn) be a set of services within a service composition
including the composite service itself. A service dependency can be seen
as a tuple Dep: {Sa, sd, kpia, kpid, type, desc}, where

• Sa ∈ S, is a set of antecedent services from the set of all services of
the composition;

• sd ∈ S, is the dependent service from the set of all services of the
composition; sd 6∈ Sa;

• kpia, identifies the kpi of the antecedent services regarding which the
dependency occurs;

• kpid, identifies the kpi of the dependent service regarding which the
dependency occurs;

4.2 The Nature of Service Dependencies 67

• type ∈ (time, resource, location,QoS, price), identifies the type of the
dependency;

• desc, is a type-specific dependency description. More details about
how different dependencies are described can be found in Section
4.3.2.

Dependencies take effect when the properties of services, which are regu-
lated by SLAs, are negotiated, renegotiated, or violations of service level
objectives occur during service provisioning. In such situations it is neces-
sary to manage these dependencies.

4.2.2 Horizontal and Vertical Dependencies

In service compositions dependencies occur either between the atomic ser-
vices within the composition or between an atomic service and the com-
posite service. The first class of dependencies is defined as horizontal de-
pendencies, the latter one as vertical dependencies.

Vertical dependency

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Horizontal dependency (direct)

Horizontal dependency (indirect)

Figure 4.2: Horizontal and vertical dependencies

Horizontal Dependencies

Horizontal dependencies occur between the atomic services of a compo-
sition. They do not necessarily have an influence on the consumer of the
overall composition. They rather affect the execution of services within
compositions. The occurrence of problems during the execution of an
atomic service may endanger or even render impossible the execution of

68 A Concept for Managing Dependencies of Business Services

other atomic services. Similarly, the renegotiation of service properties
will require the adaptation of the respective dependent properties of other
atomic services.

Dependencies that occur between the atomic services of a
service composition are defined as horizontal dependen-

cies because they affect services on the same hierarchical
level of composition.

In cases where horizontal dependencies are managed properly, they will
not show to consumers of the composition. This would be the case if some
services could compensate for the problems caused by a SLO violation.
Nevertheless, it might not be possible to completely compensate for oc-
curring problems. In such cases the effects of the problem will be propa-
gated throughout the whole composition and thus affect the consumer of
the composite service.

Horizontal dependencies can be further classified into direct and indirect
dependencies. Direct dependencies occur between two services. Indirect
dependencies occur due to a transitive relationship between services re-
garding their dependency. In Figure 4.2 direct as well as indirect horizontal
dependencies are depicted based on an extract from the logistics scenario
workflow description.

Vertical Dependencies

Dependencies between services will not only occur within compositions.
Problems of an atomic service can have direct effects on the overall com-
position. Similarly, the failure of a consumer to meet his obligations or
the renegotiation of service level objectives can affect the atomic services
within the composition.

Dependencies that occur between the atomic services of a
composition and the composition itself are defined as ver-

tical dependencies because they affect services on different
hierarchical levels of composition.

When SLO violations occur with regard to service properties having ver-
tical dependencies, this may directly lead to SLO violations of services on
a different hierarchical level. If an atomic service violates its SLA, this af-
fects the composite service. If a service consumer violates his obligations,
this affects the atomic services of the composition. The same is true for the
renegotiation of service properties. Two vertical dependencies are depicted
in Figure 4.2.

4.2 The Nature of Service Dependencies 69

4.2.3 Dependency Classes

Section 3.3.2 briefly outlined different classes of dependencies based on the
work of Malone and Crowston [MC94]. While Malone and Crowston dis-
cuss these dependency classes on a very general activity level, their work
can be applied to services, which are also a type of activity. In the following
sections the different dependencies are described in more detail in the light
of services.

Task - Subtask Dependencies

Task-subtask dependencies occur when a process of several services (the sub-
tasks) is created as a refinement of another service (task). In such a top-
down approach the goal of a composite service is broken down into sub-
goals, which are achieved by other services. Similarly, several services can
be composed in a bottom-up approach to create a more complex service.

The task-subtask dependency causes vertical dependencies between the
composite service and its atomic services. Thus, the decomposition of a
composite service into atomic services or the creation of a composite ser-
vice from atomic services requires the regulation of dependencies between
a composite service and its atomic services. Since a dependency is a di-
rected relationship (see Section 4.2.1) it is important to consider the direc-
tion of this relationship. Depending on whether the dependency is a result
of decomposing a service composition into atomic services or aggregating
atomic services to create a new composition, the direction of the depen-
dency relation varies. In the first case the atomic service attributes depend
on the composite service values. In the second case the composite values
depend on the atomic values.

When the composite service attributes such as QoS and price are depen-
dent on the respective attributes of the atomic services, the composite ser-
vice attribute values are determined via an aggregation of atomic service
attribute values. Various approaches to the automatic aggregation of ser-
vice attribute values with regard to workflow QoS have been investigated
(e.g. [CMSA04, JRGM04]) by the scientific community. The decomposi-
tion of composite QoS and price values into atomic ones remains an open
research issue according to [LF08].

A second issue is the fact that the composite service input and output in-
terfaces need to be reflected by the respective subtasks input and output
interfaces. The input and output interfaces concern different aspects, such
as input and output resources, start and end time, as well as start and end
location of a service. When the composite service is broken down into sev-

70 A Concept for Managing Dependencies of Business Services

eral services it is not necessary for an atomic service to reflect the composite
service interface. Instead, several services may reflect parts of it.

Producer - Consumer Relationships

Two services have a producer-consumer relationship (dependency) when the
outcome of one service is required by another service in order for the sec-
ond service to be able to start working. This is the case for the input re-
sources of a service. The consumer of a resource depends on the provider
of the resource. A similar relationship occurs when a service with pre-
conditions depends on a service that fulfills these pre-conditions with its
post-conditions. The handling of pre- and post-conditions is not the focus
of this thesis.

Producer-consumer relationships occur as horizontal dependencies. The
two services do not need to be directly connected in a workflow in order
for this type of dependency to occur. It is sufficient if they are connected
via a valid path in the workflow. This ensures that the dependent service
can be reached from the service it depends on.

Simultaneity Constraints

The execution of services may be restricted by certain temporal constraints
between services. These constraints are called simultaneity constraints. They
express, for example, that two services need to occur at the same or at a
different time, or that one service needs to be executed after another one
has finished. Simultaneity constraints occur as horizontal dependencies
between services. They are often a result of a producer-consumer relation-
ship or of a shared resource dependency. As such, they often occur between
services, which are connected via a path in the process workflow. However,
this is not always the case. Also parallel activities may have requirements
regarding their start or end time.

Shared Resources

If two services need access to the same resources, which are available for
only one service at a time, there is a shared resource dependency between
them. Dependencies regarding shared resources occur as horizontal de-
pendencies. A shared resource dependency can result in simultaneity con-
straints, which were described above. The explicit handling of shared re-
source dependencies is not supported by this work.

4.2 The Nature of Service Dependencies 71

4.2.4 Symmetry and Transitivity of Service Dependencies

The symmetric relation R is defined as a binary relation between two ele-
ments e1 and e2 from a set E. It is formally defined as follows:

∀e1, e2 ∈ E, e1Re2 ⇒ e2Re1.

A dependency Dep between two services s1, s2 is symmetric if ∀s1, s2 ∈
S, s1Deps2 ⇒ s2Deps1. An example of a symmetric dependency in the lo-
gistics use case is a location dependency, where

{TruckDD,WarehouseDD, endLocation, startLocation, location, equals}

⇒

{WarehouseDD, TruckDD, startLocation, endLocation, location, equals}.

The transitive relation R is defined as a relation between the elements e1,
e2, and e3 from a set E. It is formally defined as follows:

∀e1, e2, e3 ∈ E, e1Re2 ∧ e2Re3 ⇒ e1Re3.

A dependency Dep is transitive if ∀s1, s2, s3 ∈ S, s1Deps2 ∧ s2Deps3 ⇒
s1Deps3. An example of a transitive dependency is a resource dependency,
where

{TruckDD,WarehouseDD, resout, resin, resource, (R1, R2, R3)}

∧

{WarehouseDD, TruckDE, resout, resin, resource, (R1, R2, R3)}

⇒

{TruckDD, TruckDE, resout, resin, resource, (R1, R2, R3)}.

4.2.5 A Classification of Service Dependencies

Dependencies between business services occur with regard to concrete ser-
vice properties. They include quality of service (QoS) properties (e.g. re-
sponse time, availability, throughput, encryption level), price information,
start and end time as well as start and end location of service execution,
and handled resources (e.g. data or goods). Dependencies regarding these
properties can be classified with respect to the different classes of depen-
dencies described above. Based on the dependency class, dependencies
occur as horizontal dependencies, vertical dependencies, or both. Their
properties with regard to symmetry and transitivity are also analyzed. The
different types of dependencies are illustrated based on an extract of the lo-
gistics use case. Table 4.1 provides an overview of the different dependency
types and their classification with regard to horizontal and vertical depen-
dencies as well as symmetry and transitivity. Please note that the symbol

72 A Concept for Managing Dependencies of Business Services

“o” is used to show that no general statement can be made regarding the
dependency type and the relevant property. Symmetry and transitivity are
both dependent on the relevant operator, which is used to describe the de-
pendency. For example, the location operator equals is transitive while the
operator not_equals is not transitive.

Table 4.1: Dependency classification
Dependency

class

Property Horizontal Vertical Symmetric Transitive

Task-
subtask

Response
time

- + - -

Availability - + - -
Throughput - + - -
Encryption
level

- + - -

Price - + - -
Resource - + - -
Start/end
time

- + o -

Start/end
location

- + + -

Producer-
consumer

Resource + - - +

Start/end
location

+ - + o

Simultaneity
constraints

Start/end
time

+ - o o

Legend: Yes (+), No (-), Operator specific (o)

Quality of Service:

The QoS attributes of services (e.g. response time, availability, throughput,
encryption level) describe different quality aspects of service provisioning.
QoS dependencies occur due to task-subtask dependencies. Within a ser-
vice composition QoS dependencies occur as vertical dependencies. Vio-
lations or changes to the QoS values of atomic services affect the compos-
ite service. Changing a composite QoS value requires the modification of
all the respective atomic QoS values. QoS dependencies between different
atomic services in a composition do not occur unless there is an explicit
statement of such a dependency, e.g. via a precondition of a service. De-
pendencies with regard to QoS attributes are not symmetric or transitive.
Figure 4.3 presents an example of a QoS dependency based on the logis-

4.2 The Nature of Service Dependencies 73

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Customer:
Renegotiate

max. temperature

Vertical dependency (S1 depends on S2)S2S1

Figure 4.3: Dependencies for QoS renegotiation

tics use case. A relevant QoS attribute in logistics is e.g. the maximum
temperature of goods transported.

Price Information:

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Atomic provider:
Renegotiate

price

Vertical dependency (S1 depends on S2)S2S1

Figure 4.4: Dependencies for price renegotiation

A price dependency exists when the price of a service depends on the price
of one or more other services. For example, the price of a composite ser-
vice can be calculated based on the prices of its atomic building blocks (see
Figure 4.4), or the prices of the atomic services are negotiated based on
breaking down the price of the composite service. Price dependencies oc-
cur due to task-subtask dependencies and therefore only occur as vertical
dependencies. While the price of a service is not a measurable attribute of

74 A Concept for Managing Dependencies of Business Services

provisioning and thus cannot be violated, it is possible to renegotiate the
price of a service. Therefore it is also important to consider this attribute.
The price dependency is not considered to be symmetric or transitive.

Time Information:

Time dependencies express temporal relationships regarding the execution
of services. They can occur as task-subtask relationships or simultaneity
constraints. Time dependencies occur as horizontal as well as vertical de-
pendencies.

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Customer:
Renegotiation
pickup time

Vertical dependency (S1 depends on S2)S2S1

Figure 4.5: Dependencies for pickup time renegotiation

The example presented in Figure 4.5 illustrates two task-subtask-based
time dependency. If the consumer of the composite service renegotiates the
time when goods should be picked up, this affects the first atomic services
in the composition.

Times are expressed as intervals that represent the time period of the ser-
vice execution. They have a start time and an end time. The time rela-
tionship between the time periods of the execution of two services can be
expressed via different operators (e.g. before, after) as defined by Allen
[All83], or the ones used in the area of project management (e.g. finish-to-
start) [PMI08]. The different time operators are described in more detail in
Section 4.3.2.

A general categorization of time dependencies with regard to symmetry
and transitivity cannot be made. It is rather necessary to distinguish the
different time operators. The equals operator, for example, is symmetric,
while the other time operators are not. Similarly, only some time operators
have a transitive nature. This is the case for before, starts, equals, during,

4.2 The Nature of Service Dependencies 75

finishes, after, started-by, contains, finished-by as well as start-to-start, finish-to-
start, and finish-to-finish. The operators meets, met-by, overlaps, overlapped-by,
and start-to-finish are not transitive.

Location:

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Customer:
Renegotiate

delivery location

Vertical dependency (symmetric)S2S1

Figure 4.6: Dependencies for location renegotiation

Location constraints describe local dependencies between two services,
meaning they need to be executed at the same or at a different location.
Location constraints occur as a result of task-subtask relationships as well
as a result of producer-consumer relationships. Thus, there are horizontal
and vertical location dependencies.

In Figure 4.6 three location dependencies based on a task-subtask relation-
ship are presented. The consumer of the composition decided to renego-
tiate the location of delivery. This affects several atomic providers of the
composition.

Location dependencies can be expressed via the operators equals and
not_equals. Both operators are symmetric. In case that a location depen-
dency is expressed via the equal operator, it is transitive. This is not the case
for the not_equal operator.

Resource:

Two services have a resource dependency when the availability of a re-
source needed by one service, is dependent on another service. Resources
include electronic data and documents as well as material goods. Re-
source dependencies occur due to provider-consumer relationships as well

76 A Concept for Managing Dependencies of Business Services

as task-subtask dependencies. Thus, they occur as horizontal and vertical
dependencies.

OTML Trans
World

OTML Trans World

Truck DD

Truck DE

HH Local

Auto Trans
DD

Warehouse
DD

Truck HH

Warehouse
HH

HH Star
Truck

Atomic provider:
Violation
resources

Vertical dependency (S1 depends on S2)

Horizontal dependency (direct - S1 depends on S2)

Horizontal dependency (indirect - S1 depends on S2)

S2S1

S2S1

S2S1

Figure 4.7: Dependencies regarding resource SLA violation

The example in Figure 4.7 shows the dependencies of a SLA violation with
regard to the resources handled by service AutoTrans DD. If the goods be-
ing transported are damaged, the SLAs for all services, which should have
handled the same resource later in the process, need to be adapted. This is
an example of a provider-consumer based dependency.

A resource dependency between two services is expressed by listing the
resources regarding which a dependency exists. Resource dependencies
are not symmetric but have a transitive nature.

4.2.6 Relevance of Dependency Management

The types of dependencies, which occur in service compositions, depend
on the nature of the involved services. They vary regarding different as-
pects, e.g. the time needed for executing a service, the degree of automation
of service execution, and the handling of data or physical goods. There are
services that are fully automatized and have a relatively short duration of
execution. Single service requests are not managed with respect to the un-
derlying resources, which support the execution in a way that the handling
of a specific call is assigned to specific resources prior to a service call. This
is rather done dynamically using e.g. load balancing mechanisms. There
are also services which are longer-running, require distinct resources (e.g.
machines, computers, and human personnel) for their execution, and often
involve the handling of physical goods in addition to electronic data.

4.2 The Nature of Service Dependencies 77

Different QoS aspects are of relevance for most services. The specific QoS
attributes differ depending on the nature of the service as well as on its
application domain. Similarly, resource dependencies are relevant for all
types of services that involve data or physical goods (resources) being
passed from one service to another.

Time dependencies are mainly important for services that specify a start
and end time for service provisioning. For fully automatized services hav-
ing a short execution time this is typically not the case because their service
provisioning can start at any time. However, the execution of services hav-
ing a long-running execution time is usually bound to specific resources,
e.g. for transportation or production services. For such services the man-
agement of time dependencies is very important due to the fact that small
violations of time constraints may have a large impact on other services.

Location dependencies mainly occur between services where the execution
involves physical resources being passed from one service to another. Nev-
ertheless they are also relevant for automatized services with location con-
straints on other services regarding the execution (e.g. a service cannot be
composed with services which are hosted in a certain country).

The focus of this thesis is on services which are long running and where
service provisioning involves manual steps, execution supported by ma-
chines, and physical goods being handled. However, other services (e.g.
automatized and short running) are not excluded.

4.2.7 Summary

When business services are composed to service compositions, vertical and
horizontal dependencies occur between the different services. Dependen-
cies between services occur due to dependency classes, i.e. task-subtask
and producer-consumer relationships, as well as due to simultaneity con-
straints.

Services are dependent on other services with regard to different service
attributes such as QoS parameters, price information, start and end time as
well as location of execution, and resources. Dependencies regarding these
attributes are caused by the different dependency classes. Depending on
the underlying cause of a dependency it occurs as a horizontal or vertical
dependency and may have a symmetric or transitive nature. An overview
of this classification is provided in Table 4.1.

78 A Concept for Managing Dependencies of Business Services

4.3 Implicit and Explicit Representation of Service

Dependencies

Services in compositions collaborate to achieve the goal of the composi-
tion. Due to this collaboration dependencies exist between the different
services. Information about these dependencies is available, e.g. in the
workflow structure as well as the SLAs of the different services. Further de-
pendency information may exist as domain knowledge and is not captured
in any service-related artifact. To enable the easier handling of dependen-
cies, the dependency management approach captures implicit dependency
information and represents it explicitly in a formal dependency model.

This section describes SLAs in more detail, since they are important service
artifacts, which contain information relevant for dependency handling.
Furthermore, the dependency model used for capturing dependency in-
formation in an explicit way is presented.

4.3.1 Dependency Related Information in SLAs

The information contained in SLAs forms the basis for the discovery of de-
pendencies. Thus, the dependency management approach requires the for-
mal representation of relevant information in SLAs. Necessary information
includes:

• Required and provided resources of each service

• Start and end time of service provisioning

• Start and end location of service provisioning

• Quality of service description of service provisioning

• Price information

The structure of SLAs was explained in Section 2.2. In this section the ex-
pression of SLAs is based on the WS-Agreement specification (see Section
3.1.5). This sample implementation enables a more precise illustration of
which information is necessary for the dependency management approach
and how it is represented. However, other SLA languages could be used as
well, as long as all necessary information is contained.

While a SLA contains a variety of important information, the following
sections describe the information which is necessary for the dependency
management approach.

4.3 Implicit and Explicit Representation of Service Dependencies 79

Service Interface Description As part of the functional description of a ser-
vice, the interface of the service to the consumer is described. The service
interface description allows the specification of information on the start and
end time, as well as the location of service provisioning. Furthermore, it
provides information regarding resources that are required from the con-
sumer for service provisioning, as well as resources provided as the result
of service provisioning.

The XML code sample presented in Listing 4.1 shows a sample inputInter-
face element. It specifies one resource, which needs to be provided by the
customer. Further information about start time and location of service pro-
visioning is described.

1 < i n p u t I n t e r f a c e >
2 <ports>
3 <port>
4 <resourceType>Export document</resourceType>
5 <resourceName>OTML export form</resourceName>
6 <resourceID>Export−d e c l a r a t i o n−ED−316−VZ1</resourceID>
7 </port>
8 . . .
9 </ports>

10 <time>2009−11−09 T 1 7 : 0 0 : 0 0 +0100</time>
11 < l o c a t i o n >Teegasse 83 , 01159 Dresden , Germany</ l o c a t i o n >
12 </ i n p u t I n t e r f a c e >
13 < o u t p u t I n t e r f a c e >
14 . . .
15 </ o u t p u t I n t e r f a c e >

Listing 4.1: Sample service interface description

Service Description For each service a comprehensive service description
is provided as part of the SLA. One important aspect is the description of
price information as part of the marketing element. The XML code sample
presented in Listing 4.2 illustrates the price description of the composite
logistics service including information about the currency, taxes, and the
specific price for service provisioning.

1 <marketing>
2 < p r i c e >
3 <payPerUse>
4 <priceName>OTMLTransWorld Standard P r i c e </priceName>
5 <priceCurrency>EUR</priceCurrency>
6 <priceVat> 1 9 . 0 </priceVat>
7 <pr iceUni t>5000 .0</pr iceUni t>
8 </payPerUse>
9 </ p r i c e >

10 </marketing>

Listing 4.2: Sample price description

80 A Concept for Managing Dependencies of Business Services

QoS Information in SLAs Information about the different quality of ser-
vice parameters for a service is expressed as part of GuaranteeTerm sections
in the SLA document. Each QoS parameter is identified by the KPIName
element. The negotiated value is expressed by the value element, which is
part of the KPITarget. This information is relevant for the calculation of QoS
dependencies.

1 <GuaranteeTerm Obligated=" Serv iceProvider "
2 Name=" OTMLTransWorld_H378G8329−J378−9U47−2ZU3−

U378ZE8329EU_temperature_Guarantee ">
3 < S e r v i c e L e v e l O b j e c t i v e SLOID=" Temperature−SLO−1">
4 <monitoringURI> . . . </monitoringURI>
5 <KPITarget>
6 <KPIName>maxTemperature</KPIName>
7 <Target x s i : t y p e =" SimpleTarget ">
8 <operator> l t e </operator>
9 <value x s i : t y p e =" xs :double "> 1 5 . 0 </value>

10 </Target>
11 </KPITarget>
12 </ S e r v i c e L e v e l O b j e c t i v e >
13 </GuaranteeTerm>

Listing 4.3: Sample guarantee term description

4.3.2 Service Dependency Model Concept

One major building block of the approach to manage service dependencies
is a dependency model. It captures the dependencies between the different
services of the service composition in an explicit way in order to allow effi-
cient handling of dependencies at runtime. The model is created at design
time from the information negotiated in the SLAs for the different services
in a composition, as well as from structural information of the workflow
process underlying the composite service.

In this section the advantages and disadvantages of different approaches
for expressing service dependencies are discussed. Based on this discus-
sion a metamodel for a dependency model is presented and its features are
explained.

Approaches to Modeling Dependencies

In Chapter 3.3 a number of approaches to modeling service dependen-
cies were described as part of the related work. In this section four dif-
ferent approaches for representing dependencies are compared. A depen-
dency graph, a dependency matrix, and special purpose dependency mod-

4.3 Implicit and Explicit Representation of Service Dependencies 81

els based on an ontology or a metamodel are analyzed with respect to sev-
eral requirements described in Section 2.5.2:

• DR1: Dependencies need to be expressed with a granularity of single
service properties.

• DR2: The representation of dependencies needs to support the ex-
pression of multiple dependencies between two services.

• DR3: The representation of dependencies needs to support the ex-
pression of multiple dependencies of the same type.

• DR4: The representation of dependencies needs to support the ex-
pression of type-specific dependency descriptions.

• DR5: The representation of dependencies needs to support the ex-
pression of dependencies between services with 1:1 and 1:n relation-
ships.

• MAR4: The approach should support application domain experts in
their work.

Dependency Graphs A possible approach for representing dependencies
is the application of a dependency graph. Graph theory is a field of math-
ematics where graphs express the relationship between a pair of entities
from a collection of entities.

Clark and Holton [CH91] define a graph as follows: “A graph G = (V(G),
E(G)) consists of two finite sets: V(G), the vertex set of the graph, [...], which
is a nonempty set of elements called vertices, and E(G), the edge set of the
graph, [...], which is a possibly empty set of elements called edges, such
that each edge e in E is assigned an unordered pair of vertices (u,v), called
the end vertices of e.”

In a dependency graph entities having dependencies are expressed as ver-
tices (nodes). Dependencies are expressed as edges. This approach is used
e.g. by [ZBH08]. Edges can be annotated e.g. with weight or cost infor-
mation. This is used by different algorithms for the calculation of specific
paths within the graph.

The representation of dependencies as edges requires the annotation of
edges to allow for typification of dependencies according to the different
dependency types. A set of two vertices can be connected by several edges,
which assures that different dependencies can be expressed between two
services. At the same time a vertex can be connected with different vertices
via edges of the same type. This way it is possible to express that one ser-
vice has dependencies of the same type with different other services. The

82 A Concept for Managing Dependencies of Business Services

expression of specific properties of each dependency is not possible, un-
less the edges are complex structures, which allow a sufficiently complex
annotation with information. This is not the case for standard graphs and
requires specific extensions of the notation. A further limitation of a graph,
where services are expressed as nodes and dependencies as edges, is that
n-ary dependencies, i.e. a single dependency, which expresses a relation
between one service on one side and multiple services on the other side,
cannot be represented. This is due to the fact that one edge can only con-
nect two nodes and thus only express a relationship between two services.
This issue can be overcome by applying a bipartite graph. In [Ore67] a
bipartite graph is defined as a graph with two disjoint vertex sets, where
an edge always connects a vertex from one set with a vertex from the other
set. Services as well as dependencies can be represented as vertices. Service
vertices and dependency vertices form two disjoint sets.

Dependency Matrix Another form of representing dependencies is a de-
pendency matrix. A matrix is a system of m times n elements M = (m,n),
which are arranged in m rows and n columns [BSMM00]. A dependency
matrix corresponds to an adjacency matrix where the number of rows and
columns is equal, i.e. M = (n, n), and where n is equal to the number of
entities to be related to each other. The different entities label the vertical
and horizontal axes of the matrix. The relationship between two entities
is represented as an entry in the intersecting cell of the matrix. A matrix
is a useful representation for recognizing e.g. cyclic dependencies between
entities [SJSJ05].

The expression of different dependency types can be achieved by defining
different values, which are used to fill the intersecting cells in the matrix.
Using a matrix, it is possible to express dependencies between one entity
and multiple others, i.e. one service has dependencies of the same or of a
different type with other services.

However, there are some major drawbacks of a matrix with regard to the re-
quirements described in Section 2.5.2. It is not possible to express complex
details about a specific dependency between two entities. Furthermore, it is
not possible to represent multiple dependencies of different types between
two entities. Only one dependency can be expressed between two services.
Also, it is not possible to express n-ary dependencies. Since these three as-
pects are important requirements for this work, a matrix representation is
not suitable.

Special Purpose Dependency Model An alternative way of represent-
ing dependencies would be the creation of a model explicitly designed
to capture dependencies. There are different ways of formalizing such a

4.3 Implicit and Explicit Representation of Service Dependencies 83

dependency model. Two options, a metamodel for creating dependency
model instances and an ontology for expressing dependency models, are
discussed.

Metamodel: A metamodel is a specification of a language for describing
models. It is thus a “. . . model of models . . . ” [MM03]. It specifies the
classes, attributes, and relationships between classes, which are a part of
such a language. Using a metamodel approach, a domain specific language
for creating dependency models can be defined.

There are different languages, which allow the creation of metamodels, e.g.
UML [OMG09], XML Schema [TBMM04], and Ecore [SBPM09]. The Unified
Modeling Language is a specification from the Object Management Group
(OMG). It defines a graphical notation for modeling different types of mod-
els (e.g. class and component diagrams). XML Schema is a W3C Recom-
mendation, which allows the specification of XML document structures.
Ecore was developed as an implementation of Essential MOF, which is a
subset of the OMG MOF specification [OMG06] for metadata management.
Ecore is a part of the Eclipse Modeling Framework (EMF) [SBPM09].

The different languages have the same expressivity, i.e. metamodels of the
same complexity can be expressed. It is also possible to transform a meta-
model represented in one language (e.g. XML Schema) into another repre-
sentation (e.g. Ecore).

In order to capture information about service entities and dependencies,
such entities can be represented as classes or elements, along with their re-
spective properties and relations. A metamodel can be designed to enable
the representation of dependency models of arbitrary complexity specifi-
cally tailored to the requirements of the domain.

An advantage of using a metamodel approach is its very good support for
creating modeling tools (e.g. based on Eclipse EMF and GMF) that are
directly targeted to the needs of domain experts, as well as the option to
generate an API for handling models. Furthermore, specific constraint lan-
guages such as the Object Constraint Language (OCL) [OMG05] allow the
expression of constraints on classes, attributes, and their relations. These
constraints are specified with regard to the metamodel elements and are
used to validate models.

Ontology: According to Gruber [Gru93] an ontology can be seen as “. . . an
explicit specification of a conceptualization . . . ”, i.e. the specification of
abstracted knowledge about the world. It describes different objects of a
domain, their properties, and relationships between them.

84 A Concept for Managing Dependencies of Business Services

Different languages exist, which allow the specification of ontologies. Two
ontology languages, which are W3C Recommendations, are the Web Ontol-
ogy Language (OWL) [MH04], and the Resource Description Framework Schema
(RDFS) [BM04].

The OWL language allows the modeling of classes, individuals, and prop-
erties. A class represents information about a set of individuals with com-
mon features. Class - sub-class relations can be used to describe a hier-
archy of classes. The single instances of a class are called individuals. In
order to specify relationships between two individuals object properties are
used. These object properties can be further described by features such as
inverse, symmetric, asymmetric, and disjoint. Data properties define properties
of individuals with respect to data types.

One way of representing dependencies between services using an ontology
would be the modeling of services as individuals and the dependencies
as object properties. The usage of object property features would then al-
low the further specification of certain features of each property. However,
this approach does not allow a detailed description of dependencies as re-
quired in Section 2.5.2. In order to specify more details about dependencies
it would be possible to express dependencies as classes with specific prop-
erties.

While ontologies allow the specification of dependency models according
to the requirements described in Section 2.5.2, they also have a major draw-
back. Available tools for creating ontologies, e.g. protégé [BIR] and On-
toStudio [Gmb09], are only suited for ontology experts rather than appli-
cation domain experts, who are interested in the management of service
compositions and the respective service dependencies.

Discussion In this section four different approaches for realizing a de-
pendency model were presented and their advantages and disadvantages
discussed. An overview of the results is presented in Table 4.2.

The creation of a dependency model as a dependency graph or dependency
matrix is suitable for expressing dependencies with limited information.
However, they do not provide sufficient expressivity for dependency mod-
els needed for the management of service dependencies in service compo-
sitions.

The metamodel as well as the ontology approach to creating a special pur-
pose dependency model are both expressive enough to realize the require-
ments for a dependency model. An important aspect is, however, the tool
support for the creation of the dependency model. There is a need for tools,
which support industry domain experts in their work of modeling the de-
pendency model during development time of the composition. No knowl-

4.3 Implicit and Explicit Representation of Service Dependencies 85

edge about specialized technologies (i.e. ontology or metamodel) should
be required (see requirement MAR4). Instead, the complexity of underly-
ing technologies must be hidden. This is easier to achieve using the meta-
model approach, which supports the easy creation of tools based on Eclipse
GMF. Besides that, the metamodel approach supports the generation of a
Java API for managing dependency model instances based on Eclipse EMF.
Thus, the metamodel approach was selected as the most suitable option for
designing a language that allows the creation of dependency models.

Table 4.2: Comparison of dependency model approaches
Requirement Graph Matrix Ontology Metamodel

DR1 + + + +
DR2 + - + +
DR3 + + + +
DR4 - - + +
DR5 - - + +
MAR4 - - - +

Legend: Fulfilled (+), Not fulfilled (-)

The Dependency Model

A metamodel for creating dependency models was developed as part of the
dependency management approach. The dependency model consists of a
number of different elements and attributes, which describe the involved
services and their dependencies. Dependencies occur with regard to ser-
vices. They have a number of attributes, which specify the service level
objectives regarding which the dependency occurs and a detailed descrip-
tion of the dependency. A dependency model consists of two core parts,
which represent the services involved in a composition as well as the dif-
ferent dependencies that exist between them. An overview on the model is
presented in Figure 4.8. In the following sections the elements of the model
as well as their attributes and relations to other elements are described.

DependencyModel The DependencyModel element is the root element of
the dependency model. It has a unique id and references the composite
service and the SLA for the composite service underlying the created de-
pendency model. The DependencyModel furthermore contains elements
representing the services and dependencies in the model.

Attributes:

• id: A dependency model has 1 unique id.

86 A Concept for Managing Dependencies of Business Services

Figure 4.8: Dependency model class diagram

• compositeServiceKey: A dependency model references 1 composite
service via its service key.

• compositeServiceAgreementID: A dependency model references the
composite service SLA, regarding which the model was created.

Relations:

• hasServiceEntities: A dependency model has 0. . . * ServiceEntities.

• hasDependencies: A dependency model has 0. . . * Dependencies.

Service Entity The ServiceEntity element is used to represent the differ-
ent services within a service composition as well as the composite service.
Each service having a dependency with another service is represented. The
different ServiceEntity elements are referenced by dependency elements.

Attributes:

• serviceName: The name of the service. This is not a unique identifier.

4.3 Implicit and Explicit Representation of Service Dependencies 87

• serviceKey: The unique identifier of a service.

• provider: The provider attribute identifies the provider of the service.

• slaID: The unique identifier of the service level agreement, which
specifies the service parameters of the service regarding which de-
pendencies occur to different services.

Relations:

• isAntecedent: A service entity has the role of an antecedent in 0. . . *
Dependencies.

• isDependent: A service entity has the role of a dependent in 0. . . *
Dependencies.

Dependency The abstract Dependency element represents the different
dependencies between services within a service composition as well as de-
pendencies with the composite service. A dependency has a unique id. It
may be uni- or bi-directional as well as of a transitive nature. A depen-
dency references the respective service level objectives of the antecedent
and dependent regarding which the dependency occurs. This reference is
realized by naming the respective key performance indicator (KPI). Each
dependency element references the services, which are the dependent or
antecedents in the dependency.

Attributes:

• id: The unique identifier of the dependency.

• isBidirectional: This attribute expresses whether a dependency oc-
curs as uni- or bidirectional.

• isTransitive: This attribute expresses whether a dependency has a
transitive nature.

• dependentKpiName: A reference to the service level objective within
the dependent service’s SLA regarding which the dependency exists.

• antecedentKpiName: A reference to the service level objective within
the SLA of the antecedent, regarding which the dependency exists.

Relations:

• dependent: A reference to a ServiceEntity element, which has the role
of the dependent in this dependency, i.e. it depends on one or more
other service entity(s).

88 A Concept for Managing Dependencies of Business Services

• antecedents: A reference to one or more ServiceEntity elements in the
role of the antecedent, i.e. the services the dependent depends on.

The elements described above represent the core of the dependency model.
They are needed independently of the specific dependency to be modeled.
Besides that, the dependency model contains five packages with model el-
ements for specific dependency types. The goal was to achieve a modu-
lar design of the metamodel, which separates core aspects from very spe-
cific ones. Extensions to the metamodel with regard to supporting differ-
ent types of dependencies would require the modeling of further packages
with this specific information. The core of the metamodel would remain
stable.

The current metamodel supports the modeling of five different types of
dependencies: location, time, resource, QoS, and price. Each of them is
represented in a different package.

LocationDependency Package The LocationDependency package contains
the LocationDependency element and an enumeration of location operators.

LocationDependency The LocationDependency element represents a loca-
tion dependency between two services. It extends Dependency. A location
dependency is described by a locationOperator attribute.

Attributes:

• locationOperator: A LocationDependency has 1 location operator,
which describes the location dependency. The location operator is
of type LocationOperator.

LocationOperator The LocationOperator enumeration lists the different lo-
cation operators, which are available for expressing a LocationDependency.
It contains the following enumeration literals:

• equals: Two locations referenced by a LocationDependency need to be
equal.

• not_equals: Two locations referenced by a LocationDependency cannot
be equal.

ResourceDependency Package The ResourceDependency package con-
tains the element ResourceDependency.

4.3 Implicit and Explicit Representation of Service Dependencies 89

ResourceDependency The ResourceDependency element represents a re-
source dependency between two services. It extends Dependency. A re-
source dependency is described by a list of resource IDs, which lists all
resources provided by the antecedent and needed by the dependent.

Attributes:

• resourceIDList: A ResourceDependency has a list of resource IDs re-
garding which the dependency exists, i.e. it describes the resource
dependency.

TimeDependency Package The TimeDependency package contains the el-
ements TimeDependency and TimeOperator.

TimeDependency The TimeDependency element represents a time depen-
dency between two services. It extends Dependency. A time dependency
is described by a TimeOperator, which describes the temporal relationship
between the two services.

Attributes:

• timeOperator: A TimeDependency has 1 time operator of type TimeOp-
erator that describes the time dependency.

TimeOperator The TimeOperator enumeration lists a number of time op-
erators, which are used to describe the time dependency between two ser-
vices. The times for service execution are expressed as time intervals, i.e.
the execution of each service has a duration. A time interval is assumed to
have a start time (ts) and an end time (te). In order to express the depen-
dencies between the execution times of two services (S1) and (S2) (e.g. the
start and end time), the time operators defined in the field of project man-
agement [PMI08], as well as the ones defined by Allen [All83], are used.
All of them are included in the enumeration. The following sections will
explain the different operators and briefly discuss their differences.

In the area of project time management, four different time operators are
defined to express temporal dependencies between two project activities
(A1, A2) [PMI08]:

• Finish-to-Start: Activity A1 needs to be finished in order for activity
A2 to start. Related time operators from Allen: before, meets

• Finish-to-Finish: Activity A1 needs to be finished in order for activ-
ity A2 to finish. Related time operators from Allen: overlaps, starts,
during, finishes, and equals

90 A Concept for Managing Dependencies of Business Services

• Start-to-Start: Activity A1 needs to be started before activity A2 can
be started. Related time operators from Allen: overlaps, starts, equals

• Start-to-Finish: Activity A1 needs to be started in order for activity
A2 to be able to finish. Related time operators from Allen: overlaps

The different operators do not specify precise relationships between the
start and end times of two activities, but specify the earliest time one activ-
ity can be started with regard to another activity.

Allen [All83] defined a set of 13 time operators, which allow the expression
of relationships between two time intervals:

• Before: Service (S1) is said to be executed before service (S2) if the ex-
ecution of service S1 finishes before the execution of service S2 starts:
te(S1) < ts(S2).

• Meets: Service (S1) is said to meet service (S2) when the execution of
service S1 finishes at the same time when the execution of service S2

starts: te(S1) = ts(S2).

• Overlaps: Service (S1) is said to overlap service (S2) when the exe-
cution of service S1 starts before the execution of S2 and finishes only
after the execution of service S2 was started: ts(S1) < ts(S2)∧te(S1) >
ts(S2).

• Starts: Service (S1) is said to start service (S2) when the execution
of service S1 starts at the same time the execution of S2 starts and
finishes before the execution of service S2 ends: ts(S1) = ts(S2) ∧
te(S1) < te(S2).

• During: Service (S1) is said to be executed during service (S2) when
the execution of service S1 starts after the start of the execution of S2

and finishes before the execution of service S2 ends: ts(S1) > ts(S2)∧
te(S1) < te(S2).

• Finishes: Service (S1) is said to finish service (S2) when the execution
of service S1 starts after the start of the execution of S2 and finishes
at the same time the execution of service S2 ends: ts(S1) > ts(S2) ∧
te(S1) = te(S2).

• Equals: The execution time of service (S1) is said to be equal to the
execution time of service (S2) when the execution of service S1 starts
at the same time the execution of S2 starts and finishes at the same
time the execution of service S2 ends: ts(S1) = ts(S2)∧te(S1) = te(S2).

4.3 Implicit and Explicit Representation of Service Dependencies 91

The six remaining time operators (after, met-by, overlapped-by, started-by, con-
tains, finished-by) are the inverse operators of the first six operators in the list
above and are not detailed any further.

While the goal of the two sets of time operators is very similar, namely the
expression of temporal relationships between activities or time intervals,
there are also some major differences.

The first difference is that, while Allen’s time operators always involve the
start and end time of an interval, the time operators from project manage-
ment are only concerned with either the start or end time of one activity in
relation to the start or end time of a second activity.

Another difference between the two approaches is the rigor with which
the two types of operators express time relationships. The time operators
used in project management allow the expression of more open time rela-
tionships. The specification of precise temporal relationships to the degree
achieved by Allen is not possible. Allen’s time operators allow a very pre-
cise expression of temporal relationships between activities. In order to
express more open time relationships, as done by the project management
time operators, several of Allen’s time operators would have to be com-
bined using the logical operator OR. An example is the start-to-start oper-
ator, which states that one service can start any time once another service
has started. There are multiple options for how such a time dependency
could look like. Allen’s time operators during, finishes, overlapped_by, ends,
and after all meet the start-to-start time constraint.

PriceDependency Package The PriceDependency package contains the
PriceDependency.

PriceDependency The PriceDependency element represents the price de-
pendency of the composite service on multiple atomic services. It extends
Dependency. A price dependency is described by a formula for calculating
the composite service price from the atomic service prices.

Attributes:

• formula: A PriceDependency has 1 formula that describes the price
dependency, e.g. how the composite service price can be calculated
based on the respective atomic service values.

QoSDependency Package The QoSDependency package contains the ele-
ment QoSDependency.

92 A Concept for Managing Dependencies of Business Services

QoSDependency The QoSDependency element represents a dependency
of the composite service on one or more atomic services with regard to one
specific QoS parameter. It extends Dependency. There are many different
QoS parameters (e.g. response time, temperature, . . .), which are of rele-
vance in different application domains. A QoS dependency is described
by an attribute identifying the respective QoS parameter, and a formula
for calculating the respective composite service QoS value from the atomic
service values.

Attributes:

• qosParameter: A QoSDependency occurs with respect to one specific
QoS parameter, which is identified by this attribute.

• formula: A QoSDependency has 1 formula, which describes the QoS
dependency, i.e. how the respective composite service QoS value can
be calculated based on the atomic service values.

4.4 Managing Service Dependencies

The last section described a metamodel for a dependency model, which
plays a key role for the management of service dependencies. This sec-
tion describes a lifecycle for managing service dependencies using a depen-
dency model. The different phases of the lifecycle are illustrated in detail.

4.4.1 Lifecycle of Dependency Models

The lifecycle of dependency models consists of four phases (see Figure 4.9).
During the Creation & Recomputation phase the dependency model is cre-
ated based on the process structure and SLA information. Information can
be added or changed if conflicts are detected, SLAs change, or the process
description is adapted.

The Validation phase is necessary to ensure that the created dependency
model is valid. It is also necessary to validate the negotiated SLAs in order
to check their compliance with the dependency model. If problems are
detected either the dependency model or the negotiated SLAs need to be
adapted.

During the Usage phase the dependency model supports runtime depen-
dency evaluation tasks, such as the determination of SLO violation effects
or the handling of SLA renegotiation requests. In the case of renegotiation
the model may need to be adapted accordingly.

During the Retirement phase the dependency model is discarded.

4.4 Managing Service Dependencies 93

ValidationRetirement

Creation &
Recomputation

Usage

Figure 4.9: Dependency model lifecycle

4.4.2 Creation and Recomputation of Dependency Models

In order to evaluate dependencies between services at runtime (e.g. to eval-
uate SLA renegotiation requests), information about these dependencies
needs to be available. While the availability of implicit dependency infor-
mation would allow the evaluation of this information, it is advantageous
to base the evaluation on an explicit description of dependency informa-
tion. It allows easier handling at runtime than implicit information that
is contained in different artifacts, such as the process description or SLAs.
The dependency model creation process realizes the capturing of depen-
dency information, which is available implicitly, and makes this informa-
tion available explicitly in the form of a dependency model.

There are a number of challenges, which need to be considered for the pro-
cess of creating a dependency model.

• Implicit information from different sources: A dependency model
contains explicit dependency information. It is created from informa-
tion, which is distributed between different artifacts created during
the design time of the service composition. These different sources
include the composite service workflow description as well as ASLAs
and CSLAs negotiated for atomic services and the composite service.

• Limited dependency information: The dependency information
contained in the different sources is limited. For example, no infor-
mation is available with regard to temporal dependencies between
services, which are not connected via a path in the workflow. Also, no
information about location dependencies can be found in the work-
flow description or SLAs. Thus, a dependency model created based
on these sources of information will only contain limited dependency

94 A Concept for Managing Dependencies of Business Services

information. Further information, such as specialized domain knowl-
edge, may need to be considered.

• Different properties of different dependency types: Different types
of dependencies have different properties regarding their occurrence
in a business process (compare Section 4.2.5). These different proper-
ties need to be considered during the process of creating the depen-
dency model.

Taking these challenges into consideration, the dependency model creation
process was realized as a semi-automatic approach. It consists of the au-
tomatic dependency discovery based on the composite service process de-
scription and SLA information as a first step, and the explicit modeling
of dependencies as a second step. The separation of the process into two
parts was necessary, because it is not possible to automatically discover all
dependencies based on the process and SLA descriptions. Apart from the
implicit dependency information available from these sources, further in-
formation is often available as application domain knowledge. Thus, the
composite service creator is able to add this information to the dependency
model. During the automatic dependency discovery process different al-
gorithms are used to discover the different types of dependencies.

Figure 4.10 presents an overview of the process for dependency model cre-
ation and recomputation. At the beginning of the process a dependency
model is created, unless it already exists. Following that, the discovery of
different types of dependencies is executed. Finally, the dependency model
is refined manually by adding information about dependencies which can-
not be discovered automatically. The dependency discovery and depen-
dency modeling are described in this section. An emphasis is placed on the
strategies for discovering different types of dependencies. Furthermore,
the integration of the dependency model creation approach into the ser-
vice development process and the recomputation of the dependency model
upon changes, are described.

Dependency Discovery

During the process of dependency discovery, the goal is to derive ex-
plicit resource, time, QoS, and price related dependency information from
implicit dependency information contained in the composite service pro-
cess description and the respective SLAs. The discovery process depends
strongly on the specific properties of the different dependency types.

The discovery of time and resource dependencies consists of two phases.
During the first phase the composite service workflow is decomposed into

4.4 Managing Service Dependencies 95

Create
service pairs

Decompose
workflow into

paths

Create
aggregation

formulas (based
on [Lud09])

Create horizontal
time

dependencies

Create vertical
time

dependencies

Create horizontal
resource

dependencies

Create vertical
resource

dependencies

Create
dependency

model

Create QoS /
price

dependencies

END

START

Refine
dependency

model manually

Dependency
Model exists?

No

Yes

Analyze input
and output
parameters

Load composite
service workflow

Figure 4.10: Creation and recomputation process for dependency models

linear paths. This phase is independent of the specific dependency. Dur-
ing the second phase the relevant services for dependency discovery are
determined based on the created paths. Also the dependency discovery is
executed and dependency information is added to the dependency model.
Horizontal dependencies are found between different services within a
path. Vertical dependencies are found between the composite service and
the atomic services along the different paths. This phase is dependency-
specific.

For QoS and price dependencies all atomic services are included in the de-
pendency discovery. Instead of decomposing the workflow into paths, it
is analyzed for specific workflow constructs such as AND/OR/XOR split or
join. Based on the different constructs, formulas for the calculation of com-

96 A Concept for Managing Dependencies of Business Services

posite QoS and price values are created. Initial work regarding the calcu-
lation of composite QoS values was done by Cardoso [CMSA04] and Jäger
[JRGM04]. The approach of creating aggregation formulas was developed
by Ludwig [LF08] as part of the COSMA approach and is integrated into
the dependency management approach described in this thesis. In Section
3.3 more information regarding the three approaches is presented.

Path Creation As a preparation for the discovery of horizontal and verti-
cal time and resource dependencies all linear paths, which lead from the
start node to the end node of a process, are determined. Each element
within a path has 0 or 1 predecessor and 0 or 1 successor.

Horizontal dependencies occur between two services, which are located on
the same path. While e.g. time dependencies may exist between services
on different paths, these dependencies cannot be discovered, but need to
be modeled explicitly. This is due to the fact that the discovery approach
for time dependencies is based on temporal information contained in work-
flow process descriptions (see Section 22). Resource dependencies exist due
to provider-consumer relationships between services. Thus, they only ap-
pear when two services occur along a path.

Vertical dependencies occur between an atomic service from a path and
the composite service under evaluation. Paths help to determine the right
services for which vertical dependencies may occur. Since each path rep-
resents an ordered list of services within the process, the complexity for
finding services is reduced.

Approaches to Path Creation: Different approaches exist in the area of
workflows to analyze graphs with respect to finding certain paths. Many
algorithms (e.g. Dijkstra’s algorithm, Bellman-Ford algorithm [CLRS03],
AO* [N.J80]) try to solve shortest path / lowest cost problems, i.e. finding
the best path from one node to another node within the graph. However,
the goal of the path creation step is finding all paths from a start node to
an end node within a graph instead of finding one optimal path. Thus,
these algorithms are not suitable to solve that problem. There are also other
search algorithms, which traverse graphs following different strategies.

• Breath first search: The breath first search algorithm [CLRS03] is an
uninformed search algorithm used to traverse through graphs. Dur-
ing the traversal process it always explores all neighbors of a node
before continuing to one of the neighboring nodes and exploring its
neighbors. Thus, the algorithm does not visit the nodes in the order
in which they appear along a path, but instead continuously switches
between the different paths. This way the path context of the nodes

4.4 Managing Service Dependencies 97

(i.e. the services in a workflow) is lost. For this reason the algorithm
is not applicable for the creation of the paths within a graph.

• Depth first search: The depth first search algorithm [CLRS03] is an
uninformed search algorithm for graph traversal. During the traver-
sal process, depth first search first explores the neighboring nodes of
a node in an iterative approach until reaching an end node or a node
that has been visited before. It then backtracks to the latest node (split
node) with neighboring nodes, which have not been visited before,
and continues to explore its neighbors. The algorithm visits nodes in
the order in which they occur along a path in the graph. It finishes
only after all nodes within a graph have been visited. It uses a node
coloring approach to mark nodes which have not been seen (white),
which have been discovered (grey), and which have been fully ex-
plored (black). Thus, it avoids exploring nodes and their neighbors
twice.

None of the above mentioned algorithms is fully applicable to the problem
space of this work. The breath first search algorithm does not provide the
different paths of a graph but instead the nodes on the same level of depth
inside the graph. The depth first search algorithm delivers linear paths. Some
of these paths reach from the start node to the end node. At each split node
several sub-paths are created reaching from the split node to an end node.
Other subpaths may cover any linear segment within the graph. To create
all full paths reaching from the start node to the end node, the algorithm
would require some modifications. The created sub-paths would need to
be merged so that full paths are created.

The Path Creation Algorithm: The algorithm for path creation (see Al-
gorithm 1) is based on the depth first search algorithm. It traverses the
workflow in a depth first manner. Each node, which is visited, is added to
a path (currentPath). For each node its children are explored.

If a node has more than one child, these children are added to the node
stack (nodeStack), which contains all nodes that have to be visited. Fur-
thermore, it adds instances of the current element to the split node stack
(splitNodeStack), which keeps all split nodes, i.e. nodes with more than
1 child node. If the current element (currentElement) has n children, it is
added n − 1 times to the split node stack. If, for example, a node has two
children, the node is added to the split node stack once, because after reach-
ing the end node in the current traversal, it needs to come back to the last
split node and continue traversing the graph for the second child. This way
the algorithm keeps track of how many times the current path needs to be

98 A Concept for Managing Dependencies of Business Services

Algorithm 1: createPaths
Input: Workflow workflow

Output: List pathList
1 WorkflowElement currentElement, splitNode = NIL

2 List currentPath, pathList, listOfChildElements = NIL

3 Stack splitNodeStack = NIL

4 Stack nodeStack = workflow.startNode

5 while nodeStack not empty do

6 currentElement = nodeStack.popF irstElement

7 currentPath.add(currentElement)
8 listOfChildElements = currentElement.childElements

9 if listOfChildElements not empty then

10 nodeStack.add(listOfChildElements.elems)
11 if listOfChildElements.size ≥ 2 then

12 for i = 1 to i = listOfChildElements.size− 1 do

13 splitNodeStack.add(currentElement)
14 end

15 end

16 end

17 if listOfChildElements empty then

18 pathList.add(currentPath)
19 splitNode = splitNodeStack.popF irstElement

20 currentPath = currentPath.trim(splitNode)

21 end

22 end

trimmed up to the current split node before visiting the remaining children
of the split node stored in the node stack.

When a node does not have any children, the end node is reached and the
current path is added to the list of paths (pathList). Besides that, the path
is trimmed to the last split node that was encountered during the traversal.
This node is found on the split node stack.

The result of the path creation algorithm is a list of paths reaching from
the start node to the end node. To illustrate the result of the algorithm, the
complete list of created paths for the logistics and the healthcare use case
are listed in Appendix C and D respectively.

Utilization of linear paths for the discovery of dependencies facilitates the
analysis process because workflow constructs such as AND, OR, and XOR
splits and joins are not treated separately. For the discovery of time depen-
dencies information about the different workflow constructs is not relevant.
Only information about the sequential order of activities is needed. How-

4.4 Managing Service Dependencies 99

ever, not considering the different workflow constructs has some implica-
tions for the discovery of resource dependencies. During the dependency
discovery process input and output resources are only matched for differ-
ent services along a particular path. This can lead to situations where one
service has a resource dependency regarding the same resource on two dif-
ferent services. This may be due to the fact that both services occur along
different paths and only one path is executed during service provisioning.
It may also be the case that one service occurs along two paths and the out-
put of this service serves as input for the second service. If the two paths
are created by an AND split and join an over-specification of resource de-
pendencies will occur. However, this will not introduce false dependencies
but only indirect dependencies.

An alternative approach would be the dependency analysis based on petri
nets and the firing sequences between the start node and the end node of
the petri net. This analysis would involve the following steps:

• Transformation of composite service workflow to a petri net (e.g.
based on [DDO08, RPU+07, KDA06].

• Determination of all firing sequences covering the transitions be-
tween the start task and the end task

• Analysis of all tasks along each firing sequence for resource depen-
dencies under the consideration of AND, OR, XOR split/joins

This approach is far more complicated than using simple paths for the anal-
ysis of dependencies.

Discovery of Horizontal Dependencies In order to discover dependen-
cies between atomic services, the different paths created during the first
step (see Section 4.4.2) are taken as the starting point. Each path is analyzed
separately. Pairs of services are selected within each path and are analyzed
for dependencies. The selection of services forming a pair is dependency-
specific, i.e. different combinations of services are analyzed for time depen-
dencies on the one hand, and resource dependencies on the other hand. A
detailed explanation of the pair selection, as well as the dependency spe-
cific analysis procedure, is provided in the following paragraphs.

Horizontal Time Dependencies: Two atomic services (s1atom, s2atom),
which are directly connected via an edge in a process, have a finish-to-start
time dependency: s1atom.endT ime finish-to-start s2atom.startT ime.

Algorithm 2 presents the creation of time dependencies. Time dependen-
cies are created for any two neighboring services. Examples of horizontal

100 A Concept for Managing Dependencies of Business Services

time dependencies for the logistics and the healthcare use case, which were
discovered based on this algorithm, are presented in Tables 5.3 and 5.4 re-
spectively.

Algorithm 2: analyzeHorizontalTimeDependencies
Input: List pathList

1 Service s1, s2 = NIL

2 foreach path ∈ pathList do

3 for i = 0 to i < path.size− 1 do

4 s1 = path.getElement(i)
5 s2 = path.getElement(i+ 1)
6 addTimeDep(s1, s2, finish− to− start)
7 end

8 end

Algorithm 3: analyzeHorizontalResourceDependencies
Input: List pathList

1 Service s1, s2 = NIL

2 List resources, comResources = NIL

3 foreach path ∈ pathList do

4 for i = 0 to i < path.size− 1 do

5 s1 = path.getElement(i)
6 resources = s1.outResources

7 for j = i+ 1 to j < path.size do

8 s2 = path.getElement(j)
9 comResources = match(resources, s2.inResources)

10 if comResources not empty then

11 addResourceDep(s1, s2, comResources)
12 resources.remove(match(resources, s2.outResources))
13 end

14 if resources empty then break
15 end

16 end

17 end

Horizontal Resource Dependencies: Two atomic services
(s1atom, s2atom), which are directly or indirectly connected in a pro-
cess, have a resource dependency, if a subset of the output resources of
s1atom matches a subset of the input resources of s2atom. In the case of
matching resources between indirectly connected services, a dependency

4.4 Managing Service Dependencies 101

only exists, if the input resources of s2atom are not provided by a different
service s3atom located between s1atom and s2atom: s2atom.inputResource

resourceDependent s1atom.outputResource.

Algorithm 3 presents the discovery of resource dependencies. Services
from each path are analyzed. Output resources of earlier services are
matched with input resources of later services. If common resources exist,
a dependency is created. Resources, which are also provided as output by
the latter service, are no more considered for further matching of the prior
service. Examples of horizontal resource dependencies for the logistics and
the healthcare use case, which were discovered based on Algorithm 3, are
presented in Tables 5.3 and 5.4 respectively.

Discovery of Vertical Dependencies The discovery process for time and
resource dependencies between the different atomic services and the com-
posite service takes the paths created during the first step (see Section 4.4.2)
as the starting point. From each path single atomic services are selected in
order to be analyzed for dependencies with the composite service. As was
the case for horizontal dependencies, the selection of services to be ana-
lyzed together with the composite service is dependency specific.

Vertical Time Dependencies: Each first atomic service in a path
has a start-to-start time dependency on the composite service with
scomp.startT ime start-to-start satom.startT ime. Each last atomic service in
a path has a finish-to-finish time dependency on the composite service with
satom.endT ime finish-to-finish scomp.endT ime. Algorithm 4 describes the
creation of vertical time dependencies in pseudocode. Examples of ver-
tical time dependencies for the logistics and the healthcare use case are
presented in Tables 5.3 and 5.4 respectively.

Algorithm 4: analyzeVerticalTimeDependencies
Input: List pathList
Input: Service compService

1 foreach path ∈ pathList do

2 Service s1 = path.getF irstService

3 Service s2 = path.getLastService

4 addTimeDep(compService, s1, start− to− start)
5 addTimeDep(s2, compService, finish− to− finish)
6 end

102 A Concept for Managing Dependencies of Business Services

Vertical Resource Dependencies: An atomic service has a resource de-
pendency on the composite service regarding its input resources, if (1)
a subset of the composite service input resources matches a subset of
the atomic service input resources and (2) the atomic service does not
have a horizontal resource dependency regarding the matching resources:
satom.inputResource resourceDependent scomp.inputResource.

The composite service has a resource dependency on an atomic service re-
garding its output resources if (1) a subset of the composite service output
resources matches a subset of the atomic service output resources and (2) if
the matching resources are not provided by another atomic service occur-
ring after satom in the same path: scomp.outputResource resourceDependent
satom.outputResource.

Algorithm 5: analyzeVerticalResourceDependencies
Input: List pathList
Input: Service compService

1 List resources, comResources = NIL

2 DependencyModel depModel = loadDependencyModel()
3 foreach path ∈ pathList do

4 resources = compService.inResources

5 foreach service ∈ path do

6 comResources = match(service.inResources, resources);
7 if comResources not empty then

8 if horizontalDep(service, comResources) 6∈ depModel then

9 addResourceDep(compService, service, comResources);
10 end

11 compResources.remove(matchResources(resources,
service.outResources))

12 end

13 if resources empty then break
14 end

15 path = createReversePath(path)
16 resources = compService.outResources

17 foreach service ∈ reversePath do

18 comResources = match(service.outResources, resources)
19 if comResources not empty then

20 addResourceDep(service, compService, comResources);
21 resources.remove(comResources)
22 end

23 if resources empty then break
24 end

25 end

4.4 Managing Service Dependencies 103

Algorithm 5 outlines the discovery of vertical resource dependencies in
pseudocode notation. For each path the input resources of services are
matched with the input resources of the composite service. If matching re-
sources are found and no horizontal dependency exists regarding the same
resources, a resource dependency is created. Resources, which are also pro-
vided as output of the atomic service, are not matched with later services.
Once all input resource dependencies have been matched, the procedure is
finished. Next, the path is reversed and each service is checked for output
resource dependencies with the composite service. If matches are found,
a resource dependency is created. The matched resources are not matched
again with later services. Examples of vertical resource dependencies for
the logistics and the healthcare use case, are presented in Tables 5.3 and 5.4
respectively.

Discovery of QoS and Price Dependencies In Section 3.3.3 different ap-
proaches to calculating composite service properties (e.g. QoS proper-
ties and price) were described. Cardoso et al. [CMSA04], Jaeger et al.
[JRGM04], and Canfora et al. [CP04] developed approaches enabling the
calculation of different composite QoS properties from atomic QoS proper-
ties using a graph reduction approach. Based on this work Ludwig [LF08]
defined an approach for creating aggregation formulas for specific compos-
ite service properties. These aggregation formulas express the relationship
(dependency) between a composite service QoS or price property and the
respective atomic service properties, with regard to how the composite ser-
vice QoS and price can be calculated from the atomic service values.

The usage of aggregation formulas, as defined by [LF08], enables the ex-
pression of vertical dependencies with respect to service QoS and price
properties. For that reason it is used as one building block within the de-
pendency management approach. The creation of aggregation formulas is
part of the dependency discovery process as outlined in Figure 4.10. In a
first step the workflow of a composite service is decomposed according to
the composition patterns defined by Jaeger et al. [JRGM04]. Based on the
respective patterns the aggregation formulas are created and stored as part
of the dependency model.

Vertical Price Dependencies: A composite service scomp has a price depen-
dency on all atomic services s1atom, .., snatom that have a price: scomp.price

priceDependency s1atom.price, .., snatom.price.

Vertical QoS Dependencies: A composite service scomp has a QoS de-
pendency on all atomic services s1atom, .., snatom that have the same QoS

104 A Concept for Managing Dependencies of Business Services

property. For the maximum temperature QoS attribute this looks as fol-
lows: scomp.maxTemperature qosDependency s1atom.maxTemperature, ..,
snatom.maxTemperature.

An aggregation formula can be generated (for the price and QoS properties
that were analyzed by Cardoso et al. [CMSA04], Jaeger et al. [JRGM04], and
Canfora et al. [CP04]) and used to express dependencies of a composite ser-
vice on a number of atomic services. The expression of the inverse depen-
dency, i.e. how to calculate the QoS and price properties of atomic services
based on composite service values, is not covered by the dependency dis-
covery process. However, during the dependency modeling phase, such
calculation formulas can be expressed based on the preferences of the com-
posite service creator.

Due to the fact that the creation of aggregation formulas has been discussed
by Ludwig [LF08], a more detailed discussion of this approach is not pro-
vided in this thesis.

Creation of the Dependency Model Information As part of the depen-
dency analysis process new dependencies (see Section 4.3.2) are added to
the dependency model. The process for adding a dependency is specific
for each type of dependency. The differences are, however, only of minor
nature, and are due to the different information represented by each depen-
dency. As a first step the dependency model is loaded. Next, the services
playing the role of dependent and antecedent are added to the model, if
they are not already contained. They may be already contained due to the
fact that each service can have different types of dependencies with differ-
ent services. Finally, the dependency is added, if it is not already contained.
Dependencies may already exist due to the fact that certain service pairs
can occur in different service paths. Thus, some dependencies are discov-
ered multiple times. The process for adding dependency information to the
dependency model is presented in pseudocode notation in Algorithm 6 for
the example of a time dependency.

Analyzing Subprocesses Service compositions do not only contain
atomic services. The workflow representing the service composition may
itself be structured using subprocesses. The structuring of the workflow is
realized during its modeling. Atomic services are combined and included
in subprocesses. Since these subprocesses represent a means for structuring
the workflow and do not represent individual tradable services, no SLAs
are negotiated for these subprocesses. Thus, subprocesses require special
handling for the analysis of dependencies, i.e. for handling the introduced
structural complexity.

4.4 Managing Service Dependencies 105

Algorithm 6: addTimeDependency
Input: Service dependentService

Input: Service antecedentService

Input: String timeOperator

1 DependencyModel depModel = loadDependencyModel();
2 if dependentService 6∈ depModel then

3 depModel.add(dependentService);
4 end

5 if antecedentService 6∈ depModel then

6 depModel.add(antecedentService);
7 end

8 if dependency(dependentService, antecedentService, timeOperator)
6∈ depModel then

9 depModel.createTimeDependency(dependentService,
antecedentService, timeOperator);

10 end

The solution approach aims at resolving subprocesses and integrating re-
spective subprocess activities into the composite service workflow. The
process of integrating the subprocess activities into the process occurs be-
fore the creation of paths and ensures that the path creation algorithm is
executed based on a flat workflow description (i.e. no contained subpro-
cess). The approach assumes a representation of subprocesses according to
the BPMN specification [Gro09]. A subprocess is represented by a special
workflow element, e.g. the Sub-Process element of the BPMN specification.
The subprocess consists of different services, which either form a workflow
with a start and an end event, or which are grouped loosely without a start
or end event and no sequence flow defined between the services. The latter
case implies parallel execution of these services (compare [Gro09]).

To resolve the subprocesses of a workflow, the Sub-Process element is re-
placed by the services forming the subprocess and connecting them to the
remaining workflow. This is done according to [NRA08], where the authors
present an approach to redesigning processes. More specifically they show
that parts of a SISO-net can be transformed to a different representation. A
SISO-net is a generalized workflow-net with only a single input and a sin-
gle output. Several transformations for redesign are presented including
the unfold transformation, which replaces an aggregated task with the tasks
it contains. In order to illustrate the replacement, two examples are shown
here. A general description of the replacement approach is presented in
[NRA08].

106 A Concept for Managing Dependencies of Business Services

An example of a workflow containing a subprocess, which consists of
loosely grouped services, is presented in Figure 4.11. It also shows the
resulting workflow after resolving the subprocess. The following steps are
taken:

1. Connecting all loosely grouped services within the subprocess with
an AND-Split and AND-Join.

2. Connection of newly created AND-Split with incoming Sequence-Edge
of Sub-Process.

3. Connection of newly created AND-Join with outgoing Sequence-Edge
of Sub-Process.

4. Removal of Sub-Process element.

Figure 4.11: Resolving loosely grouped subprocess

Figure 4.12 shows an example of a subprocess containing a structured
workflow and the resulting workflow after removing the subprocess ele-
ment. If the subprocess consists of a structured workflow the following
steps are taken in order to resolve the subprocess:

1. Removal of Start-Event and connection of incoming Sequence-Edge of
Sub-Process to starting Activity or Gateway.

2. Removal of End-Event and connection of outgoing Sequence-Edge of
Sub-Process to final Activity or Gateway.

3. Removal of Sub-Process element.

Figure 4.12: Resolving workflow subprocess

The steps for the removal of a subprocess are repeated for each subprocess
found in a composite service workflow. There are no requirements with
regard to the order of removing certain subprocesses prior to others. This
is true for subprocesses at the same hierarchical level, as well as for subpro-
cesses having a containment relationship.

4.4 Managing Service Dependencies 107

Handling of Loops A loop within a workflow exists when an activity of
the workflow is connected with an upstream activity within this workflow.
An object is considered to be upstream if it “. . . has an outgoing Sequence
Flow that leads to a series of other Sequence Flows, the last of which is an
incoming Sequence Flow for the original object. . . ” [Gro09]. The handling
of loops with regard to dependencies is a challenging issue and is specific
to the different dependencies.

Time dependencies express temporal relationships between the start and
end times of two services. When loops occur, such temporal relationships
cannot be expressed in an easy way. The downstream service would have
to be executed after the first execution and before the second execution of
the upstream service. This would require separate specifications of start
and end times of each service execution, and thus separate SLAs. It would
also require a predefined number of how many times a loop is executed.
For services within loops without clear specification of how often they are
executed, time dependencies cannot be described.

The handling of resource dependencies is a similar issue. For each loop
iteration it is important to know exactly, which input and output resources
of two services are matched.

The handling of loops as part of the determination of composite QoS and
price attributes was partially solved by Cardoso et al. [CMSA04], Jäger
et al. [JRGM04], and Canfora et al. [CP04]. All three approaches require
additional information in order to solve the problem. The approach by
Cardoso et al. requires the specification of the probability with which a loop
is entered. However, it is difficult to determine the right number, unless
sufficient historical data about a process is available. Jäger et al. as well as
Canfora et al. require the specification of the number of loop iterations.

Loops introduce a level of complexity into workflows, which cannot be
solved completely by this approach. Loops with a predefined number of
executions can be represented equivalently by repeating the loop tasks in a
linear fashion. At the time of SLA negotiation separate SLAs are negotiated
for each task. The handling of such workflows is already supported by the
approach. However, if loops do not specify the number of executions, but
instead determine the execution of a loop based on runtime parameters,
they cannot be handled by this approach.

Modeling of Non-detectable Service Dependencies

The dependency discovery algorithm produces a valid dependency model.
It captures a number of different dependencies, which can be discovered
based on the process description of the composite service, as well as the ne-

108 A Concept for Managing Dependencies of Business Services

gotiated service level agreements. However, there are dependencies which
cannot be discovered automatically. These dependencies have to be mod-
eled explicitly. Information regarding such dependencies cannot be gained
from the process description, but is available as domain knowledge of do-
main experts. To support the handling of these dependencies, a depen-
dency model editor enables the manual extension and adaptation of the
generated dependency model. The following list outlines optional model-
ing steps.

1. Modeling of complex time dependencies (e.g. equals, overlaps) be-
tween services in parallel flows.

2. Modeling of location dependencies (e.g. equals, not_equals)

3. Modeling of QoS dependencies for QoS properties, where no auto-
matic detection is possible (compare [LF08, CMSA04]), but where the
user wants to create a configuration. Also, the modeling of how to
compute an atomic service QoS property from a composite service
QoS property can be achieved.

Recomputation of the Dependency Model

The recomputation of a dependency model becomes necessary, when the
process description of the service composition is changed. It may also
become necessary upon SLA changes after renegotiation (e.g. changes of
negotiated resources). In both cases the dependencies between services
change and thus the model needs to be adapted. In case of renegotiat-
ing a service level agreement with regard to time, location, price, and QoS
information, no changes in the dependency model are required.

The recomputation process repeats the steps of the dependency model
creation process. More advanced approaches, e.g. the determination of
changes and the execution of respective adaptations of the dependency
model, are beyond the scope of this thesis.

Integration into the Service Lifecycle

In Section 2.1.2 the lifecycle of a service in the Internet of Services is de-
scribed. The analysis of the dependencies between services is an important
step in the matchmaking phase. It requires the composite service workflow
description created during the service offering phase. Furthermore, it requires
SLA offer documents for all atomic services and the composition. SLAs are
negotiated during the matchmaking phase.

4.4 Managing Service Dependencies 109

Model Composite
Service Workflow

Start SLA
negotiation:

Service Level
Agreement Offer

Manual
dependency

model refinement

Dependency
model discovery

Finalize SLA
negotiation

Dependency
model validation

NO

Yes

END

Start

Validation
successful?

Reason?Modeling
error

Invalid offer

Figure 4.13: Dependency model creation and validation within process

Following the modeling of the composite service workflow and the cre-
ation of SLA offers for all services, the dependency analysis as well as the
manual modeling of dependency information are executed. After that the
dependency model is validated (see Section 4.4.3). If the validation of the
model is successful, the negotiation of SLAs can be finalized and the model
is available for further handling. If a validation error occurs, the user needs
to investigate and fix the underlying cause. The integration of the depen-
dency model creation and validation into the process of modeling the ser-
vice and negotiating its SLAs is illustrated in Figure 4.13.

In the case that a dependency model needs to be recomputed, the process
can also be executed using agreement documents instead of offer docu-
ments. If validation errors occur, the renegotiation of SLAs may be neces-
sary.

110 A Concept for Managing Dependencies of Business Services

4.4.3 Dependency Model Validation

After the creation of the dependency model it is necessary to validate the
model based on the offered or negotiated SLAs. The validation is necessary
to ensure that the dependency model and the respective SLAs are aligned.
If this is not the case, i.e. there is a conflict between information in the
dependency model and the SLAs, the underlying problem needs to be fixed
before dependency handling and SLA negotiation can be continued. While
the validation process is executed automatically, the handling of discovered
problems is a manual process.

Validation Purpose

There are different errors, which can be found during the validation pro-
cess. Some errors may occur due to false negotiation of SLAs. Other errors
may occur due to false dependency modeling.

• Time dependencies: Time dependencies are discovered based on the
workflow structure. Further time dependencies may have been mod-
eled manually. Here it is necessary to verify that the different time
dependencies are met by the negotiated start and end times in the
referenced SLAs. Causes for errors include modeling errors of the
composite service workflow or of time dependencies as well as falsely
negotiated times.

• Resource dependencies: The discovery of resource dependencies is
based on SLA descriptions of input and output resources in combina-
tion with the workflow structure. Thus, it is not possible to validate
the SLAs based on the dependency model. However, it is necessary
to check whether the resources provided by some services match the
required resources of other services. According to [RM09] an impor-
tant correctness issue of data flow in workflows is that if one activity
(A2) needs to consume a data object (d1), another activity (A1) needs
to provide d1 before A2 tries to consume the data object. This as-
sumption is independent of the path taken. Typical mismatches in-
clude cases where a required resource fails to be provided, either by
any other service in the workflow, or as the input of the composite
service. Similarly, an output resource of the composite service may
not have been provided by any other service or by the input of the
composite service. Since the functionality of the composite service is
realized by the atomic services, the composite service cannot create
any output “by itself", i.e. besides the output created by the atomic
services.

4.4 Managing Service Dependencies 111

• Location dependencies: Location dependencies, which were mod-
eled manually, need to be validated against the start and end loca-
tions negotiated in the respective SLAs. Errors include false depen-
dency modeling as well as incorrectly negotiated SLAs.

• QoS & price dependencies: Aggregation formulas expressing QoS
and price dependencies were discovered or modeled. These formu-
las are validated based on the respective SLO values of the different
SLAs. Sources for errors include the false modeling of formulas or
the false negotiation of SLO values.

Validation Approach

Algorithm 7 shows the validation algorithm using the example of time de-
pendencies. Location, QoS, and price dependencies are implemented in a
similar manner. However, location dependencies require a location oper-
ator while QoS as well as price dependencies require an aggregation for-
mula. Furthermore, QoS and price dependencies involve more than one
dependent service.

As a first step of the validation each service entity and dependency con-
tained in the dependency model is checked if it contains all required data.
As a second step each time, location, QoS, and price dependency is also
validated with regard to its respective SLAs. SLA information is retrieved
for the antecedent and all dependent services, and validated based on the
time or location operator, or the calculation formula.

4.4.4 Dependency Model Usage

During service provisioning the provider of a composite service is respon-
sible for managing the service composition. This includes two important
tasks. When a SLO violation occurs, the effects on the atomic services and
the composition need to be determined and handled. When a stakeholder
of the composition tries to renegotiate its SLA, the effects of this renegotia-
tion on other services need to be determined. Based on the outcome of the
evaluation the renegotiation can be accepted or handled otherwise. Both
tasks involve the determination of effects of an event on other services. In
this section an approach is outlined, which describes how these effects can
be determined using the dependency model. Figure 4.14 outlines the pro-
cess.

Based on this evaluation further steps need to be determined. Possible
steps for handling SLO violations include the raising of exceptions or the
suggestion of actions, such as renegotiation of a SLA or the adaptation of

112 A Concept for Managing Dependencies of Business Services

Algorithm 7: validateDependencyModel

Input: DependencyModel depModel

Output: Boolean validationResult

1 Service dependentService, antecedentService = NIL

2 SLA dependentSLA, antecedentSLA = NIL

3 Boolean result, validationResult = NIL

4 foreach serviceEntity ∈ depModel do

5 result = validateServiceEntityData(serviceEntity)
6 if result = FALSE then validationResult = FALSE;
7 end

8 foreach dependency ∈ depModel do

9 result = validateDependencyData(dependency)
10 if result = FALSE then validationResult = FALSE;
11 if dependency type TimeDependency then

12 antecedentService = dependency.getAntecedentService()
13 antecedentSLA = getSla(antecedentService.getSlaId)
14 dependentService = dependency.getDependentService()
15 dependentSLA = getSla(dependentService.getSlaId)
16 result = validateTimeDependency(antecedentSLA.timeV alue,

dependentSLA.timeV alue, dependency.timeOperator)
17 if result = FALSE then validationResult = FALSE;
18 end

19 end

the overall process. Renegotiation requests can be accepted, rejected, or
may need further considerations with regard to other SLAs. The determi-
nation of next steps may be realized by a special component or involve
human activities. This is, however, not part of this thesis.

Evaluating SLA Renegotiation Requests

SLA renegotiation requests need to be evaluated whenever a provider of an
atomic service or a consumer of a composite service wants to renegotiate
one or more service level objectives of his contract. Algorithm 8 outlines
the necessary steps for analyzing renegotiation information in pseudocode
notation.

Based on the service key all relevant dependency models are retrieved,
which involve the current service. For each dependency model the rele-
vant dependencies are extracted. A dependency is relevant if two aspects
are met: it expresses a dependency matching the KPI (1) and the current
service has the antecedent role, or the dependency is a bidirectional depen-

4.4 Managing Service Dependencies 113

Retrieve
relevant

dependencies

Get SLO
information for

dependency

Validate data

Renegotiation
request

Yes

END

Start

No

Validation
successful

More
dependencies

Yes

No

List affected
service

Get
renegotiation
information

Event type

Get violation
information

SLO
Violation

Return list of
affected
services

Figure 4.14: Dependency evaluation during service provisioning

dency (2). For each dependency the relevant service is extracted and its
KPI information determined. Finally, the KPI information of both services
is validated based on the dependency description. If a conflict is detected
the respective service is added to a list of affected services, which is later
displayed to the user. Furthermore, if the dependency is of transitive na-
ture, further affected services are determined for the dependent service.

Evaluating SLO Violations

Service dependency evaluation is performed whenever SLO violations oc-
cur. SLO violations are detected during service monitoring. Information

114 A Concept for Managing Dependencies of Business Services

Algorithm 8: getAffectedServices

Input: String serviceKey, String kpiName, KpiValue kpiV alue1
Output: List affectedServices

1 KpiValue kpiV alue2 = NIL

2 List dependencyModels = getModels(serviceKey)
3 List dependencyList = NIL

4 DependencyDescription depDescription = NIL

5 foreach model ∈ dependencyModels do

6 dependencyList = getDependenciesForServiceKPI(serviceKey,
kpiName)

7 foreach dependency ∈ dependencyList do

8 kpiV alue2 = retrieveKPIValue(dependency.dependentService,
kpiName)

9 depDescription = dependency.description

10 if validate(kpiV alue1, kpiV alue2, depDescription) 6= true then

11 affectedServices.add(dependency.dependentService)
12 if dependency.isTransitive then

getAffectedServices(dependency.dependentService.serviceKey,
kpiName, kpiV alue2)

13 end

14 end

15 end

about SLO violations, i.e. SLO violation messages, are analyzed to deter-
mine affected services.

The functionality for determining affected services is very similar to the
functionality for evaluating renegotiation requests. The difference is that
bidirectional dependencies with services occurring earlier in the composi-
tion are not considered for evaluation.

4.4.5 Dependency Model Retirement

During the retirement phase the dependency model is taken out of service.
This happens at the end of the lifecycle of the composite service for which it
was created. At that time the SLA for the composite service has ended. The
service will not be executed anymore. Thus, neither requests for renegoti-
ation, nor SLO violation events are received. In case the customer wants
to consume the same service again, a new SLA needs to be negotiated and
a new dependency model will be created. While the dependency model is
not needed any more for the management of service dependencies, it may
be kept for later reference or documentation reasons.

4.5 A Platform for Service Dependency Management 115

4.5 A Platform for Service Dependency Management

The management of service dependencies is achieved by means of algo-
rithms for dependency analysis at design time, dependency representation
in a suitable model, and algorithms for dependency evaluation at runtime.
This section describes the integration of the presented approach into a con-
ceptual architecture supporting the lifecycle of services (see Section 2.1.2).

As a first step an overview of the tools and the platform for designing, trad-
ing, and providing services is presented. The tools and platform were de-
veloped jointly with different partners within the TEXO project. While the
description presents the overall functionality of the tools and the platform,
the focus is on the components for managing service level agreements.
They provide the functionality for the SLA lifecycle presented earlier (see
Section 2.2.2). As a next step a detailed description of the components for
dependency management and their integration into the conceptual archi-
tecture is presented. These components implement the concepts described
earlier in this chapter. Finally, the interplay of the different components to
realize dependency management is illustrated.

4.5.1 An Architecture for Service and SLA Management

When services are traded on service marketplaces, different providers can
offer their services to different consumers. While service development and
provisioning is handled by service providers, this is not necessarily the case
for tasks such as negotiating and monitoring SLAs and handling the billing
for service usage. The architecture presented in this chapter and developed
as part of the Theseus TEXO project assumes that a central marketplace
offers many of these important functionalities.

The architecture supports the development and execution of services, the
management of SLAs according to the SLA lifecycle described in Section
2.2.2, and the monitoring of services based on SLAs. Furthermore, a num-
ber of other important tasks, such as billing service usage and enforcing
access policies, are handled by the architecture, but do not represent the
main focus of this thesis.

The core structure of the architecture is composed of three building blocks:
the design time tools (ISE Development Environment), a service marketplace
(Service Management Platform), and a service runtime infrastructure (Tradable
Service Runtime). Figure 4.15 presents an overview of the main architectural
components (FMC notation1). Components for the handling of service de-

1Fundamental Modeling Concepts: http://www.fmc-modeling.org/

116 A Concept for Managing Dependencies of Business Services

Tradable Service
Runtime

Service
Management
Platform

ISE
Development
Environment

Service
Description &
Composition

SLA Manager

Process
Engine

Service
Monitoring

R

Web
Browser

R

Billing

Access
Management

ISE SLA
Management

Figure 4.15: Abstract architecture for service infrastructure

pendencies are integrated into the architecture and will be described later
in this chapter.

The ISE Development Environment consists of design time service engi-
neering tools for designing and describing services as well as for creating
service compositions. It also offers support for composite service providers
to create and negotiate SLAs. The Service Management Platform (SMP)
provides service marketplace functionality for offering and searching ser-
vices, negotiating and monitoring SLAs, and billing, only to mention a few.
The Tradable Services Runtime (TSR) supports service execution and mon-
itoring at the provider’s side. In a typical scenario there are multiple dis-
tributed service runtimes, which are interacting with the central service
marketplace. The communication between the marketplace and the differ-
ent service runtimes is realized via a message-oriented middleware, which
supports the exchange of information regarding deployed services, newly
negotiated SLAs, and monitoring events.

In the following sections an overview of the technical infrastructure of the
design time service engineering tools, the service marketplace, and the ser-
vice runtime is given. The SLA management and monitoring architecture

4.5 A Platform for Service Dependency Management 117

is part of this infrastructure. The main focus of this description is on the
SLA management and monitoring aspects. Besides that, related function-
ality, such as service deployment and execution, as well as billing service
usage, is only briefly presented to provide a more general understanding.

ISE Development Environment

The ISE Development Environment is a set of tools supporting the work of
service providers to engineer services (see Figure 4.20).

Service Description and Composition The design time tools support the
design of services and their description based on USDL (see Section 2.1.3).
They also enable the creation of service compositions and their descrip-
tion as composite services. The tools realize the Integrated Enterprise Ser-
vice Engineering (ISE) methodology developed as part of the TEXO project
[CVW08]. The ISE methodology describes a model-based approach to ser-
vice engineering. It separates different aspects of a service (e.g. its underly-
ing workflow or its description, which is visible to marketplace users) and
enables their modeling from a business as well as a technical perspective.

The service description provides a basis for searching and finding services
as well as for formalizing contracts (i.e. SLAs) between service providers
and consumers.

Service compositions are created from services, which are offered via the
service marketplace or which are available in a local service repository of
the composite service creator. As part of the creation process, service level
agreements need to be negotiated between the composite service creator
and the providers of the atomic services.

The ISE Development Environment supports the creation of service com-
positions based on the BPEL specification [JEA+07]. BPEL processes can be
directly modeled using a BPEL editor. An alternative approach is the spec-
ification of a business process using the BPMN notation [Gro09], followed
by a transformation to BPEL. This approach requires some additional mod-
eling steps after the transformation.

The SLA Template Generation Component Service level agreements
generally contain information such as a description of the service to be
provided, the price of the service, and a number of guaranteed quality
attributes. Much of this information is also available within the service
description. Thus, service description information can be used as a basic
building block for the formalization of service level agreements.

118 A Concept for Managing Dependencies of Business Services

The negotiation of SLAs, which was implemented based on the WS-
Agreement specification [ACD+07], requires a SLA template as its start-
ing point. The template contains the relevant information about a service,
which is needed for the negotiation process.

The SLA template is generated from the service description. The approach
consists of two parts. On the one hand service description elements are
utilized to formalize parts of the SLA template. USDL elements are in-
cluded into the SLA template. On the other hand information regarding
measurable attributes are mapped to the description of SLOs. This inte-
gration of the service description and the SLA template creation process
helps to automatize parts of the overall service development process. The
final agreement document contains language constructs, which are specific
to the agreement notation (i.e. WS-Agreement) as well as the service de-
scription language (e.g. USDL). Listing 4.4 shows a simplified sample of a
WS-Agreement document including USDL elements in the ServiceDescrip-
tionTerm section. The name and metric of the variable in the ServiceProp-
erties section also originate from the service description document. This
information is mapped to elements in the agreement notation. The same is
true for the SLO target value in the GuaranteeTerm section. The generated
SLA template is then deployed together with the newly created service.

1 agreement {
2 Name Truck DD SLA
3 ServiceDescr ipt ionTerm {
4 ServiceName Truck DD
5 usdl:providerName Dresden L o g i s t i c s
6 u s d l : d e s c r i p t i o n Pick−up and t r a n s p o r t of goods

within c i t y area
7 u s d l : p r i c e 170 EUR
8 }
9 S e r v i c e P r o p e r t i e s {

10 V a r i a b l e S e t {
11 Var iab le {
12 Name executionTime
13 Metric xsd :durat ion
14 } } }
15 GuaranteeTerm {
16 Name BasicService_GUARANTEE
17 ServiceScope Truck DD
18 S e r v i c e L e v e l O b j e c t i v e {
19 KPIName executionTime
20 Target 2H
21 } } }

Listing 4.4: WS-Agreement SLA with USDL code

4.5 A Platform for Service Dependency Management 119

ISE SLA Wizard The ISE SLA Wizard supports composite service
providers to create service composition. It provides the functionality to
search for a SLA template based on a service key and to negotiate a SLA for
the respective service. The wizard is integrated into the ISE Development
Environment to enable better integration with the modeling work rather
than having separate tools.

Service Management Platform

The Service Management Platform (SMP) enables service providers to
make their services available to interested consumers, who can use the SMP
to search for suitable services according to their needs. It provides the mar-
ketplace functionality for trading services and thus represents the central
infrastructure for service providers and consumers to engage in business
interactions.

In contrast to the service development tools, which are under the control of
the different service providers, the SMP is a centralized component under
the control of a marketplace provider, who makes the SMP functionality
available for service providers and consumers.

Service Registration, Search, and Billing In order to make a service
available on a marketplace, it needs to be registered. Service registration
is one step of the service deployment process. During the registration pro-
cess important information about the service is made available for different
components of the marketplace. Different search engines are provided with
information about the service functionality, promised quality of service pa-
rameters, and pricing information. Once the registration of the service is
completed, it can be found and used by consumers. Different search en-
gines support consumers in finding the right service for their needs.

Furthermore, functionality for billing and pricing is provided. This way the
marketplace offers key functionality, without which business interactions
would be difficult to establish.

SLA Management The provisioning and consumption of services is reg-
ulated by service level agreements (SLAs). The SLA Manager component
provides functionality supporting the handling of service level agreements
at the service marketplace (see Figure 4.20). This includes the deployment
of new SLA templates, the negotiation of SLAs between service consumers
and providers, the monitoring of negotiated contracts during service pro-
visioning, and the renegotiation of contracts by service consumers and
providers during the lifetime of a SLA.

120 A Concept for Managing Dependencies of Business Services

SLA Manager Architecture and Context Figure 4.16 shows the main
components of the SLA Manager. The SLA Deployment component sup-
ports the deployment of new SLA templates during the service deploy-
ment process as well as their removal, when a service should not be offered
any more. These templates are received from the deployment component,
which manages the process of deploying a new service and registering it
at the marketplace. The received SLA template is stored in the Template
Repository.

The SLA Negotiation component supports the SLA negotiation process,
which can be triggered via a web interface by an end user or from the ISE
SLA Wizard by a service engineer. Following the successful negotiation or
renegotiation of a SLA, an event is sent to the message-oriented middle-
ware informing the monitoring components about it.

The SLA Monitoring component receives events about detected SLO viola-
tions from the service runtime. This information is stored and made avail-
able for the billing component.

Furthermore, the SLA Manager makes contract information (e.g. consumer
information) available for the billing component.

Tradable Service
RuntimeService Management Platform

Service
Monitoring

R

SLA Manager

SLA
Negotiation

SLA
Repository

SLO
MonitoringTemplate

Repository

Deployment

MOM

Web
Browser

Design Time

ISE

Billing

R

SLA
Deployment

SLA
Monitoring

Service
Description &
Composition

SLA Template
Generation

Adaptation
Coordinator

R

ISE SLA
Wizard

Figure 4.16: SLA Manager and interfaces to other components

SLA Template Deployment The SLA Manager provides interfaces for the
deployment, update, and removal of SLA templates. The deployment of
SLA templates occurs as part of the service deployment process. SLA tem-
plates, which form the basis for SLA negotiation, are created as part of the
service engineering process. They are generated from the service descrip-

4.5 A Platform for Service Dependency Management 121

tion. When a SLA template is deployed it is stored in a template repository
where it is available for the SLA negotiation.

During the lifetime of a service the SLA template of the service can be up-
dated. This makes it possible to adapt to consumer requirements, e.g. if
a service cannot be sold due to its current price model. It also enables the
provider to change the contracting terms for the service if the capabilities
for service provisioning change.

The removal of templates is necessary when a service ceases to be offered.

SLA Negotiation The SLA Manager supports the negotiation of service
level agreements according to the WS-Agreement specification. It acts on
behalf of the service provider. It provides two interfaces supporting the
negotiation process presented in Listing 4.5 and 4.6.

1 public Template getTemplate (S t r i n g serviceKey)
2 {
3 }

Listing 4.5: The interface getTemplate

1 public Agreement createAgreement (Offer o f f e r)
2 {
3 }

Listing 4.6: The interface createAgreement

A consumer can request a SLA template for a service and refine it accord-
ing to his needs, thus creating an agreement offer. Once all refinements
are made, the agreement offer can be submitted to the SLA Manager in the
form of a request for creating an agreement based on this agreement of-
fer. If the agreement offer is successfully evaluated it is accepted, stored
in the SLA Repository, and the consumer is informed. The negotiation pro-
cedure is presented in Figure 4.17. Furthermore, an event is sent to the
message-oriented middleware informing interested components (e.g. dif-
ferent monitoring components) of the service provider about the new SLA.
These components are then able to request the new agreement and use its
information to prepare for service execution and monitoring.

A further functionality provided by the SLA Negotiation component is the
renegotiation of SLAs. It allows to adapt single SLOs of a SLA if the service
provider and the consumer agree. Renegotiation is only possible for SLOs
which were marked as renegotiatable during the SLA negotiation procedure.

SLA Renegotiation The renegotiation of SLAs enables consumers and
providers of services to adapt a SLA according to their needs even after

122 A Concept for Managing Dependencies of Business Services

Composite
Service
Creator

ISE SLA
Wizard

SLA
Negotiation

Template
Repository

SLA
Repository

Result

startNegotiation(id)

SLA Template

getTemplate(serviceKey)

SLA Template

retrieveTemplate

alt

[Offer rejected]

[Offer accepted]

Offer

adapt(Template)

Result

createAgreement(Offer)

evaluate(Offer)

store(Agreement)

Figure 4.17: SLA negotiation procedure

the SLA has been agreed upon by both parties. This functionality is useful,
because it allows the parties to adapt their SLAs to changing conditions
(see Section 2.2.2 for more details).

The SLA Manager is the central component, which enables the renegotia-
tion of SLAs. Requests for renegotiating a SLA need to be sent to the SLA
Manager, which can either automatically evaluate the request or forward
it to the respective service provider in case that some more advanced deci-
sion making process is involved (e.g. human involvement in the decision
process is necessary). In Figure 4.18 the process for renegotiating a SLA is
shown from the perspective of a composite service creator, who uses the
ISE SLA Wizard for renegotiation. As a first step of the renegotiation pro-
cess the agreement is requested by the SLA Manager. With the help of the
ISE SLA Wizard the user can change the respective values of the SLA and

4.5 A Platform for Service Dependency Management 123

submit it to the SLA Manager for further handling. In case that the SLA
Manager can automatically evaluate the renegotiation request, the evalua-
tion is performed and a result is returned. Otherwise it forwards the rene-
gotiation request to the responsible service provider for further handling.
The renegotiation result is returned to the SLA Manager. If the proposed
offer is accepted (either by the SLA Manager or by the service provider) it
is stored in the SLA Repository. Finally, the result is sent to the requesting
party.

MoM
Service
Provider

SLA
Repository

SLA
Negotiation

ISE SLA
WizardComposite

Service Creator

Result

startRenegotiation(SlaID)

Agreement

getAgreement(SlaID)

Agreement

retrieveAgreement

Offer

adaptAgreement

Result

renegotiate(SlaID, Offer)

alt

[Provider involvement]

[Automatic negotiation]

evaluate(Agreement, Offer)

Agreement

retrieveAgreement

alt

[reject]

[accept]

renegotiationRequest
renegotiationRequest

evaluate()

Result

renegotiationResponse

storeAgreement

Figure 4.18: SLA renegotiation process

SLA Monitoring Monitoring information regarding the service execution
is collected during runtime. The evaluation of the single measurements is
not realized by the SLA Manager itself but instead by the SLO Monitor-
ing component, which is a part of each service runtime infrastructure. The
handling of all monitoring events by the SLA Manager would create a bot-

124 A Concept for Managing Dependencies of Business Services

tleneck. The SLA Manager receives information regarding detected SLO
violations. This information is stored and evaluated when other compo-
nents or a service client request the status of a SLA.

1 public Lis t <SLOMeasurementStatus> getSLAViola t ionDeta i l s (
2 S t r i n g s e r v i c e I n s t a n c e I D) {
3 }

Listing 4.7: The interface getSLAViolationDetails

SLA status information is particularly important for the process of billing
a service consumer for the usage of a service. The billing component uses
the status information to determine the final price to be charged to the con-
sumer for using the service. If the negotiated SLOs were violated, the con-
sumer might be entitled to a discount. Listing 4.7 presents a function for
determining the SLO violations of a SLA.

Tradable Service Runtime

The Tradable Service Runtime (TSR) provides support for executing ser-
vices and their underlying processes as well as for monitoring the exe-
cution. A TSR may be under the control of a single service provider or
managed by an external infrastructure provider. In the latter case multiple
service providers may make use of the hosting service and share the same
runtime infrastructure. Each service provider uses the functionality of a
service runtime to support service execution. In a typical scenario there are
multiple distributed service runtimes for the different service providers,
which are interacting with the central service marketplace. Figure 4.20 out-
lines the most important components for service execution and monitoring.

Service execution and monitoring One major task of the TSR is to sup-
port the execution of services. The execution of services and processes is
supported by respective engines, i.e. web service and BPEL engines. Be-
fore a service call from a user is executed, a check is performed whether
or not consumers trying to access a service are entitled to do so. This is
only the case if a SLA was negotiated, which allows access to the service.
During service execution monitoring sensors measure a variety of different
parameters and make this information available for further evaluation.

SLO Monitoring Component The SLO Monitoring component is respon-
sible for evaluating monitoring data during service provisioning. It re-
quests the negotiated SLAs from the SLA Manager upon receiving a no-
tification that a new SLA has been negotiated.

4.5 A Platform for Service Dependency Management 125

The monitoring information is made available by monitoring sensors via a
message-oriented middleware. When the SLO Monitoring component re-
ceives monitoring information, it evaluates it based on information in the
negotiated SLA. As a first step the monitoring data is analyzed to find out
under which SLA the service was executed. Based on the type of mea-
surement data received, it retrieves the SLO information from the SLA and
analyzes this information. If a SLO violation is discovered, an event is sent
to the message-oriented middleware in order to inform other components
about the occurrence of the problem. The process of handling monitoring
data is illustrated in Figure 4.19.

SLA
Manager

Monitoring
Sensors

SLO
Monitoring

MoM

send(MonitoringData)
send(MonitoringData)

Send(SLOViolationMessage)

evaluate(MonitoringData)

alt

[violation]

[no_violation]

Send(SLOViolationMessage)

Figure 4.19: Evaluation of monitoring data

Integration of the Service Infrastructure Components

The service design time tools, marketplace, and runtime infrastructure pro-
vide their functionality in a distributed fashion. Service providers use the
design time tools under their control to engineer their services. The service
runtime infrastructure may be under the control of either the single service
providers or a hosting company. The marketplace is a central infrastructure
controlled by the marketplace provider.

The integration of the different components is necessary to enable the tasks
of the different infrastructure components. It is realized in two different
ways. Web service interfaces enable the direct communication between two

126 A Concept for Managing Dependencies of Business Services

ISE Development Environment

Tradable Service
Runtime

Service
Management
Platform

Service
Description

Service
Composition

ISE SLA
Wizard

Dependency
Analysis

SLA Manager

Process Engine

Service Monitoring

Message-oriented
Middleware

SLA
Template

R

SLA
Information

RMonitoring Data

Process
Deployment

R

Web
Browser

Service
Model

Repository

Runtime
Dependency
Evaluation

Dependency
Model

Management

R

R

R

SLA
Template

Generation

R

R

Figure 4.20: Architecture overview of service infrastructure components

components. A message-oriented middleware allows for communication
between multiple components following the publish-subscribe pattern. It
provides good scalability and flexibility with respect to who is interested in
which information.

The deployment and registration of services from the development envi-
ronment to a TSR and the marketplace, as well as the distribution of the
service related artifacts (e.g. service description, process description), is re-
alized by means of web service interfaces. The communication between the
marketplace and the different service runtimes is realized via a message-
oriented middleware, which supports the exchange of information regard-
ing deployed services, newly negotiated SLAs, and monitoring informa-
tion. The communication between the different components of the service
runtime (e.g. to exchange monitoring information) is also realized via a
message-oriented middleware. In Figure 4.20 the most important inter-

4.5 A Platform for Service Dependency Management 127

faces between the different components are illustrated. The interplay of
the different components is described in the following section.

Exemplary Description of Component Interplay

At design time a composite service provider models a service composition
using the Service Composition tools. For the different services that are inte-
grated into the composition, SLAs are negotiated using the ISE SLA Wiz-
ard. It communicates with the SLA Manager via a web service interface to
request a SLA template, submit the SLA offer, and receive the final agree-
ment. During development the service is also described using the Service
Description tools. Finally, a SLA template is generated for the service by the
SLA Template Generation component. All service related artifacts are stored
in the Service Model Repository.

Following the development, the service is deployed to make it available for
consumers. The SLA template is deployed to the SLA Manager in order to
serve as a basis for SLA negotiation. The process description is deployed to
the Process Engine. The service can now be found by potential customers.
Before using the service they need to negotiate a SLA for it using either a
web browser or the ISE SLA Wizard, depending on whether they are end
users or composite service providers. Once a new SLA is negotiated, the
SLA Manager informs interested components such as Service Monitoring
about this event using the message-oriented middleware. These compo-
nents can then retrieve the new SLA via a web service call. The user can
now utilize the service. Monitoring information about service provisioning
is captured and evaluated with regard to the negotiated SLA. If the Service
Monitoring components detect a violation, this information is forwarded
to interested components via the message-oriented middleware.

Service consumers are able to requests the renegotiation of a SLA using
the ISE SLA Wizard or the browser. If the SLA Manager cannot resolve
the request by itself, it forwards the information to the respective service
provider via the message-oriented middleware. From there it is available
for further handling, e.g. by the dependency management components,
which are described in the next sections.

4.5.2 Dependency Management Extensions

In this section the necessary extensions to enable the management of de-
pendencies are presented. The extensions include components for the cre-
ation, validation, and storage of dependency models (Dependency Model
Management), the discovery and modeling of dependencies (Dependency
Analysis), and the evaluation of the dependency model with respect to dif-

128 A Concept for Managing Dependencies of Business Services

ferent events at runtime (Runtime Dependency Evaluation). The respective
components are presented in the architecture overview in Figure 4.21. They
are described in the following sections. Furthermore the interaction be-
tween the different components as well as their integration into the overall
design- and runtime architecture is explained.

ISE Development Environment

Dependency Model Management
Tradable Service
Runtime Runtime Dependency

Evaluation

Service
Management
Platform

Dependency Analysis

ISE SLA
Management

Analysis
Manager

SLA Manager

Dependency
Evaluation

Dependency
Model Store

Process
Analysis

Dependency
Discovery

R

R

Dependency
Modeler

Dependency
Model Manager

R

Dependency
Model

ValidationR

R

Cockpit

Service
Monitoring

R

Service
Model

Repository

Message-
oriented

Middleware

R

R

R

Figure 4.21: Conceptual architecture of dependency management

Dependency Model Management

The approach for managing service dependencies has at its core the depen-
dency model, which is used to capture information about services and the
dependencies that occur between them. The components, which are part of
the dependency model management, are responsible for the creation, val-
idation, and storage of dependency models and for making the respective
models available to other components.

The Dependency Model Manager is the central component. It creates new
dependency model instances for each new SLA negotiated for a compos-
ite service. The models are stored in the Dependency Model Store. It is
also responsible for adding information to dependency models and mak-
ing model information available to other components such as Dependency
Modeler and Dependency Evaluation. The functionality for the modification
of dependency models, as well as making model information available to
other components, was assigned to a single component in order to avoid
conflicting access to single dependency model instances. The Dependency

4.5 A Platform for Service Dependency Management 129

Model Validation component is responsible for validating the dependency
model with respect to the defined constraints and the respective SLAs and
SLOs. The dependency model instances are stored in the Dependency Model
Store. From there they can be retrieved by the Dependency Model Manager
and made available for runtime evaluation. Figure 4.22 shows the steps
involved in the dependency model validation process.

Service
Model

Repository

Dependency
Model

Validation

Dependency
ModelerComposite

Service
Creator

Dependency
Model

Manager

Dependency
Model Store

result

validateModel

model

getModel(model)

model

getModel(model)

result

validateModel(model)

alt

[else]

[validation success]

showError

result

validate(model)

validateModel(model, sla)

slaInformation

getSlaInformation()

storeModel(model)

Figure 4.22: Validation of dependency model and SLAs

When the composite service creator wants to validate the dependency
model using the Dependency Modeler tool, the dependency model is
loaded from the Dependency Model Store via the Dependency Model Man-
ager. As a next step the Dependency Model Manager is requested to vali-
date the model. Thus, it orders the Dependency Model Validation compo-
nent to validate the dependency model. To be able to do that, it requests
the necessary SLA information for the different services from the Service

130 A Concept for Managing Dependencies of Business Services

Model Repository. Based on the dependency model and SLA information
the validation is executed and the result is returned to the Dependency
Model Manager. In case the validation was successful, the dependency
model is stored in the Dependency Model Store. In case of a problem oc-
curring during the validation, the composite service creator is informed.

Service Dependency Analysis

The functionality for dependency analysis is distributed between compo-
nents, which support the automatic dependency discovery as well as de-
pendency modeling (see Section 4.4.2). The Analysis Manager manages the
process of automatic dependency discovery. It initiates the creation of a
dependency model, and invokes the functionality for creating the paths of
the process and discovering the dependencies. The Process Analysis com-
ponent is responsible for analyzing the underlying process of a compos-
ite service and preparing it for the dependency analysis. It decomposes
the process into linear paths leading from the start node to the end node.
These paths are used for the analysis of dependencies. The Dependency Dis-
covery component realizes the different dependency discovery mechanisms
of the dependency analysis process. The Dependency Modeler enables the
modeling of dependency information, which cannot be discovered auto-
matically.

The dependency analysis process, i.e. the dependency discovery, and the
involved components are presented in Figure 4.23. The discovery process
is initiated by the composite service creator during the process of negoti-
ating the SLAs with the consumer of the composite service as well as the
atomic service providers. Listing 4.8 presents the interface via which the
dependency analysis is initiated.

1 public void analyzeDependencies (F i l e process)
2 {
3 }

Listing 4.8: The interface analyzeDependencies

The analysis process is managed by the Analysis Manager component. It
creates a dependency model and initiates the decomposition of the pro-
cess underlying the composite service. This step is executed by the Process
Analysis component. It decomposes the process and retrieves all linear
paths of services leading from the start node to the end node of the process
(see Section 4.4.2). Based on the path the discovery of dependencies is ex-
ecuted by the Dependency Discovery component. As part of the discovery
process it retrieves SLA information for the different services. When it dis-
covers a dependency it requests the Dependency Model Manager to add the

4.5 A Platform for Service Dependency Management 131

Service
Model

Repository

Dependency
Model Store

Dependency
Model

Manager

Analysis
Manager

Process
Analysis

Dependency
DiscoveryComposite

Service
Creator

result

analyzeDependencies(process)

pathList

getPaths(process)

result

analyzeDependencies(path)

result

addDependency(info)

addServiceInfo

storeModel(model)

addDependencyInfo

sla

getSlaInformation

result

createDependencyModel(compositeServiceKey)

Figure 4.23: Dependency discovery steps

respective information to the dependency model. The new information, in-
cluding service and dependency information, is added to the model. Once
the information has been added to the model, it is stored in the Depen-
dency Model Store. From there it can be accessed for further design time
handling.

The second part of the dependency analysis is realized by the Dependency
Modeler. It provides modeling functionality for the composite service cre-
ator, which enables the creation of new as well as the extension of existing
dependency models. In Figure 4.24 the process and the involved compo-
nents of the dependency modeling process are shown. The modeling pro-
cess is initiated by the composite service creator. As a first step the Depen-
dency Modeler requests a dependency model from the Dependency Model
Manager. Once the model is available, the composite service creator uses

132 A Concept for Managing Dependencies of Business Services

the editing functionality of the Dependency Modeler to add, remove, or
modify dependency and service information in the model. Finally, the de-
pendency model is stored again.

Dependency
Model Store

Dependency
Model

ManagerComposite
Service
Creator

Dependency
Modeler

success

startModeling

model

getModel(model)

model

getModel(model)

editDepModel

success

storeModel(model)

success

storeModel(model)

Figure 4.24: Modeling of dependencies at design time

Runtime Dependency Evaluation

The Runtime Dependency Evaluation components are responsible for the
evaluation of dependency information at runtime. This thesis covers two
major use cases that require the evaluation of dependency information. The
occurrence of SLO violation information requires the determination of ef-
fects of this violation on other services (atomic or composite service). The
occurrence of SLA renegotiation requests require an evaluation of the ef-
fects of this request on other services within the composition as well as the
composition itself. Based on the result of this evaluation

• the renegotiation request is accepted, if it does not affect other ser-
vices;

• effects on other services are detected and thus other SLAs need to be
renegotiated before the current request is accepted or rejected;

• the renegotiation request is rejected, if effects on other services occur
but cannot be resolved.

4.6 Summary 133

The process of dependency evaluation and the components involved in the
process are presented in Figure 4.25. The process is initiated by the ISE
SLA Management component in this example. It calls the Dependency Eval-
uation component, which executes the evaluation process. It first requests
the dependency model from the Dependency Model Manager. Then it re-
trieves all dependencies involving the service under observation as well
as relevant SLA information. The different dependencies are then evalu-
ated with respect to the current event and affected services are determined.
They are displayed to the user via the Cockpit.

Cockpit
Service
Model

Repository

Dependency
Model Store

Dependency
Model Manager

Dependency
Evaluation

ISE SLA
Management

affectedServices

getAffectedServices(serviceKey, kpiName, kpiValue)

model

getModel(serviceKey)

model

getModel(serviceKey)

getDependencies(serviceKey, kpiName)

evaluateDependencies

sla

getSlaInformation

displayAffectedServices

Figure 4.25: Evaluation of dependencies at runtime

1 public Lis t <Service > g e t A f f e c t e d S e r v i c e s (S t r i n g
serviceKey , S t r i n g kpiName , Object kpiValue)

2 {
3 }

Listing 4.9: The interface getAffectedServices

4.6 Summary

In this chapter an approach for the management of dependencies in service
compositions was presented.

134 A Concept for Managing Dependencies of Business Services

As a first step the nature of service dependencies was discussed. The notion
of horizontal and vertical dependencies was introduced. Furthermore, a
classification of different dependency types was presented.

As a second step different concepts for the representation of dependen-
cies were analyzed. Based on this analysis a dependency model was in-
troduced. This model consists of a generic core for expressing dependency
information as well as additional packages enabling the description of de-
pendency type-specific information. The dependency model is a core con-
tribution of this thesis, answering the third research question stated in Sec-
tion 1.4.

As a third step, the semi-automatic creation of a dependency model, de-
pendency model validation, and evaluation were described. These con-
cepts implement a lifecycle for the management of service dependencies.
This lifecycle describes the overall approach of managing dependency in-
formation in the context of composite SLA management and thus answers
the first research question stated in Section 1.4. The semi-automatic process
of dependency model creation enables a more efficient handling of depen-
dency information. It answers the second research question.

Finally, an architecture realizing the dependency management approach
was presented. Components implementing the different concepts were in-
tegrated into an environment for service design, trading, and provisioning.
This architecture shows how the different components interact with each
other and with the remaining infrastructure. While the design of the archi-
tecture was inspired by the TEXO architecture, the components for service
dependency management could be integrated into other related architec-
tures. The presented architecture answers the fourth research question.

5
Validation

This chapter serves as the validation of the concepts developed as part of
this thesis and described in Chapter 4. First the validation approach is de-
scribed and its goals are outlined (Section 5.1). Furthermore, a prototypical
implementation of the concepts is presented (Section 5.2) and evaluated
based on a set of test cases (Section 5.3). The approach is also validated in
Section 5.4 with regard to its performance. The chapter concludes with an
evaluation of the requirements (Section 5.5) presented in Section 2.5 and a
discussion of the validation results (Section 5.6).

5.1 Validation Approach

The purpose of the validation is twofold. On the one hand the general fea-
sibility of the dependency management approach is shown. On the other
hand the performance of the approach is analyzed to show its applicability
in real-world application scenarios.

The validation consists of three major steps. First a proof of concept of the
presented dependency management concepts is provided. The different
concepts were prototypically implemented and integrated into the TEXO
infrastructure. As part of the validation the prototype is described. The
prototype was implemented in order to show the functioning of the differ-
ent concepts. It also serves as a basis for further evaluation steps.

136 Validation

Two extended scenario descriptions and a set of test cases are used in the
second step to demonstrate the dependency management approach based
on the prototype. As part of this step, important artifacts, which are re-
sults of test cases, are presented. For brevity reasons, only small examples
are presented in this chapter, but the full information is available in the
appendix.

In a third step the performance of the approach is analyzed. The different
algorithms of the approach are discussed with regard to their computa-
tional complexity. Furthermore, a number of performance measurements,
which were executed based on the prototype, are presented and discussed.

Based on these three steps the requirements described in Section 2.5 are
evaluated with regard to their fulfillment by the concepts and the proto-
type.

5.2 Prototypical Implementation of the System

In order to prove the feasibility of the presented dependency management
approach, the system was prototypically implemented. The different parts
of the prototype were integrated into the TEXO infrastructure.

The SLA Manager and the SLO Monitoring were implemented as stan-
dalone applications as part of the TEXO Service Management Platform and
Tradable Service Runtime respectively. The other components were inte-
grated into the Eclipse-based ISE Development Environment. The ISE De-
velopment Environment provides a variety of modeling tools for service
design. Functionality for SLA negotiation and the creation of dependency
models extend this design time functionality. Furthermore, functionality
for dependency management during service provisioning was added. This
adds a new facet to the ISE Development Environment.

In order to provide a better understanding of the implementation of ISE
and the integration of the design and runtime components, a brief descrip-
tion of the Eclipse platform is provided. After that the implementation of
the different components of the prototype is described.

5.2.1 Eclipse Architecture Overview

The Eclipse platform, which was developed under the umbrella of the
Eclipse Foundation [Fouc], provides comprehensive functionality for ap-
plication development. The functionality of the Eclipse platform is pro-
vided by different plugins. A plugin is a component which conforms to
the OSGi Service Platform Core Specification [All09] by The OSGi Alliance

5.2 Prototypical Implementation of the System 137

currently available as Release 4. Plugins are started and stopped by the
platform core. Based on this plugin infrastructure, Eclipse can be adapted
by creating new plugins or removing existing ones.

Existing plugins provide a wide range of functionality, e.g. for model
development and code generation (Eclipse Modeling Framework - EMF
[Foub]) and support for the creation of graphical editors based on devel-
oped models (Graphical Editing Framework - GEF [Foud]). The Eclipse
plugin technology in general, and the EMF and GEF frameworks in par-
ticular form an important basis for the implementation presented in this
chapter.

On the user interface (UI) level the Eclipse platform provides a number of
different technologies.

• The Standard Widget Toolkit (SWT) provides basic UI elements such
as button and scrollbar [Dau04]. Instead of implementing these UI
elements, SWT provides a platform independent interface to the win-
dowing system of the underlying operating system.

• The JFace-API [Dau04] provides higher level UI elements. It builds
directly on SWT and uses SWT UI elements to realize e.g. dialogs
and wizards.

• The Eclipse Forms [Glo05] provide web page like look and feel to
Eclipse based applications. Eclipse forms are based on the SWT and
JFace technologies.

In Figure 5.1 an overview of the Eclipse architecture is presented with re-
spect to the prototype implementation described in this chapter. The main
functionality provided by the prototype was implemented in the form of
Eclipse plugins. Several plugins also provide a user interface based on
SWT, JFace, and Eclipse Forms. More information is provided in the fol-
lowing section.

5.2.2 Prototype Implementation

The implementation of the prototype comprises infrastructure components
for service description, SLA handling, and dependency management. Fig-
ure 5.2 presents an overview of the implemented components as well as
their interaction.

In this section the most important components are briefly described with
regard to their implementation and integration within the architecture.
Furthermore, special technical requirements of each component with re-
gard to other components are described, in order to better illustrate the

138 Validation

Eclipse Platform

ISE Development Environment

Eclipse Forms
JFace
SWT

Eclipse Runtime (OSGi-Platform)

Java Runtime

Dependency
Analysis

…

GEF
EMF

USDL
Editor

Figure 5.1: Implementation specific architecture

interplay of the different components. References are provided pointing to
relevant sections of the concept chapter, which provides more detailed de-
scriptions of the components functionality and the implemented concepts.

USDL Editor

The USDL Editor is one of several editors of the ISE Development Environ-
ment. It belongs to the service description components. Several extensions
were made to the editor. First of all, functionality for the flexible modeling
of SLOs was added. Furthermore, the input and output interface descrip-
tions were extended to enable the specification of resource IDs, the start and
end time of service provisioning, as well as its location. In order to support
the handling of logistics services (i.e. one of the use cases), the USDL editor
was extended with functionality to describe logistics services. Using the
USDL editor, USDL documents are created by a service provider. They are
either modeled manually, or partly generated by a model-to-model trans-
formation from other existing models. USDL documents are needed for
the generation of SLA templates. The USDL editor was implemented as an
Eclipse plugin using the Eclipse Forms technology. Figure 5.3 shows the
USDL editor during a USDL to WSAG transformation process.

Requirements: No requirements.

5.2 Prototypical Implementation of the System 139

ISE Development Environment

Tradable Service
Runtime

Service
Management
Platform

Service
Description

Service
Composition

ISE SLA
Wizard

Dependency
Analysis

SLA Manager

Process Engine

Service Monitoring

Message-oriented
Middleware

SLA
Template

R

SLA
Information

RMonitoring Data

Process
Deployment

R

Web
Browser

Service
Model

Repository

Runtime
Dependency
Evaluation

Dependency
Model

Management

R

R

R

SLA
Template

Generation

R

R

Figure 5.2: Overview of implemented components

SLA Template Generation

The SLA Template Generation plugin implements the SLA template gener-
ation as described in Section 4.5.1. The implementation uses openArchitec-
tureWare [ope] to realize the transformation. It reads USDL service descrip-
tion documents and creates WSAG based SLA template documents. These
SLA templates form the basis for SLA negotiation and are deployed to the
service marketplace (i.e. Service Management Platform), together with the
USDL service description. The transformation process is triggered manu-
ally by the service provider as soon as the modeling of the USDL service
description is finished. Figure 5.3 shows a screenshot of the transformation
wizard. The SLA Template Generation plugin is integrated into the ISE
Development Environment.

Requirements: The SLA Template Generation plugin requires a valid
USDL file as the starting point for a transformation from USDL to WSAG.

140 Validation

Figure 5.3: SLA Template Generation wizard and USDL editor

ISE SLA Wizard

In order to enable the negotiation of SLAs from within the ISE Develop-
ment Environment, the ISE SLA Wizard plugin provides a suitable wizard.
It was implemented using generic Eclipse wizard components. Figure 5.4
shows the ISE SLA Wizard. A more detailed description can be found in
Section 4.5.1.

Requirements: The ISE SLA Wizard plugin requires a SLA Manager com-
ponent to connect to during the SLA negotiation process.

SLA Manager

The SLA Manager is a standalone component, which provides functionality
for SLA template deployment, SLA negotiation based on WSAG, SLA rene-
gotiation, and SLA monitoring. It was implemented as a web service using
JAX-WS (Java API for XML Web Services) technology. The SLA templates,
offers, and agreements were realized based on JAXB (Java API for XML
Binding). Both JAX-WS and JAXB are part of the Metro web service stack
[SMCC]. The SLA Manager component is part of the Service Management
Platform. It is integrated with other components (e.g. SLO Monitoring) via

5.2 Prototypical Implementation of the System 141

Figure 5.4: ISE SLA Wizard

a message-oriented middleware (MoM). A detailed description of the SLA
Manager can be found in Section 4.5.1.

Requirements: No requirements.

SLO Monitoring

The SLO Monitoring component is a standalone Java component responsi-
ble for the monitoring of service level objectives based on provided mon-
itoring information. It listens to a MoM for new monitoring information
sent from monitoring sensors. In case it detects SLO violations it sends a
violation message to interested components via another MoM. For this im-
plementation the Apache ActiveMQ JMS implementation was selected as
message-oriented middleware [Foua].

The SLO Monitoring component is part of Service Monitoring of the Trad-
able Service Runtime (see Section 4.5.1). It is loosely integrated with other
components via a message-oriented middleware in order to receive mon-
itoring information and to send SLO violation information to interested
components.

Requirements: The SLO Monitoring component requires the SLA Manager
in order to retrieve SLA information.

142 Validation

Dependency Analysis

In order to realize the functionality of the Dependency Analysis compo-
nent, two Eclipse plugins were developed and integrated into the ISE De-
velopment Environment. The first plugin implements the dependency
model discovery concept (see Section 4.4.2) including the analysis of work-
flows and the discovery of dependencies between services in service com-
positions. The second plugin implements a model editor (Dependency
Modeler), which allows the manual creation of dependency models, ser-
vice entities, and dependencies along with their properties. It also enables
the modification of existing dependency models. In Section 4.4.2 the need
to model non-detectable service dependencies was discussed. The editor
was created based on the metamodel for expressing dependency models,
which was described in Section 4.3.2. In Figure 5.5 the editor is depicted.

Requirements: The Dependency Analysis plugin requires the Dependency
Model Management plugin in order to create and store dependency mod-
els.

Dependency Model Management

The Dependency Model Management plugin provides functionality for
creating dependency models, storing them in the file system, and loading
them when needed. This functionality is used during design time model
creation as well as during runtime dependency model evaluation. Further-
more, this component provides functionality for the validation of depen-
dency models (see Section 4.4.3). The Dependency Model Management
plugin is integrated into the ISE Development Environment.

Requirements: No requirements.

Runtime Dependency Evaluation

The Runtime Dependency Evaluation component realizes the concepts de-
scribed in Section 4.4.4. It was implemented as a plugin with the function-
ality for analyzing SLO violation events as well as renegotiation requests
with regard to their effects on services. A cockpit view was integrated,
which displays information about received SLO violations and renegoti-
ation requests along with information about affected services. The cock-
pit was implemented based on the JFace technology. The plugin is inte-
grated into the ISE Development Environment and receives messages via a
message-oriented middleware.

5.2 Prototypical Implementation of the System 143

Figure 5.5: Tree-based editor for dependency modeling

Requirements: The plugin requires the Dependency Model Management
plugin for access to the dependency models as well as for the validation
functionality.

5.2.3 Discussion of Prototype Capabilities and Limitations

As a first part of the validation a prototypical implementation of the de-
pendency management concepts was described. The prototype was inte-
grated into the TEXO design and runtime infrastructure. Components for
the creation, (re-)negotiation, and monitoring of SLAs provide the basic in-
frastructure for dependency management. A number of plugins realizing
the design time and runtime management of dependencies were also im-
plemented.

144 Validation

The prototype supports the full lifecycle of handling dependency models
(see Section 4.4.1) and integrates dependency handling with the (re-) nego-
tiation and monitoring of SLAs.

The prototype has a number of limitations:

• The SLA management infrastructure currently only supports a
limited negotiation process. For use cases like logistics multiple
roundtrips for negotiation would be necessary. Furthermore, the per-
sistence of SLAs is currently realized by storing them into a folder
within the SLA Manager as well as in the development environment.
A suitable repository (e.g. a database) would be a useful extension of
the prototype. Both limitations do not affect the concepts introduced
by this thesis.

• The storage of dependency models is also realized by saving the re-
spective XML files to a project folder. This does not limit the depen-
dency management functionality.

• The handling of QoS and price dependencies, i.e. workflow reduc-
tion and discovery of a calculation formula, the validation of a calcu-
lation formula, and the evaluation at runtime were not implemented.
This is due to the fact that these concepts were taken from existing
work ([LF08, CMSA04, JRGM04]). The goal was to show that the
functionality can be integrated with the work presented in this the-
sis.

• The validation of resource dependencies is limited to checking if re-
source dependencies are valid with regard to the negotiated SLAs.
This allows finding errors introduced by manual dependency model-
ing. The validation of the correctness of the data flow in the compos-
ite service workflow was not implemented, since it is not in the main
focus of this thesis.

5.3 Scenario-based Validation

In this section the dependency management approach will be validated
based on two general use cases from the logistics and healthcare domains,
which were introduced in Chapter 2. Fifteen test cases are used to analyze
the functionality of the prototype, which was presented in the last section.
The interaction between users and the dependency management compo-
nents is illustrated.

The test cases follow the four lifecycle phases presented in Section 4.4.1:

5.3 Scenario-based Validation 145

• Creation and recomputation: TC-1 to TC-7

• Validation: TC-8 to TC-10

• Usage: TC-11 to TC-14

• Retirement: TC-15

They cover the different activities of dependency handling in relationship
to the negotiation, renegotiation, and monitoring of SLAs, and describe
them from the perspective of a composite service provider. All test cases
cover both use cases. Several test cases include detailed examples for bet-
ter illustration. These examples are specifically taken from the logistics and
healthcare use cases where applicable (e.g. no QoS parameters are available
for the healthcare use case). All test cases are described in Appendix A.
Most test cases were implemented based on the prototype (the QoS depen-
dency examples were not implemented due to the fact that the prototype
does not support the discovery, validation, and evaluation of QoS depen-
dencies).

A number of different artifacts (e.g. paths of activities or dependencies)
are created throughout the process of handling dependencies. Examples of
these artifacts are presented and discussed in this section. A detailed list of
all artifacts can be found in the appendix.

5.3.1 Dependency Model Creation and Recomputation

During the first phase of the dependency handling lifecycle a dependency
model is created. This happens during the SLA negotiation process of com-
posite services. In Figure 5.6 the test cases TC-1 to TC-6 are illustrated,
which cover the negotiation and dependency model creation process. Test
case TC-7, i.e. the recalculation of the dependency model, follows the same
steps as TC-2 to TC-6. In Table 5.1 the test cases of the dependency model
creation process are summarized.

During the negotiation of SLAs (TC-1), which is supported by the SLA
Manager and SLA Negotiation Wizard, SLAs are negotiated between the
composite service provider on the one hand and the composite service con-
sumer or the atomic service providers on the other hand. SLA documents
in the form of SLA offers are stored in the Service Model Repository. Fol-
lowing that, the process for handling dependencies is initiated (TC-2).

TC-2 is detailed by test cases TC-3, TC-4, and TC-5, which cover the dif-
ferent steps of the dependency discovery process. During the creation of
workflow paths (TC-3) a workflow description of the composite service is
analyzed by the Dependency Analysis component. All linear paths leading

146 Validation

TC-2/3/4/5

ISE Development Environment

Dependency
Analysis

Dependency
Modeler

Dependency
Model

Management
Cockpit

ISE SLA
Wizard

Runtime
Dependency
Evaluation

Service Management Platform Tradable Service Runtime

SLA
Manager

TC-1

TC-1

TC-2

Service
Model

Repository

TC-6

TC-6

TC-1

TC-3/4/5 TC-4/5

Service
Monitoring

Composite
Service Provider

TC-6

Figure 5.6: Illustration of test cases TC-1 to TC-6

from the start node to the end node are determined. In Table 5.2 two sam-
ple paths for the composite logistics and healthcare services are presented
for illustration. The complete list of paths for both composite services (i.e.
logistics and healthcare service) can be found in Appendix C and D.

During the creation of horizontal dependencies (TC-4 and examples), time
and resource dependencies are discovered between the different services
along a single path by the Dependency Analysis component. Duplicate de-
pendencies, which occur due to different paths having equal sections, are
detected and removed. The time and resource dependencies, which are
presented in Table 5.3 and Table 5.4, are examples of discovered horizon-
tal dependencies (first two dependencies) of the logistics and healthcare
scenarios. A complete list of all dependencies for the logistics use case is
shown in Appendix C. All dependencies from the healthcare scenario can
be found in Appendix D. The necessary information for the analysis, i.e.
the composite service workflow description and SLAs, are retrieved from
the Service Model Repository. Finally, the dependencies are stored in a de-
pendency model by the Dependency Model Management.

The creation of vertical dependencies (TC-5 and examples) supports the
discovery of time, resource, price, and QoS dependencies. However, the
prototype is limited with regard to supporting QoS and price dependen-
cies. The implementation of vertical dependencies is realized by the same
components of the prototype as the horizontal dependency discovery. Ta-
ble 5.3 presents three vertical dependencies between OTML TransWorld and
different atomic services from the logistics scenario. Appendix C shows

5.3 Scenario-based Validation 147

Table 5.1: Test cases for dependency model creation
Test case Description Realizing concept

TC-1 Negotiation of atomic and
composite SLAs

SLA negotiation (4.5.1)

TC-2 Composite service provider
initiates dependency model
discovery

Dependency discovery
(4.4.2)

TC-3 Creation of workflow paths Path creation (4.4.2)
TC-4 Creation of horizontal de-

pendencies
Discovery of horizontal de-
pendencies (22)

TC-5 Creation of vertical depen-
dencies

Discovery of vertical depen-
dencies (17)

TC-6 Manual extension of depen-
dency model

Modeling of non-detectable
Service Dependencies (10)

TC-7 Recomputation of depen-
dency model

Creation and recomputa-
tion of dependency models
(4.4.2)

a complete list of all dependencies from the logistics use case. Table 5.4
shows similar dependencies from the healthcare scenario. The full depen-
dency model is shown in Appendix D.

Since not all dependencies can be discovered automatically, it may be nec-
essary (depending on the use case) to manually extend the dependency
model (e.g. with location dependencies). This aspect is covered by test case
TC-6. The last dependency shown in Table 5.3 is a location dependency,
which was added to the dependency model manually using the Depen-
dency Modeler.

Test case TC-7 covers the aspect of recalculating the dependency model
upon changes. This is necessary e.g. when structural changes occur within
the composite service workflow. Recalculation of the dependency model
follows the same steps as the dependency model creation and is therefore
not described in more detail.

5.3.2 Dependency Model Validation

After the successful creation of a dependency model, the model as well
as the respective SLAs need to be validated. This validation function-
ality helps the composite service provider to only negotiate agreements,
which enable the successful provisioning of the composite service. Table

148 Validation

Table 5.2: Linear path samples
Logistics Healthcare

AutoTrans DD Patient Admission
Warehouse DD Patient Examination
Truck DE Medical Record Creation
Warehouse HH Determine Medication
HH Local Procurement of Medication
Receive Goods Give Medication
Prepare Shipment Check Examination Results
Export Handling Follow-up Treatment
Security Check Discharge Patient
Ship Goods
Sea Shipping DE-US
OTML Warehouse NYC
Eastern Truck US

5.5 presents the different test cases for this task. They are also illustrated in
Figure 5.7, along with the different components involved in each test case.

During conflict detection (TC-8) the created dependency model is analyzed
with respect to the SLAs under negotiation. The validation is realized by
the Dependency Model Management component. It retrieves the dependency
model as well as the different SLA documents for the composite service
from the Service Model Repository. Discovered problems are presented to the
composite service provider. The following examples illustrate the conflict
detection process for examples from the healthcare and logistics scenario:

Time dependencies (TC-8 EX1) were discovered based on the workflow
structure of the composite service. Further dependencies may have been
added manually. During conflict detection the negotiated start and end
times for two depending services are compared with respect to the time
operator of the dependency. In the logistics use case Eastern Truck US and
OTML TransWorld have a finish-to-finish dependency, i.e. Eastern Truck
US needs to finish before OTML TransWorld can finish. A selection of times
where Eastern Truck US ends at 11:00 and OTML TransWorld ends at 12:00
is verified as valid.

Relevant dependencies: Eastern Truck US.endTime finish-to-finish OTML
TransWorld.endTime

Evaluation: 11 : 00 ≤ 12 : 00→ OK

Result: The times of the two services are valid.

5.3 Scenario-based Validation 149

Table 5.3: Dependencies of logistics process
Antecedent - Dependent Dependency Description

Truck DD - Warehouse DD time endTime finish-to-start start-
Time

AutoTrans DD - Ware-
house DD

resource R4, R5, R6

OTML TransWorld - Truck
DD

time startTime start-to-start start-
Time

OTML TransWorld - Auto-
Trans DD

resource R4, R5, R6

OTML TransWorld - all
atomic services

QoS max(
TruckDD.maxTemperature,
Ware-
houseDD.maxTemperature,
. . .)

Truck DD - Warehouse DD location endLocation equals startLo-
cation

In the healthcare use case the services Patient Data Collection and Examine
Blood have a finish-to-start dependency, i.e. Patient Data Collection needs
to finish before Examine Blood can start. Assuming an initial selection of
times where Patient Data Collection ends at 14:00 and Examine Blood starts
at 13:00 an error occurs. The times need to be adapted.

Relevant dependencies: Patient Data Collection.endTime finish-to-start Exam-
ine Blood.startTime

Evaluation: 14 : 00 ≤ 13 : 00→ Error

Result: The times of the two services need to be adapted.

Table 5.4: Dependencies of healthcare process
Antecedent - Dependent Dependency Description

Patient Data Collection -
Examine Blood

time endTime finish-to-start
startTime

Patient Admission - Exam-
ine Blood

resource patientID

Stationary Patient
Checkup - Patient Ad-
mission

time startTime start-to-start
startTime

Patient Transport - Expert
Examination

location endLocation equals startLo-
cation

150 Validation

Service Management Platform Tradable Service Runtime

ISE Development Environment

Dependency
Analysis

Dependency
Modeler

Dependency
Model

Management
Cockpit

ISE SLA
Wizard

Runtime
Dependency
Evaluation

SLA
Manager

TC-8

Service
Model

Repository

TC-11/12

TC-9/10

TC-8
Service

Monitoring

TC-9

TC-9/10

Composite
Service Provider

Composite
Service Consumer /

Atomic service provider

TC-11/12
TC-11/12

TC-11/12

Figure 5.7: Illustration of test cases TC-8 to TC-12

Table 5.5: Test cases for dependency model validation
Test case Description Realizing concept

TC-8 Conflict detection / valida-
tion with regard to depen-
dency model and negoti-
ated SLAs

Dependency model valida-
tion (4.4.3)

TC-9 Conflict resolution between
SLA offer documents

no support for automatic
handling

TC-10 Finalization of SLA negoti-
ation

SLA Negotiation Wizard
(4.5.1)

Resource dependencies (TC-8 EX2) were discovered based on the descrip-
tion of input and output resources of SLA documents. Errors occur for
example when a required input is not provided by any service. Similarly,
there is a problem if the composite service provides an output, which is not
provided by any atomic service and which was not an input to the com-
posite service. Furthermore, any unmatched output represents a potential
error. However, errors may have also been introduced through manual
modification of the dependency model or changes to the SLAs. In the lo-
gistics use case the Export Handling at OTML Warehouse Port HH requires
an export declaration as input. Since the export declaration is not provided
by any service there is an error.

Evaluation: Analysis of output of other services as well as input of compos-
ite service.

5.3 Scenario-based Validation 151

Result: Error - export declaration not provided by any service.

In the healthcare use case the service Check Examination Results ha re-
source dependencies on several services. The validation shows that all re-
quired resources are provided.

Relevant dependencies:

• Check Examination Results.resourcesin dependsOn Examine
Blood.resourcesout

• Check Examination Results.resourcesin dependsOn Expert
Examination.resourcesout

• Check Examination Results.resourcesin dependsOn Medical Record
Creation.resourcesout

Evaluation: (laboratory test result, examination results, medical record) to
be provided by:

• Examine Blood(laboratory test result)

• Expert Examination.resourcesout(examination results)

• Medical Record Creation.resourcesout(medical record)

→ OK

Result: No problem detected.

Location dependencies (TC-8 EX3) were modeled by hand and thus re-
quire validation of the respective SLA information of two related services
based on the defined location operator. In this example the dependency
expresses that the start location of OTML TransWorld needs to be equal to
the start location of service AutoTrans DD. Since both locations are equal
the dependency is evaluated as correct.

Relevant dependencies: OTML TransWorld.startLocation equals AutoTrans
DD.startLocation

Evaluation: Teegasse 83 equals Teegasse 83 → OK

Result: No problem detected.

In the healthcare scenario the Patient Transport end location needs to match
the start location of the Expert Examination.

Relevant dependencies: Patient Transport.endLocation equals Expert Exami-
nation.startLocation

Evaluation: Unit for Internal Medicine equals Unit for Internal Medicine →
OK

152 Validation

Result: No problem detected.

QoS dependencies (TC-8 EX4) are expressed as calculation formulas which
are evaluated using the respective KPI values of the SLAs. In this example
the composite service maxTemperature is greater or equal to the maxTem-
perature calculated for the different atomic services using the respective
formula. This is verified as follows.

Relevant dependencies: OTML TransWorld.maxTemperature ≥
max(AutoTrans DD.maxTemperature, Truck DD.maxTemperature, Ware-
house DD.maxTemperature, . . .)

Evaluation: 15◦C ≥ max(13◦C, 14.5◦C, 15◦C, . . .) → OK

Result: No problem detected.

For the healthcare use case no QoS properties were defined. Therefore, no
QoS dependencies can be evaluated.

The evaluation and resolution of detected conflicts (TC-9) remains the re-
sponsibility of the composite service provider. No automatic support is
provided to decide about the cause for the conflict. However, once the
composite service provider has found the cause of the conflict, it needs to
be resolved. This may include tasks such as making changes to SLA docu-
ments using the ISE SLA Wizard or refining the dependency model using
the Dependency Modeler.

Once the dependency model has been validated and detected conflicts have
been handled, the negotiation of SLAs can be finalized (TC-10). This task is
driven by the composite service provider and supported by the SLA Man-
ager and the SLA Negotiation Wizard components.

5.3.3 Dependency Model Usage

After the process of creating a dependency model and finalizing SLA nego-
tiation, the dependency model is applied to fulfill two major tasks. The first
task is the evaluation of renegotiation requests. Different stakeholders of a
composite service, i.e. atomic service providers and the composite service
consumer, have the chance to request the renegotiation of different SLOs of
their SLAs. In Table 5.6 the different test cases for handling dependencies
during renegotiation of SLAs of a composite service are summarized.

In test cases TC-11 and TC-12 (see also Figure 5.7) as well as in their re-
spective examples the renegotiation of SLAs and the evaluation of these
requests with respect to the dependency model are handled. The compos-
ite service consumer or an atomic service provider requests renegotiation
via the SLA Manager, which forwards the request to the Runtime Depen-
dency Evaluation component. Based on the dependency model and the

5.3 Scenario-based Validation 153

Table 5.6: Test cases for SLA renegotiation
Test case Description Realizing concept

TC-11 Request to renegotiate com-
posite service SLO by con-
sumer

SLA renegotiation (4.5.1) &
Evaluating SLA renegotia-
tion requests (4.4.4)

TC-12 Atomic service provider re-
quests the renegotiation of
a SLO

SLA renegotiation (4.5.1) &
Evaluating SLA renegotia-
tion requests (4.4.4)

negotiated SLAs the Dependency Model Management then determines the
effects of the request.

The second task is the evaluation of SLO violation events with the goal of
identifying other services, that are affected by the violation. SLO violations
occur during service provisioning. The composite service consumer as well
as the atomic service providers may be responsible for these violations. A
SLO violation message is sent from the Service Monitoring component to
the Runtime Dependency Evaluation component. The next steps are iden-
tical to the ones for evaluating renegotiation requests. Test cases 13 and
14 (see also Figure 5.8) as well as their respective examples (see Table 5.7)
illustrate these violations and the resulting evaluation of dependencies.

For the evaluation of dependencies at runtime (upon the occurrence of
renegotiation requests or SLO violations) three main steps are executed:

1. Determination of all dependencies involving the service under eval-
uation in the role of the antecedent (or dependent in case of bidirec-
tional dependency). Only dependencies regarding the respective KPI
are considered.

2. The detected dependencies are evaluated based on the data provided
in the renegotiation request or the SLO violation info. Furthermore,
the data of the negotiated SLAs is evaluated. In the case an affected
service is found and the dependency is of transitive nature, the search
process continues with the new service.

3. All affected services are displayed to the user.

Renegotiate location (TC-11 EX1): In this example the customer of OTML
TransWorld wants to renegotiate the end location of the service. One de-
pendency is found. The evaluation shows that Eastern Truck US will be
affected by the change.

Renegotiation request: OTML TransWorld.endLocation = 3247 E River Road

154 Validation

Relevant dependencies: OTML TransWorld.endLocation equals Eastern Truck
US.endLocation

Evaluation: 3247 E River Road equals 4878 N Broad Street → Error

Result: Eastern Truck US service will be affected.

In the healthcare use case a customer request to change the start or end
location of the service is not useful. This would rather mean that the old
contract needs to be canceled and a new contract with a different provider
would be negotiated.

Renegotiate resource (TC-11 EX2): The customer wants to renegotiate its
contract so that less goods are transported. The resource with ID R6 is
removed. Two resource dependencies are found with regard to the input
resources of OTML TransWorld. The evaluation shows that AutoTrans DD
will be affected by this change. Furthermore, due to the transitive nature of
resource dependencies, there is a need to check whether other services are
affected when AutoTrans DD is affected.

Renegotiation request: Remove OTML TransWorld.resourcesin = R6

Relevant dependencies:

1. Truck DD.resourcesin dependsOn OTML TransWorld.resourcesin

2. AutoTrans DD.resourcesin dependsOn OTML TransWorld.resourcesin

Evaluation:

1. (R1, R2, R3) contains (R6) → Error

2. (R4, R5, R6) contains (R6) → OK

Result: AutoTrans DD service will be affected. Furthermore the following
services are found to be affected: Warehouse DD, Truck DE, Warehouse
HH, HH Local, Receive Goods, Prepare Shipment, Export Handling, Se-
curity Check, Ship Goods, Sea shipping DE-US, OTML Warehouse NYC,
Eastern Truck US.

In the healthcare use case the customer wants to renegotiate the contract
for the Stationary Patient Checkup service. The provisioning of the medical
report is not needed any more.

Renegotiation request: Remove Stationary Patient Checkup.resourcesout =
medical report

Relevant dependencies: Stationary Patient Checkup.resourcesout dependsOn
Create Report.resourcesout

5.3 Scenario-based Validation 155

Evaluation: (examination report, medical report) contains (medical report)
→ OK

Result: The service Create Report will be affected.

Renegotiate time (TC-11 EX3): In the logistics use case the service con-
sumer wants to renegotiate the start time of the service. Two dependencies
with regard to the composite service start time are found and evaluated.
Only one of the services (Truck DD) will be affected by the change. Its start
time is too early, so that an error occurs when evaluating the dependency.

Renegotiation request: OTML TransWorld.startTime = 17:15

Relevant dependencies:

1. OTML TransWorld.startTime start-to-start Truck DD.startTime

2. OTML TransWorld.startTime start-to-start AutoTrans DD.startTime

Evaluation:

1. 17:15 ≤ 17:00 → Error

2. 17:15 ≤ 17:30 → OK

Result: Truck DD will be affected

In the healthcare use case the service consumer wants to renegotiate the
start time of the composite service. One dependency with regard to the
composite service start time is found and evaluated. A conflict is detected.

Renegotiation request: Stationary Patient Checkup.startTime = 12:00

Relevant dependencies: Stationary Patient Checkup.startTime start-to-start
Patient Admission.startTime

Evaluation: 12:00 ≤ 10:00 → Error

Result: Patient Admission will be affected

Renegotiate QoS (TC-11 EX4): The consumer wants to renegotiate the
maxTemperature of the transport. Thus, the calculation formula is eval-
uated. One service is found to be affected by the change.

Renegotiation request: OTML TransWorld.maxTemperature = 14.5◦C

Relevant dependencies: OTML TransWorld.maxTemperature dependsOn
max(Truck DD.maxTemperature, AutoTrans DD.maxTemperature, Ware-
house DD.maxTemperature, . . .)

Evaluation: 14.5◦C ≥ max(14.5◦C, 13◦C, 15◦C, . . .) → Error

Result: Warehouse DD service will be affected.

156 Validation

Renegotiate time (TC-12 EX1): Warehouse HH wants to renegotiate the
end time of its service. Three dependencies with regard to the end time
of Warehouse HH are found and evaluated. A conflict is detected with
services Truck HH and HH Local.

Renegotiation request: Warehouse HH.endTime = 18:30

Relevant dependencies:

1. Warehouse HH.endTime finish-to-start Truck HH.startTime

2. Warehouse HH.endTime finish-to-start HH Star Truck.startTime

3. Warehouse HH.endTime finish-to-start HH Local.startTime

Evaluation:

1. 18:30 ≤ 18:00 → Error

2. 18:30 ≤ 19:00 → OK

3. 18:30 ≤ 18:00 → Error

Result: Truck HH and HH Local will be affected

In the healthcare use case the provider of the Expert Examination service
wants to renegotiate the start time of the service.

Renegotiation request: Expert Examination.startTime = 16:30

Relevant dependencies: Patient Transport.endTime finish-to-start Expert Ex-
amination.startTime

Evaluation: 17:00 ≤ 16:30 → Error

Result: Patient Transport will be affected

Renegotiate location (TC-12 EX2): In the logistics use case the provider of
the Warehouse HH wants to refine (i.e. renegotiate) the location for goods
pickup. The evaluation shows that the three local transport providers are
affected.

Renegotiation request: Warehouse HH.endLocation = Gutestr. 76, Warehouse
Gate 27

Relevant dependencies:

• Warehouse HH.endLocation equals Truck HH.startLocation

• Warehouse HH.endLocation equals HH Local.startLocation

• Warehouse HH.endLocation equals HH Star Truck.startLocation

5.3 Scenario-based Validation 157

Evaluation:

• Gutestr. 76, Warehouse Gate 27 equals Gutestr. 76 → Error

• Gutestr. 76, Warehouse Gate 27 equals Gutestr. 76 → Error

• Gutestr. 76, Warehouse Gate 27 equals Gutestr. 76 → Error

Result: The services Truck HH, HH Local, and HH Star Truck will be af-
fected.

In the healthcare use case the service provider of the Expert Examination
wants to renegotiate the location of the service. One dependency is found.
The evaluation shows that Patient Transport to the examination will be af-
fected by the change. Renegotiation of the end location of the service would
follow the same pattern.

Renegotiation request: Expert Examination.startLocation = Unit for Internal
Medicine - Center for Cardiology

Relevant dependencies: Patient Transport.endLocation equals Expert Exami-
nation.startLocation

Evaluation: Unit for Internal Medicine equals Unit for Internal Medicine -
Center for Cardiology → Error

Result: Patient Transport service will be affected.

Renegotiate QoS (TC-12 EX3): Truck DD requests the renegotiation of the
maxTemperature of the transport. Thus, the calculation formula is evalu-
ated. No service is found to be affected by the change.

Renegotiation request: Truck DD.maxTemperature = 15.0◦C

Relevant dependencies: OTML TransWorld.maxTemperature dependsOn
max(Truck DD.maxTemperature, AutoTrans DD.maxTemperature, Ware-
house DD.maxTemperature, . . .)

Evaluation: 15.0◦C ≥ max(15.0◦C, 13◦C, 15◦C, . . .) → OK

Result: No services will be affected.

Table 5.7: Test cases for handling SLO violations
Test case Description Realizing concept

TC-13 Atomic service provider vi-
olates SLA

Evaluating SLO violations
(4.4.4)

TC-14 Consumer violates the com-
posite SLA

Evaluating SLO violations
(4.4.4)

Violate time (TC-13 EX1): Service AutoTrans DD violates its end time. One
relevant dependency is found. Warehouse DD is affected by the violation.

158 Validation

Service Management Platform Tradable Service Runtime

ISE Development Environment

Dependency
Analysis

Dependency
Modeler

Dependency
Model

Management
Cockpit

ISE SLA
Wizard

Runtime
Dependency
Evaluation

SLA
Manager

Service
Model

Repository

TC-15

TC-13/14
Service

Monitoring

TC-15

Composite
Service Provider

Composite
Service Consumer /

Atomic service provider

TC-13/14

TC-13/14

TC-13/14

Figure 5.8: Illustration of test cases TC-13 to TC-15

While this example shows that for time violations the affected services are
found, this information is not useful. The negative effect of the violation
occurs at the time of the violation. No management steps are possible to
avoid that.

Violation: AutoTrans DD.endTime = 20:30

Relevant dependencies: AutoTrans DD.endTime finish-to-start Warehouse
DD.startTime

Evaluation: 20:30 ≤ 20:00 → Error

Result: Warehouse DD is affected.

In the healthcare use case the Procurement of Medication service violates
its end time.

Violation: Procurement of Medication.endTime = 18:30

Relevant dependencies: Procurement of Medication.endTime finish-to-start
Give Medication.startTime

Evaluation: 18:30 ≤ 19:00 → OK

Result: No service is affected.

Violate resources (TC-13 EX2): In this example Warehouse DD fails to de-
liver one of the required resources. Truck DE is found to be dependent
on this resource and evaluated to be affected by the violation. Due to the
transitive nature of resource dependencies further services are found to be
affected.

5.3 Scenario-based Validation 159

Violation: Warehouse DD.resourcesout = R1 missing

Relevant dependencies: Truck DE.resourcesin dependsOn Warehouse
DD.resourcesout

Evaluation: (R1, R2, R3, R4, R5, R6) contains (R1) → OK

Result: Truck DE as well as several other services (Warehouse HH, Truck
HH, Receive Goods, Prepare Shipment, Export Handling, Security Check,
Ship Goods, Sea shipping DE-US, OTML Warehouse NYC, Eastern Truck
US) will be affected.

In the healthcare example Examine Blood fails to deliver the results of the
blood examination. A respective SLO violation message is sent. The service
Check Examination Results is evaluated to be affected by the violation.

Violation: Examine Blood.resourcesout = laboratory test result missing

Relevant dependencies: Check Examination Results.resourcesin dependsOn
Examine Blood.resourcesout

Evaluation: (laboratory test result) contains (laboratory test result) → OK

Result: Check Examination Results will be affected.

Violate QoS (TC-13 EX3): In this example OTML Truck DE violates the
negotiated maxTemperature. The calculation formula is evaluated with the
result that no problem occurs with regard to the composition.

Violation: OTML Truck DE.maxTemperature = 15◦C

Relevant dependencies: OTML TransWorld.maxTemperature dependsOn
Truck DD.maxTemperature, AutoTrans DD.maxTemperature, Warehouse
DD.maxTemperature, OTML Truck DE.maxTemperature, . . .

Evaluation: 15◦C ≥ max(14.5, 13, 15, . . . , 15, . . .) → OK

Result: No service will be affected.

Violate time (TC-14 EX1): In the logistics use case DSP fails to provide the
resources on time and thus violates the start time. Truck DD and AutoTrans
DD are affected.

Violation: OTML Trans World.startTime = 18:00

Relevant dependencies:

• OTML Trans World.startTime start-to-start Truck DD.startTime

• OTML Trans World.startTime start-to-start AutoTrans DD.startTime

Evaluation:

• 18:00 ≤ 17:00 → Error

160 Validation

• 18:00 ≤ 17:30 → Error

Result: Truck DD and AutoTrans DD are affected

In the healthcare use case the customer of the Stationary Patient Checkup
service arrives late and thus violates the start time. The Patient Admission
service is affected by the violation.

Violation: Stationary Patient Checkup.startTime = 10:30

Relevant dependencies: Stationary Patient Checkup.startTime start-to-start
Patient Admission.startTime

Evaluation: 10:30 ≤ 9:00 → Error

Result: Patient Admission is affected

Violate resources (TC-14 EX2): The service consumer fails to provide the
required resources for the composite service. A message about the missing
resource is sent in the form of an SLO violation. Truck DD, AutoTrans
DD, and Export Handling have a resource dependency on the composite
service input resources. The Evaluation shows that Truck DD is affected by
the violation, because it has a dependency regarding the specific resource.
Further affected services are found due to the transitive nature of resource
dependencies.

Violation: OTML TransWorld.resourcesin = R1 missing

Relevant dependencies:

1. Truck DD.resourcesin dependsOn OTML TransWorld.resourcesin

2. AutoTrans DD.resourcesin dependsOn OTML TransWorld.resourcesin

3. Export Handling.resourcesin dependsOn OTML
TransWorld.resourcesin

Evaluation:

• (R1, R2, R3) contains (R1) → OK

• (R4, R5, R6) contains (R1) → Error

• (export declaration) contains (R1) → Error

Result: Truck DD and further services (Warehouse DD, Truck DE, Truck
HH, Receive Goods, Prepare Shipment, Export Handling, Security Check,
Ship Goods, Sea shipping DE-US, OTML Warehouse NYC, Eastern Truck
US) will be affected.

5.3 Scenario-based Validation 161

In the healthcare use case the composite service fails to provide the billing
information.

Violation: Stationary Patient Checkup.resourcesin = billing information
missing

Relevant dependencies: Patient Admission.resourcesin dependsOn Stationary
Patient Checkup.resourcesin

Evaluation: (billing information) contains (billing information) → OK

Result: The Patient Admission service will be affected.

5.3.4 Dependency Model Retirement

After the provisioning of a service was terminated (successfully or with er-
rors) and the negotiated SLA is not valid any more, the dependency model
is retired, i.e. it is removed from the Dependency Model Store. The respective
functionality is provided by the Dependency Model Manager.

Table 5.8: Test case termination
Test case Description Realizing concept

TC-15 Terminate depen-
dency handling

Dependency model retirement
(4.4.5)

5.3.5 Discussion of Test Cases

In this section the functionality of the dependency management approach
was analyzed using test cases. The test cases covered different steps of the
entire dependency model lifecycle. It illustrated the discovery, validation,
and evaluation functionality based on examples taken from a logistics and
healthcare use case. Important created artifacts were presented.

The evaluation showed that the dependency management concepts pre-
sented in Chapter 4 form an integrated approach. It also made clear that
the approach is general enough to be applied to use cases from different do-
mains. Finally, the evaluation also illustrated the functionality of the pro-
totype and with that confirms the feasibility of concept, i.e. the different
concepts can be implemented and integrated into an existing architecture
for service management.

162 Validation

5.4 Performance Evaluation

As a third part of the evaluation the performance of presented algorithms
is analyzed. The determination of the runtime behavior of the different al-
gorithms is important to prove their applicability for real life use cases. As
a first step this section provides a theoretical discussion about the complex-
ity of the different algorithms. As a second step a number of measurements
are presented, which illustrate the performance of the algorithms.

5.4.1 Theoretical Discussion of Complexity

In order to determine the complexity of the presented dependency man-
agement approach, the different algorithms are analyzed with regard to
their complexity. Computational complexity theory is concerned with de-
termining the resources (e.g. time and space) needed for solving a certain
problem. The complexity of an algorithm can be expressed using the Big
O notation [Ski08]. It describes the upper bound resource usage of an algo-
rithm as a function f(n) where n is the input length for the algorithm. In
order to determine the complexity of the different algorithms it is therefore
necessary to analyze the algorithm behavior with regard to an increasing
length of the input value. The relevant input varies for the different al-
gorithms (e.g. number of activities in the workflow of the composite ser-
vice, number of linear paths, number of dependencies in the dependency
model). An increasing length of the input value occurs due to the varying
length of a path or the number of elements in a dependency model.

The complexity of a workflow, which is the input e.g. for the path creation
algorithm, is influenced by several relevant factors including the number
of activities in the workflow, the number and type of split nodes, and the
number of outgoing edges of the different split nodes.

Cardoso [Car06] argues that the workflow complexity depends on four
main complexity characteristics, namely: control-flow complexity, data-
flow complexity, activity complexity, and resource complexity. For the cre-
ation of paths the control-flow complexity is of major importance. In order
to determine control-flow complexity the control-flow complexity measure
(CFC) was introduced by Cardoso [Car05]. It calculates the complexity of
a control-flow based on the combined complexity of the contained AND,
OR, and XOR split nodes. The split node complexity is defined as “. . . the
number of induced states that are introduced with the split. . . ” [Car05]. An
induced state is a valid state following a split node. Depending on the type
of split node the same number n of outgoing edges introduces a different
number of valid states. An AND split creates one valid state, a XOR split
creates n valid states, and an OR split creates 2n−1 valid states. Accord-

5.4 Performance Evaluation 163

ing to [Car05] the CFC calculation for a process P is performed using the
following formula:

CFC(P) =
∑

i∈{XOR−splits}CFCXOR(i) +
∑

j∈{OR−splits}CFCOR(j) +∑
k∈{AND−splits}CFCAND(k)

The number of splits of a workflow and the number of valid states intro-
duced by each split are the basis for calculating the control-flow complexity.
For the creation of paths one important difference needs to be considered.
The path creation does not distinguish the different split node types. In-
stead, it creates n linear paths for each kind of split. A further consider-
ation is the arrangement of splits with regard to other splits. A different
number of paths is created if two split nodes are arranged in a parallel or in
a sequential fashion and if there is a join node between the two split nodes.

The CFC measure as well as the number of outgoing split node edges pro-
vide an indication of the complexity of the workflow. For that reason they
are used in Section 5.4.2 as a basis for comparing the complexity of different
workflows. However, for the determination of the computational complex-
ity of the path creation algorithm, the number of activities in a workflow
was considered.

The computational complexity of the following algorithms was deter-
mined. For each algorithm the input and complexity factors are listed.

Path creation algorithm (see Algorithm 1):

• a: number of activities in workflow

• Relevant complexity factors: number of paths in complete graphs
grows exponentially

• Complexity: O(2a) (exponential complexity)

Algorithm to create horizontal time dependencies (see Algorithm 2):

• a: number of activities in a path

• Relevant complexity factors: for loop executed max a times

• Complexity: O(a) (linear complexity)

Algorithm to create horizontal resource dependencies (see Algorithm 3):

• a: number of activities in a path; r: number of resources

• Relevant complexity factors: first for loop executed max a times and
second for loop executed max a times; matching of each resource

164 Validation

• Complexity: O(a2 ∗ r) (quadratic complexity)

Algorithm to create vertical time dependencies (see Algorithm 4):

• a: number of activities in a path

• Relevant complexity factors: basic assignments executed once

• Complexity: O(1) (constant time)

Algorithm to create vertical resource dependencies (see Algorithm 5):

• a: number of activities in a path; r: number of resources

• Relevant complexity factors: outer for loop executed max a times and
two inner for loops executed max a times; matching of each resource

• Complexity: O(a2 ∗ r) (quadratic complexity)

Algorithm to add dependency to dependency model (see Algorithm 6):

• d: number of dependencies in dependency model

• Relevant complexity factors: basic assignments executed once

• Complexity: O(1) (constant time)

Algorithm to validate dependency model (see Algorithm 7):

• d: number of dependencies in dependency model; r: number of re-
sources (for resource dependencies)

• Relevant complexity factors: first for loop executed max 2d times
and second loop executed max d times; for resource dependencies
each resource needs to be validated

• Complexity: O(d ∗ r) (linear complexity)

Algorithm to find affected services (see Algorithm 8):

• d: number of dependencies in dependency model; m: number of de-
pendency models; r: number of resources (for resource dependencies)

• Relevant complexity factors: outer loop executed max m times and
inner loop executed max d times

• Complexity: O(m ∗ d ∗ r) (linear complexity)

5.4 Performance Evaluation 165

While most algorithms have constant time, linear or quadratic complexity,
the path creation algorithm has exponential complexity. This results in an
exponential complexity for the overall process of dependency model cre-
ation. As a consequence composite services with a very complex workflow
cannot be handled by the approach. Two relevant factors are the number
of activities in a workflow and the number of connections each activity has
to other activities.

In order to get a realistic estimation of the number of activities within real-
world workflows, the 82 SAP Integration Scenarios as well as the SAP R/3
Reference model were investigated. The SAP Integration Scenarios group
process components of a business processes such as Patient Administra-
tion, Service Parts Management, and Supplier Relationship Management
[SAP]. For each Integration Scenario the number of process components
was determined. The largest Integration Scenarios contained 30 (Supplier
Relationship Management) and 27 (Supplier Collaboration in the Supply
Chain) process components.

In [MMN+06] the authors present a fault analysis study of more than 600
EPC business processes of the SAP R/3 Reference Model. These EPC pro-
cesses (Event-driven Process Chain [KNS92]) are ordered into 29 industry
branches. As part of that study the authors determined the mean num-
ber of functions for these business processes. Depending on the industry
domain of the respective processes the mean number of functions ranges
from 1.5 to 10.2 functions. These numbers provide an indicator regarding
the typical size of business processes. A composite service with equivalent
functionality would be likely to have the same number of atomic services,
i.e. activities in its workflow.

It becomes clear that real-world workflows only contain a relatively small
number of activities. Another important aspect is that activities in a work-
flow are typically connected to only a relatively small number of other ac-
tivities, so that the resulting graph has a much lower complexity than a
complete graph. Thus, the exponential time complexity of the dependency
creation algorithm does not present a problem for discovering the depen-
dencies in real-world workflows.

5.4.2 Performance Measurements for Use Cases

In this section the two use cases from the logistics and healthcare domain
are used to analyze the performance of the different steps of the depen-
dency management approach. The measurements cover the dependency
model creation, i.e. path creation, discovery of horizontal and vertical
dependencies, and validation, as well as the runtime dependency evalu-

166 Validation

ation. The discovery of QoS and price dependencies was not implemented.
Therefore no measurements are presented for QoS and price dependencies.

The goal of this section is to analyze the performance of the different parts
of the approach in order to show their applicability for business applica-
tions. This analysis focuses on temporal performance aspects.

Table 5.9 presents an overview of different attributes of the two use cases.
Both have a similar number of activities. However, the healthcare process is
slightly more complex than the logistics process. It has a larger number of
outgoing split node edges and a higher control-flow complexity measure.

Table 5.9: Overview attributes of analyzed use cases
Artifact Logistics Healthcare

Activities 16 15
Split node edges 5 8
CFC 2 4

In order to derive the measured times, each measurement was executed
10000 times. The measured values were used to calculate an average time
measurement. All performance measurements presented in this thesis were
executed on a laptop with the following parameters:

• CPU: Intel Core 2 2.0 GHz

• Memory: 2 GB RAM

• Operating System: MS Windows XP Professional (Service Pack 2)

• Java Version: Java SE 6

Dependency Model Discovery

The dependency discovery process consists of the following main steps:

1. Creation of paths

2. Analysis of horizontal time dependencies

3. Analysis of vertical time dependencies

4. Analysis of horizontal resource dependencies

5. Analysis of vertical resource dependencies

6. Dependency model validation

5.4 Performance Evaluation 167

Table 5.10 presents the average measurement results for the time taken to
execute the different steps. The numbers of the different steps are used to
identify the respective steps in the table.

The largest amount of time is used for the analysis of horizontal resource
dependencies (logistics use case 10 ms and healthcare use case 14 ms). Here
it is necessary to match input and output resources of the atomic services
with other atomic services along a path. The time taken for the path cre-
ation, the remaining discovery steps, and the validation is relatively short.

Table 5.10: Performance analysis results for dependency discovery
Step 1 2 3 4 5 6

Logistics (time in ms) 4 5 2 10 2 1
Healthcare (time in ms) 5 7 2 14 1 2

Runtime Dependency Model Evaluation

In order to measure the performance of the dependency model evaluation
algorithm, which is executed at runtime, different test cases from the logis-
tics and healthcare use cases were executed.

The goal of these measurements is to analyze the performance of the ap-
proach for relevant exemplary dependency evaluations. However, it is im-
portant to state that the size of the dependency models was not varied.
The dependency models for the two use cases are taken as a basis for these
evaluations.

The measurements are presented in Table 5.11 and Table 5.12. One impor-
tant observation from the results is that the evaluation of renegotiation re-
quests and SLO violations of resource related SLOs takes much more time
in the logistics use case. This is due to two facts. The resource dependencies
in the logistics example occur with regard to a larger number of resources.
Most resource dependencies occur with regard to 3 or 6 resources instead of
only one resource in the healthcare use case. Furthermore, resource depen-
dencies have a transitive nature. In the logistics example most resources are
handled by many services consecutively. This is not the case in the health-
care scenario. The determination of services, which are affected due to the
transitive nature, requires extra time. The test case 11 EX2 determines 14
affected services for the logistics use case but only 1 affected service for the
healthcare use case.

168 Validation

Table 5.11: Performance analysis for dependency evaluation - 1
Test case 11 EX1 11 EX2 11 EX3 12 EX1 12 EX2

Logistics (time in ms) 24 298 31 39 37
Healthcare (time in ms) - 17 19 19 17

Table 5.12: Performance analysis for dependency evaluation - 2
Test case 13 EX1 13 EX2 14 EX1 14 EX2

Logistics (time in ms) 23 193 28 222
Healthcare (time in ms) 17 18 19 42

Extended Performance Measurements

The work presented in [MMN+06] indicates that typical business processes
only have a limited number of functions. However, the performance of
the dependency management approach was tested also for much larger
business processes. Several measurements were executed in addition to
the ones presented before. Five different business process models (P1,. . . ,
P5) with increasing complexity were modeled as BPMN workflow descrip-
tions.

Different steps of the dependency model creation process were analyzed
with regard to the number of artifacts being created during the respective
step. Important steps are the creation of workflow paths and the discovery
of horizontal as well as vertical dependencies. For the creation of paths,
time measurements are also presented. One limitation of the analysis de-
scribed here is that no SLAs were available for the different activities within
each workflow. Thus, a matching of input and output resources was not
possible. For that reason no realistic time measurements could be made for
resource dependency analysis. However, the presented numbers provide
an understanding of how many steps are necessary for the discovery of
horizontal and vertical dependencies in complex business processes.

In Table 5.13 some key information is given on the five different processes.
The number of activities ranges from 12 to 87. The number of split node
edges refers to the number of outgoing edges from split nodes. This
number provides an idea of the complexity of the processes. Finally, the
Control-flow Complexity measure (CFC) for each process is provided.

Performance of Path Creation As a first step of the dependency anal-
ysis linear paths were created from the composite service workflow. In
Section 5.4.1 the complexity of this algorithm was determined to be poly-
nomial. The measurements undertaken and presented in this section ex-

5.4 Performance Evaluation 169

Table 5.13: Overview of analyzed processes
Artifact P1 P2 P3 P4 P5

Activities 12 30 34 53 84
Split node edges 8 19 35 45 78
CFC 9 70 39 44 173

tend this theoretical discussion with concrete measurements. Table 5.14
presents the number of different paths created for each workflow as well
as the measured time for path creation. A general observation is that an
increasing complexity of the workflow (according to the number of activi-
ties, the number of split node edges, or the CFC) does not always result in
a larger number of created paths or a larger amount of time for path cre-
ation. For workflow P5, which has the highest complexity (i.e. number of
activities and split node edges, and CFC), the number of created paths is
smaller than the number of paths created for P4. This is due to the fact that
the number of linear paths within a workflow also depends on the concrete
workflow design.

Table 5.14: Performance analysis path creation
Artifact P1 P2 P3 P4 P5

Paths 21 60 952 1821 908
Time (in ms) 1 2 11 21 10

Performance of Horizontal Dependency Discovery The second step
during the creation of a dependency model is the discovery of horizontal
dependencies. Time and resource dependencies are discovered along each
path created during the prior step. One important aspect is, however, that
the different paths may have common segments. This is due to the fact that
for each outgoing edge of a split node a new path is created. The first part
of the different paths up to the split node are equal. After a join node equal
path segments are created as well. An important implication of this aspect
is that different combinations of services are handled multiple times, i.e.
once in each path where they occur. In order to account for that, a check is
executed, which avoids the creation of duplicate dependencies.

In order to illustrate the performance of the horizontal dependency discov-
ery, the number of pairs of services handled by the respective algorithm
was determined. For each occasion where a service pair was handled for
a second (or n-th) time, the counter for duplicate pairs was increased. The
actual number of handled service pairs is the sum of duplicate and non-
duplicate pairs.

170 Validation

Table 5.15: Performance of horizontal dependency analysis
Artifact P1 P2 P3 P4 P5

Non-duplicate time pairs 14 32 45 69 91
Duplicate time pairs 76 102 7387 13811 5535
Non-duplicate resource pairs 57 103 422 640 861
Duplicate resource pairs 222 139 33686 62724 21006

Table 5.15 shows the numbers of duplicate and non-duplicate time and re-
source pairs handled by the algorithms. Several observations can be made
from the numbers:

• The increase of non-duplicate time pairs accompanying the increas-
ing complexity of the workflow is very moderate. The increase of
resource pairs is stronger. This is in line with the determined com-
plexity of both operations, i.e. linear complexity of the horizontal
time creation algorithm and quadratic complexity of the horizontal
resource creation algorithm.

• The number of duplicate service pairs handled increases very
strongly with the increasing number of paths created for a workflow.

• The number of handled duplicates surpasses the number of non-
duplicate pairs by far. This implies that a large amount of time
would be spent handling duplicates. However, since the different
algorithms account for that, i.e. no two services are checked for de-
pendencies twice, the time for handling duplicates is minimized.

Performance of Vertical Dependency Discovery The third major step of
the process is the creation of vertical dependencies. Time and resource de-
pendencies are discovered between the composite service and single ser-
vices along the different paths. Similarly to the process of discovering hor-
izontal resource dependencies, the algorithms for the discovery of verti-
cal dependencies have to deal with duplicates. Services may occur within
multiple paths. Table 5.16 presents the measurement results for the five
different processes.

5.4.3 Discussion of Performance Evaluation Results

In this section different aspects of the performance of the dependency man-
agement approach were presented. As a first step the approach was ana-
lyzed with regard to its computational complexity. The complexity of the
different algorithms was given in Big O notation. One result was that the

5.4 Performance Evaluation 171

Table 5.16: Performance of vertical dependency analysis
Artifact P1 P2 P3 P4 P5

Non-duplicate time pairs 7 27 13 32 55
Duplicate time pairs 35 93 1891 3610 1761
Non-duplicate resource pairs 24 60 68 106 168
Duplicate resource pairs 198 328 16700 31296 12900

creation of workflow paths and thus the dependency model creation has an
exponential complexity. However, because the number of activities in real-
world workflows is limited and each activity only has a limited number of
connections to other activities, this complexity does not create a problem.

Following that the results of performance measurements for the different
algorithms were presented. Based on two use cases from the logistics and
healthcare domain time measurements for dependency model discovery
(i.e. path creation, horizontal and vertical dependency discovery, valida-
tion) and runtime dependency evaluation were executed. In order to ex-
tend these measurements for more complex processes, five processes with
increasing complexity were analyzed with regard to the number of oper-
ations necessary during the discovery process. The execution of measure-
ments with regard to validation as well as runtime dependency evaluation
was not executed because no SLAs were available for the services of these
processes.

From this performance evaluation a number of results are important:

• The discovery of dependencies for small processes, such as the lo-
gistics and healthcare use cases (i.e. about 15 activities), has a dura-
tion of only a few milliseconds. Thus, the discovery process can be
integrated into the process of negotiating SLAs for the services of a
service composition without slowing down the work in a significant
way.

• The evaluation of dependencies at runtime can be executed in less
than 1 second. When a composite service provider receives SLA rene-
gotiation requests or information about service level objective viola-
tions, information about affected services is gained very quickly and
can be displayed along with the renegotiation or violation informa-
tion.

• Handling of large processes, which contain more than about 20 activi-
ties, requires the consideration of handling duplicates. The number of
operations necessary to handle non-duplicate services increases only
in a moderate way as compared to the number of operations, which

172 Validation

would be necessary, if also duplicates would have to be analyzed.
Avoiding the handling of duplicates thus ensures that even large pro-
cesses can be handled efficiently by the approach. The number of
necessary operations is below 1000 for all processes. In many cases
it is even below 100. Analyzing also duplicate service pairs would
result in up to around 62000 operations.

5.5 Evaluation of Requirements and Discussion of Re-

sults

As a final step of the validation the requirements, which were described in
Section 2.5, are discussed with regard to their fulfillment by the concepts of
this thesis.

DR1: Dependencies need to be expressed with a granularity of single

service properties. A metamodel for representing dependencies between
services was introduced in Section 4.3.2. It allows the expression of depen-
dencies for each supported property, i.e. time, resource, location, different
QoS properties, and price. Fulfillment: Fulfilled

DR2: The representation of dependencies needs to support the expres-

sion of multiple dependencies between two services. The metamodel al-
lows the expression of different types of dependencies (e.g. time and re-
source) between two services. This is true for dependencies between the
composite service and an atomic service as well as for dependencies be-
tween atomic services. Fulfillment: Fulfilled

DR3: The representation of dependencies needs to support the expres-

sion of multiple dependencies of the same type. The metamodel allows
the expression of multiple dependencies of the same type. A single service
in the role of the dependent may have a dependency of the same type on
different services. It is also possible that different services depend on one
service (antecedent) with regard to the same dependency type. Fulfillment:

Fulfilled

DR4: The representation of dependencies needs to support the expres-

sion of type-specific dependency descriptions. The metamodel was de-
signed so that each dependency has a type-specific description. Fulfill-

ment: Fulfilled

DR5: The representation of dependencies needs to support the expres-

sion of dependencies between services with 1:1 and 1:n relationship. The
metamodel for the dependency model enables the expression of 1:1 and
1:n relationships between a single dependent service and one or more an-
tecedents. Fulfillment: Fulfilled

5.5 Evaluation of Requirements and Discussion of Results 173

DR6: The representation of dependencies should support the automatic

evaluation of dependencies. The dependencies are captured in a depen-
dency model, which conforms to a formal metamodel. This lays the foun-
dation for automatic processing. The model is stored in the form of an
XML file, which is automatically handled by the Dependency Model Man-
agement component. Fulfillment: Fulfilled

MAR1: Dependencies between atomic services need to be managed. The
discovery of horizontal dependencies enables the discovery of dependen-
cies between atomic services. Test case TC-4 illustrated this concept. The
validation and runtime handling of dependencies is independent of the
occurrence of the dependency between atomic services or between a com-
posite service and atomic services. Fulfillment: Fulfilled

MAR2: Dependencies between atomic services and the composite ser-

vice need to be managed. The discovery of vertical dependencies fulfills
this requirement. Furthermore, validation and runtime handling are sup-
ported. Fulfillment: Fulfilled

MAR3: Dependencies between services, which are directly or indirectly

connected, need to be managed. The automatic creation of time, resource,
QoS, and price dependencies supports the handling of dependencies be-
tween directly connected services. Resource dependencies can also be dis-
covered between indirectly connected services. Fulfillment: Fulfilled

MAR4: The approach should support application domain experts in their

work. The dependency management approach was developed with the
goal to be used by domain experts. The modeling of composite services,
the negotiation of SLAs, and the management of the compositions requires
knowledge of the application domain. While the automatic discovery of
dependencies does not impose any requirements with regard to the knowl-
edge of the user, the manual extension of the dependency model requires
an explicit understanding of the process underlying the composite service,
i.e. domain knowledge. The tool for dependency modeling does not re-
quire specific technical knowledge beyond the notion of a dependency or
the dependency description. Fulfillment: Fulfilled

GR1 - The work necessary to model service dependencies at design time

should be minimized. In order to minimize the work necessary to model
service dependencies between services the discovery of horizontal and ver-
tical dependencies was developed (see Section 4.4.2). The test cases TC-2
to TC-5 demonstrate this concept. However, not all dependencies are dis-
covered. Instead the approach allows for the manual extension of the auto-
matically generated dependency model. Fulfillment: Partially fulfilled

GR2: The completeness of the recognized dependencies needs to be as-

sured. The presented dependency management approach is capable of dis-

174 Validation

covering a variety of dependency types including time, resource, QoS, and
price dependencies. QoS dependencies for different QoS properties and
price dependencies are discovered completely. Different types of time de-
pendencies are created between the composite service and atomic services
(i.e. start-to-start, finish-to-finish), as well as between different atomic ser-
vices along a path. These time dependencies are discovered completely.
Time dependencies between services in parallel workflow paths or time de-
pendencies of different types cannot be discovered. Fulfillment: Partially
fulfilled

GR3: The effects of SLO violations as well as SLA renegotiation on other

services need to be determined automatically. In Section 4.4.4 the concept
for automatic evaluation of renegotiation requests as well as SLO violations
was described. It determines all services which are affected by a renegotia-
tion request or a SLO violation. Test cases TC-11 to TC-14 and the respective
examples illustrated this concept. Fulfillment: Fulfilled

GR4: The approach should be flexible enough to be applicable for ser-

vices from different application domains. In order to show that the ap-
proach is applicable to services from different domains, it was demon-
strated based on use cases from two different domains in Section 5.3. Ful-

fillment: Fulfilled

GR5: The approach should be integrated with the methodology and

toolset for developing and trading services in the Internet of Services.

In Section 5.2 the prototypical implementation of the concepts was de-
scribed. The different components for dependency management were in-
tegrated with the ISE Development Environment, the Service Management
Platform, and the Tradable Service Runtime. Fulfillment: Fulfilled

GR6: The approach should be independent of a specific SLA technol-

ogy and SLA management approach. The dependency management ap-
proach was designed to support the management of composite SLAs. The
dependency management functionality is provided by self-contained com-
ponents. They were described in Section 4.5.2. The functionality can be
accessed via specific interfaces. Furthermore, the dependency information
is kept separately from the SLA information in a dependency model (see
Section 4.3.2). Fulfillment: Fulfilled

5.6 Summary and Discussion

In this chapter the concepts of the dependency management approach were
validated. As a first step of the validation a prototypical implementation of
the concepts was described. A number of components for the handling of
dependencies at design time of the service, as well as during its provision-

5.6 Summary and Discussion 175

ing, were implemented. Furthermore, these components were integrated
into the ISE Development Environment and connected with the infrastruc-
ture for negotiating, renegotiating, and monitoring SLAs. The prototypical
implementation shows that the presented dependency management con-
cepts can be implemented and integrated into a suitable environment for
service handling and SLA management.

As a second step the dependency management approach was demon-
strated based on two use cases from the logistics and healthcare domain.
A set of test cases covered the complete lifecycle of dependency manage-
ment. For each test case the prototype components implementing this task
were presented. Furthermore, important artifacts created during different
steps were presented. Some test cases were illustrated by giving specific
examples from both use cases. The goal of this test case based evaluation
was to better illustrate the approach as well as to demonstrate the func-
tioning of the prototype. The artifacts presented as results of dependency
management tasks as well as the examples for some test cases show the
correct functioning of the prototype for the two use cases. Since the two
use cases come from different domains, the test cases demonstrate that the
approach is general enough to be applied to different domains.

As a third step the performance of the approach was analyzed. The com-
putational complexity of the different algorithms of the approach was out-
lined. To illustrate this theoretical work, a number of performance mea-
surements were undertaken based on the prototype and the two use cases.
The tests illustrate that the time needed to fulfill the different dependency
management tasks is within the range of few milliseconds. Even for larger
services the number of necessary operations can be limited. Thus, the ap-
proach can be applied to manage relatively complex composite services.

Finally, the evaluation of requirements showed that the concepts and the
prototypical implementation fulfilled most requirements.

6
Summary and Outlook

This chapter briefly summarizes the main results of this thesis. Further-
more, the research questions identified in Section 1.4 are discussed with
regard to the concepts presented in this thesis. On that basis the core contri-
butions of this thesis are outlined, followed by an outlook on future work.

6.1 Summary and Discussion of Contributions

In the Internet of Services providers and consumers of services engage in
business interactions by trading services via internet service marketplaces.
Service provisioning is regulated by formal contracts, i.e. service level
agreements. When service compositions, which are created by compos-
ing atomic services from different service providers, are sold to consumers,
the composite service provider needs to manage a complex setup of SLAs.
These SLAs were negotiated with the composite service consumer (i.e. the
CSLA) and different atomic service providers (i.e. different ASLAs). Man-
aging these SLAs is a complex task due to dependencies, which exist be-
tween the composite service and the atomic services as well as between
the different atomic services. A system for the management of composite
service SLAs needs to consider these dependencies.

Several approaches exist for the management of SLAs. However, they are
mostly limited to the handling of single SLAs and do not consider de-
pendency information. Existing composite service SLA management ap-
proaches, which also consider dependency information, are limited in sev-

6.1 Summary and Discussion of Contributions 177

eral ways. Limitations include missing support for handling dependencies
between atomic services, inefficient processes for capturing dependency in-
formation, and tight coupling between dependency and SLA information
as well as between the respective components for SLA and dependency
management.

In order to resolve these limitations, this thesis introduced an approach
for the management of dependency information. In Section 1.4 several re-
search questions were raised. To provide solutions for these questions, dif-
ferent concepts were described.

1. Research question: What would be a suitable method for managing

dependencies in service compositions at design time and during service

provisioning?

A lifecycle for the handling of dependency information was developed.
Dependency information is captured in a semi-automatic fashion during
the design time of the service. This information is used to verify negoti-
ated SLAs at design time during the negotiation process and to evaluate
renegotiation requests as well as SLO violation events during service pro-
visioning. Changes to the composite service, such as the adaptation of the
service workflow structure or exchanging atomic services, may require the
recomputation of the dependency model. Once the CSLA is terminated,
the dependency model is retired. The different phases of the lifecycle were
integrated with the composite SLA management approach, i.e. the nego-
tiation and renegotiation of SLAs as well as their monitoring. Up to now
no existing work in the area of composite SLA management presented a
comprehensive approach for the handling of dependency information. All
approaches have limitations with regard to the dependencies they can han-
dle and the process of capturing dependency information.

2. Research question: How can dependencies between services be deter-

mined in an efficient manner? The dependency management approach
enables the handling of different types of dependencies including time,
resource, location, QoS, and price dependencies. The semi-automatic cre-
ation of the dependency model allows the discovery of various time and re-
source dependencies based on information in the composite service work-
flow description as well as the different ASLAs and the CSLA. Further-
more, the discovery of QoS and price dependencies was included into the
dependency management approach. However, the concepts for this work
originate from different related work. Most relevant is the work developed
by Ludwig [Lud09]. Location dependencies as well as time, QoS, and price
dependencies, which cannot be discovered automatically, can be modeled.
This approach extends the state-of-the-art by further automating the de-
pendency model creation process.

178 Summary and Outlook

3. Research question: What is a suitable way to represent dependency

information? As part of the dependency management approach relevant
dependency information is captured explicitly in a dependency model in
order to facilitate the handling of this information. A metamodel was pre-
sented in Section 4.3.2, which allows the representation of dependency in-
formation. The different services as well as their respective SLAs, which
are relevant for the composite service, are referenced. The model also
allows a detailed description of the different dependencies. Each depen-
dency references the actual service properties in the SLA which cause the
dependency. Thus, the dependency model is independent of the actual ap-
proach for formalizing SLAs. The design choice to keep SLA information
and dependency information separately is different from the COSMA ap-
proach [Lud09] and rather follows different approaches such as the work
presented by Tolksdorf [Tol03] or by Ensel and Keller [EK02]. However, the
metamodel was specifically created to support SLA management and thus
has a different design from these approaches.

4. Research question: What would be a suitable architecture to support

the handling of service dependencies? An architecture for the handling
of dependencies was developed (see Section 4.5). Components for depen-
dency discovery and modeling, validation, evaluation, and model man-
agement were specified and their interplay was formally described. Fur-
thermore, the integration into an architecture for composite service model-
ing and execution, as well as SLA negotiation, renegotiation, and monitor-
ing was realized. The presented architecture decouples SLA management
functionality and dependency handling from each other. This way the de-
pendency handling can be integrated with different SLA management ap-
proaches more easily than a more tightly integrated approach.

Finally, the different concepts presented in this thesis were validated in
three steps. In a first step a sample implementation of the presented con-
cepts and architecture was realized. The components for dependency han-
dling as well as for SLA management were implemented and integrated
into an existing Internet of Services architecture. This implementation
serves as a proof of concept for the dependency management approach
as well as for the developed architecture. As a second step a number of
test cases were specified based on two use cases from the healthcare and
logistics domains. These test cases cover the different steps of the depen-
dency handling and SLA management approaches. Several detailed exam-
ples provide a better illustration of the dependency management steps dur-
ing SLA negotiation, renegotiation and monitoring. Using the developed
prototype the different test cases and examples were implemented. The
full process of dependency management was executed. This way the over-
all dependency management approach, the dependency discovery, and the
metamodel were validated. As a third step a performance evaluation of the

6.2 Future Work 179

dependency discovery and the runtime dependency evaluation was exe-
cuted. The two logistics and healthcare use cases served as a basis for the
different performance measurements. The results of these measurements
showed that all dependency management tasks are achieved within a time
frame of less than a second.

This thesis demonstrated, that the presented dependency management ap-
proach can be applied to support the management of SLAs is service com-
positions. Its functionality for handling dependency information during
design time and run time extends SLA management functionality such as
SLA negotiation, renegotiation, and monitoring. It enables composite ser-
vice providers not only to manage single service SLAs but to consider the
complex context of a service in a composition. In the IoS, where compos-
ite service providers offer services composed of a variety of other services,
the consideration of dependency information for the management of com-
position is very important. It is especially relevant for the management
of business services involving human tasks and the handling of material
goods, because service failure is very costly in such cases.

6.2 Future Work

The dependency management approach improves existing work, e.g. by
supporting different types of dependencies and partially automating the
dependency model creation process. Based on the results of this work, pos-
sibilities for enhancing the developed approach were identified.

One interesting area for further work can be the extension of the system
to handle different dependency types, which are currently not supported.
An example is the support for handling dependencies regarding the re-
sources needed for service execution (e.g. processing power or a certain
work force). The extension of the overall approach to support such func-
tionality would require an analysis of how to describe such a dependency
and an extension of the dependency metamodel, i.e. adding a new package
for capturing such dependencies. The core elements and structure of the
metamodel should remain unchanged. Furthermore, the development of
an approach to discover such dependencies is needed. Otherwise the man-
ual modeling of this dependency information would be necessary. Finally,
the functionality for evaluating this dependency information with regard
to the different ASLAs and the CSLA would have to be developed.

A second option can be the extension of the discovery of dependencies.
In the current approach, for example,location dependencies require ex-
plicit modeling due to the fact that not enough information is specified
to enable the discovery. However, a trade-off exists between a more

180 Summary and Outlook

detailed description of SLAs, which would enable better discovery op-
tions, and a reduced SLA description resulting in a need for the man-
ual modeling of dependency information. Further work regarding depen-
dency discovery requires an evaluation of these aspects. The discovery
of QoS dependencies could also be extended. Existing approaches (e.g.
[CMSA04, JRGM04, CP04, LF08]) provide a good basis for QoS depen-
dency discovery. However, the number of supported QoS parameters is
still limited. Furthermore, these approaches are limited to the composition
of QoS from atomic values to composite ones. Breaking composite QoS
values down into atomic values based on a certain workflow is still a very
challenging task and is currently executed manually. An approach for sup-
porting users with this work would be very helpful.

When the composite service is changed, this requires adjustments to the
dependency model. Currently, the dependency model needs to be recom-
puted. This means that dependencies which were modeled manually need
to be modeled again. A more advanced solution for recalculating the de-
pendency model would facilitate this process. Only the dependency model
parts which are related to the changed parts of the composite service should
be recalculated.

The dependency management approach allows the determination of af-
fected services upon the occurrence of SLO violation events or requests for
renegotiation. However, it does not enable the automatic handling of these
events. This would be a very helpful extension of the overall approach.
A possible solution could involve the modeling of business rules, which
specify how to react to certain events. Reactions will most likely vary de-
pending on the business domain of the service as well as on the contract
negotiated for the respective service. Options for reactions include the no-
tification of the service that it will be affected by an error, or renegotiating
its SLA. It may also be a valid option not to react and instead compensate
the service provider for the problems.

Bibliography

[Aal97] AALST, Wil M. P. van d.: Verification of Workflow Nets.
In: ICATPN ’97: Proceedings of the 18th International Confer-
ence on Application and Theory of Petri Nets. London, UK :
Springer-Verlag, 1997. – ISBN 3–540–63139–9, S. 407–426

[ACD+07] ANDRIEUX, Alain ; CZAJKOWSKI, Karl ; DAN, Asit ;
KEAHEY, Kate ; LUDWIG, Heiko ; NAKATA, Toshiyuki
; PRUYNE, Jim ; ROFRANO, John ; TUECKE, Steve ; XU,
Ming: Web Services Agreement Specification (WS-Agreement).
Specification. https://forge.gridforum.org/
projects/graap-wg/. Version: March 2007. – Open
Grid Forum

[AF08] AMELLER, David ; FRANCH, Xavier: Service Level Agree-
ment Monitor (SALMon). In: ICCBSS ’08: Proceedings of the
Seventh International Conference on Composition-Based Soft-
ware Systems (ICCBSS 2008). Washington, DC, USA : IEEE
Computer Society, 2008. – ISBN 978–0–7695–3091–8, S.
224–227

[All83] ALLEN, James F.: Maintaining knowledge about temporal
intervals. In: Commun. ACM 26 (1983), Nr. 11, S. 832–843. –
ISSN 0001–0782

[All09] ALLIANCE, OSGi: OSGi Service Platform Core Specifica-
tion Release 4. OSGi Alliance Specification. http://
www.osgi.org/download/r4v42/r4.core.pdf.
Version: June 2009

[BCD08] BASU, Sujoy ; CASATI, Fabio ; DANIEL, Florian: To-
ward Web Service Dependency Discovery for SOA Man-
agement. In: SCC ’08: Proceedings of the 2008 IEEE Inter-
national Conference on Services Computing. Washington, DC,
USA : IEEE Computer Society, 2008. – ISBN 978–0–7695–
3283–7–02, S. 422–429

https://forge.gridforum.org/projects/graap-wg/
https://forge.gridforum.org/projects/graap-wg/
http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.osgi.org/download/r4v42/r4.core.pdf

182 BIBLIOGRAPHY

[BDB05] BARROS, Alistair ; DUMAS, Marlon ; BRUZA, Peter: The
Move to Web Service Ecosystems. In: BPTrends (2005)

[BGO04] BAIDA, Ziv ; GORDIJN, Jaap ; OMELAYENKO, Borys: A
shared service terminology for online service provisioning.
In: ICEC ’04: Proceedings of the 6th international conference on
Electronic commerce. New York, NY, USA : ACM, 2004. –
ISBN 1–58113–930–6, S. 1–10

[BIR] BIOMEDICAL INFORMATICS RESEARCH, Stanford C.: pro-
tégé. Project web page. http://protege.stanford.
edu

[BKLW95] BARBACCI, Mario ; KLEIN, Mark H. ; LONGSTAFF,
Thomas A. ; WEINSTOCK, Charles B.: Quality Attributes
/ Software Engineering Institute, Carnegie Mellon Univer-
sity. 1995 (ESC-TR-95-021). – Technical Report

[BLM08] BIANCO, Philip ; LEWIS, Grace A. ; MERSON, Paulo: Ser-
vice Level Agreements in Service-Oriented Architecture
Environments / Software Engineering Institute, Carnegie
Mellon University. 2008 (CMU/SEI-2008-TN-021). – Tech-
nical Note

[BM04] BECKETT, Dave ; MCBRIDE, Brian: RDF/XML Syn-
tax Specification (Revised). W3C Recommendation.
http://www.w3.org/TR/rdf-syntax-grammar/.
Version: February 2004

[BPSMS07] BONIFACE, Mike ; PHILIPS, Stephen C. ; SANCHEZ-
MACIAN, Alfonso ; SURRIDGE, Mike: Dynamic Service
Provisioning Using GRIA SLAs. In: Proceedings of ICSOC,
2007

[Bri] BRITANNICA, Encyclopædia: Council of Logistics Man-
agement. Encyclopædia Britannica Online. http://
www.britannica.com/EBchecked/topic/346430/
Council-of-Logistics-Management. – Retrieved
October 06, 2008

[BRS+08] BRAUN, Iris ; REICHERT, Sandro ; SPILLNER, Josef ;
STRUNK, Anja ; SCHILL, Alexander: Zusicherung Nicht-
funktionaler Eigenschaften und Dienstgüte im Future In-
ternet of Services. In: PIK - Special Issue on Service-oriented
Computing (2008)

http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.britannica.com/EBchecked/topic/346430/Council-of-Logistics-Management
http://www.britannica.com/EBchecked/topic/346430/Council-of-Logistics-Management
http://www.britannica.com/EBchecked/topic/346430/Council-of-Logistics-Management

BIBLIOGRAPHY 183

[BSMM00] BRONSTEIN, I.N. ; SEMENDJAJEW, K.A. ; MUSIOL, G. ;
MÜHLIG, H.: Taschenbuch der Mathematik. Bd. 5. Verlag
Harri Deutsch, 2000

[BVGM07] BUCHSEIN, Ralf ; VICTOR, Frank ; GÜNTHER, Holger ;
MACHMEIER, Volker: IT-Management mit ITIL V3. Friedr.
Vieweg & Sohn Verlag, Wiesbaden, 2007

[BWRJ08] BODENSTAFF, Lianne ; WOMBACHER, Andreas ; RE-
ICHERT, Manfred ; JAEGER, Michael C.: Monitoring De-
pendencies for SLAs: The MoDe4SLA Approach. In: IEEE
SCC (1), IEEE Computer Society, 2008. – ISBN 978–0–7695–
3283–7, S. 21–29

[Car05] CARDOSO, Jorge: Control-flow Complexity Measurement
of Processes and Weyuker’s Properties. In: Engineering and
Technology Bd. 8 World Academy of Science, 2005

[Car06] CARDOSO, Jorge: Approaches to Compute Workflow
Complexity. In: LEYMANN, Frank (Hrsg.) ; REISIG, Wolf-
gang (Hrsg.) ; THATTE, Satish R. (Hrsg.) ; AALST, Wil
M. P. d. (Hrsg.): The Role of Business Processes in Service Ori-
ented Architectures Bd. 06291, Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006 (Dagstuhl Seminar Proceedings)

[CH91] CLARK, John ; HOLTON, Derek A.: A First Look at Graph
Theory. World Scientific Publishing Company, 1991

[CL06] CARDOSO, Jorge ; LENIC, Mitja: Web process and work-
flow path mining using the Multimethod approach. In:
Int. J. Business Intelligence and Data Mining 1 (2006), Nr. 3, S.
304–328

[CLRS03] CORMEN, Thomas H. ; LEISERSON, Charles E. ; RIVEST,
Ronald L. ; STEIN, Clifford: Introduction to Algorithms. Sec-
ond Edition. MIT Press, 2003

[CMRW07] CHINNICI, Roberto ; MOREAU, Jean-Jacques ; RYMAN,
Arthur ; WEERAWARANA, Sanjiva: Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/, June 2007. – W3C Rec-
ommendation

[CMSA04] CARDOSO, Jorge ; MILLER, John ; SHETH, Amit ; ARNOLD,
Jonathan: Quality of service for workflows and web ser-
vice processes. In: Journal of Web Semantics 1 (2004), S. 281–
308

184 BIBLIOGRAPHY

[CP04] CANFORA, Gerardo ; PENTA, Massimiliano D.: A
lightweight approach for QoS-aware service composition.
In: In Proc. 2nd International Conference on Service Oriented
Computing (ICSOC04) - short papers, 2004

[CVW08] CARDOSO, Jorge ; VOIGT, Konrad ; WINKLER, Matthias:
Service Engineering for The Internet of Services. In: FILIPE,
Joaquim (Hrsg.) ; CORDEIRO, José (Hrsg.): Enterprise In-
formation Systems, 10th International Conference, ICEIS 2008,
Barcelona, Spain, June 12-16, 2008, Revised Selected Papers
Bd. 19, Springer, 2008 (Lecture Notes in Business Informa-
tion Processing), S. 15–27

[CWV09] CARDOSO, Jorge ; WINKLER, Matthias ; VOIGT, Konrad:
A Service Description Language for the Internet of Services. 3
2009. – Proceedings of ISSS 2009 - International Sympo-
sium on Services Science

[Dau04] DAUM, Berthold: Java-Entwicklung mit Eclipse 3. 2.
dpunkt.verlag, 2004

[DDO08] DIJKMAN, Remco M. ; DUMAS, Marlon ; OUYANG, Chun:
Semantics and analysis of business process models in
BPMN. In: Inf. Softw. Technol. 50 (2008), Nr. 12, S. 1281–
1294. – ISSN 0950–5849

[EK02] ENSEL, Christian ; KELLER, Alexander: An Approach for
Managing Service Dependencies with XML and the Re-
source Description Framework. In: Journal of Network and
Systems Management 10 (2002), S. 147–170

[FL07] FARRELL, Joel ; LAUSEN, Holger: Semantic Annotations for
WSDL and XML Schema. W3C Recommendation. http://
www.w3.org/TR/sawsdl/. Version: August 2007

[FMA06] FRANKOVA, Ganna ; MALFATTI, Daniela ; AIELLO, Marco:
Semantics and Extensions of WS-Agreement. In: Journal of
Software 1 (2006), July, S. 23–31

[Foua] FOUNDATION, The Apache S.: ActiveMQ. Project web
page. http://activemq.apache.org/. – [Online; ac-
cessed 30-December-2009]

[Foub] FOUNDATION, The E.: Eclipse Modeling Framework Project
(EMF). Project page. http://www.eclipse.org/
modeling/emf/. – [Online; accessed 21-September-2009]

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://activemq.apache.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

BIBLIOGRAPHY 185

[Fouc] FOUNDATION, The E.: Eclipse.org. Project page. http://
www.eclipse.org/. – [Online; accessed 23-December-
2009]

[Foud] FOUNDATION, The E.: Graphical Editing Framework (GEF).
Project page. http://www.eclipse.org/gef/. – [On-
line; accessed 29-December-2009]

[FTS06] FLEHMIG, Marcus ; TROEGER, Peter ; SAAR, Alexan-
der: Design and Integration of SLA Monitoring and
Negotiation Capabilities. Adaptive Services Grid De-
liverable D5.II-7. Version: August 2006. http://
asg-platform.org/cgi-bin/twiki/view/
Public/PublicDeliverables

[Glo05] GLOZIC, Dejan: Eclipse Forms: Rich UI for the Rich
Client. Eclipse Corner Article. http://www.eclipse.
org/articles/Article-Forms/article.html.
Version: January 2005. – [Online; accessed 29-December-
2009]

[Gmb09] GMBH ontoprise: OntoStudio. OntoStudio product
web page. http://www.ontoprise.de/en/home/.
Version: 2009

[Gro09] GROUP, Object M.: Business Process Modeling Notation
(BPMN) Version 1.2. OMG Specification. http://www.
omg.org/spec/BPMN/1.2. Version: January 2009

[Gru93] GRUBER, Thomas R.: Toward Principles for the Design
of Ontologies Used for Knowledge Sharing / Knowledge
Systems Laboratory, Stanford University. 1993 (KSL 93-04).
– Technical Report

[HAW08] HEUSER, Lutz ; ALSDORF, Claudia ; WOODS, Dan: Research
Forum 2007. Evolved Technologists Press, 2008. – 100 S.

[HBCS03] HULL, Richard ; BENEDIKT, Michael ; CHRISTOPHIDES,
Vassilis ; SU, Jianwen: E-services: a look behind the
curtain. In: PODS ’03: Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. New York, NY, USA : ACM, 2003. – ISBN
1–58113–670–6, S. 1–14

[HMP04] HEVNER, Alan R. ; MARCH, Salvatore T. ; PARK, Jin-
soo: DESIGN SCIENCE IN INFORMATION SYSTEMS
RESEARCH. In: MIS Quarterly 28 (2004), March, S. 75–105

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/gef/
http://asg-platform.org/cgi-bin/twiki/view/Public/PublicDeliverables
http://asg-platform.org/cgi-bin/twiki/view/Public/PublicDeliverables
http://asg-platform.org/cgi-bin/twiki/view/Public/PublicDeliverables
http://www.eclipse.org/articles/Article-Forms/article.html
http://www.eclipse.org/articles/Article-Forms/article.html
http://www.ontoprise.de/en/home/
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/spec/BPMN/1.2

186 BIBLIOGRAPHY

[HP07] HEWLETT-PACKARD: HP Discovery and Dependency Map-
ping software. Data sheet, October 2007

[HP08] HEWLETT-PACKARD: Predictive Change Impact Analysis and
your Configuration Management System (CMS). White Paper,
2008

[Ini09] INITIATIVE, The Rule M.: RuleML. project web page.
http://ruleml.org/. Version: 2009. – [Online; ac-
cessed 10-August-2009]

[JEA+07] JORDAN, Diane ; EVDEMON, John ; ALVES, Alexandre ;
ARKIN, Assaf ; ASKARY, Sid ; BARRETO, Charlton ; BLOCH,
Ben ; CURBERA, Francisco ; FORD, Mark ; GOLAND,
Yaron ; GUIZAR, Alejandro ; KARTHA, Neelakantan ; LIU,
Canyang K. ; KHALAF, Rania ; KÖNIG, Dieter ; MARIN,
Mike ; MEHTA, Vinkesh ; THATTE, Satish ; RIJN, Danny
van d. ; YENDLURI, Prasad ; YIU, Alex: Web Services Busi-
ness Process Execution Language Version 2.0. OASIS Stan-
dard. http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html. Version: April 2007

[JRGM04] JAEGER, M. C. ; ROJEC-GOLDMANN, G. ; MUHL, G.:
QoS aggregation for Web service composition using work-
flow patterns. In: Proceedings of the Eighth Interna-
tional IEEE Enterprise Distributed Object Computing Con-
ference, 2004. (2004), S. 149–159. http://dx.doi.
org/10.1109/EDOC.2004.1342512. – DOI 10.1109/E-
DOC.2004.1342512

[KDA06] KONIEWSKI, Ryszard ; DZIELINSKI, Andrzej ; AMBORSKI,
Krzysztof: Use of Petri Nets and Business Processes Man-
agement Notation in Modelling and Simulation of Multi-
modal Logistics Chains. In: BORUTZKY, Wolfgang (Hrsg.) ;
ORSONI, Alessandra (Hrsg.) ; ZOBEL, Richard (Hrsg.): Pro-
ceedings 20th European Conference on Modelling and Simula-
tion (ECMS), 2006

[KMK09] KARAENKE, Paul ; MICSIK, Andras ; KIRN, Stefan: Adap-
tive SLA Management along Value Chains for Service Indi-
vidualization. In: ALT, Rainer (Hrsg.) ; FÄHNRICH, Klaus-
Peter (Hrsg.) ; FRANCZYK, Bogdan (Hrsg.): Proceedings
First International Symposium on Services Science (ISSS’2009)
Bd. 5, Logos Verlag Berlin, 2009 (Leipziger Beiträge zur
Wirtschaftsinformatik), S. 217–228

http://ruleml.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1109/EDOC.2004.1342512
http://dx.doi.org/10.1109/EDOC.2004.1342512

BIBLIOGRAPHY 187

[KNS92] KELLER, G. ; NÜTTGENS, M. ; SCHEER, A.W.: Semantis-
che Prozeßmodellierung auf der Grundlage Ereignisges-
teuerter Prozeßketten (EPK). In: Veröffentlichungen des In-
stituts für Wirtschaftsinformatik Heft 89 (1992)

[LDK04] LUDWIG, Heiko ; DAN, Asit ; KEARNEY, Robert: Cremona:
an architecture and library for creation and monitoring of
WS-agreents. In: ICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing. New York,
NY, USA : ACM, 2004. – ISBN 1–58113–871–7, S. 65–74

[LF08] LUDWIG, André ; FRANCZYK, Bogdan: COSMA–An Ap-
proach for Managing SLAs in Composite Services. In:
BOUGUETTAYA, A. (Hrsg.) ; KRUEGER, I. (Hrsg.) ; MAR-
GARIA, T. (Hrsg.): ICSOC 2008, Springer-Verlag Berlin Hei-
delberg, 2008 (LNCS 5364), S. 626–632

[LKD+03] LUDWIG, Heiko ; KELLER, Alexander ; DAN, Asit ; KING,
Richard P. ; FRANCK, Richard: Web Service Level Agree-
ment (WSLA) Language Specification. Specification. www.
research.ibm.com/wsla/WSLASpecV1-20030128.
pdf. Version: 2003. – IBM

[LSE03] LAMANNA, D.D. ; SKENE, J. ; EMMERICH, W.: Specification
Language for Service Level Agreements. Deliverable Tapas
Project, March 2003

[Lud09] LUDWIG, André: COSMA - Management of Service Level
Agreements in Composite Services. Logos Verlag Berlin, 2009
(Leipziger Beiträge zur Wirtschaftsinformatik 4)

[Mal07] MALINVERNO, Paolo: How to Get Value Now (and in the
Future) From SAP’s Enterprise SOA. GARTNER REPORT,
2007

[MC94] MALONE, Thomas W. ; CROWSTON, Kevin: The Interdisci-
plinary Study of Coordination. In: ACM Computing Surveys
26 (1994), March, Nr. 1, S. 87–119

[MFT+09] MILLER, George A. ; FELLBAUM, Christiane ; TENGI,
Randee ; WAKEFIELD, Pamela ; LANGONE, Helen: Word-
Net. WordNet Online Database. http://wordnet.
princeton.edu/. Version: 2009. – [Online; accessed 21-
July-2009]

[MH01] MÖRSCHEL, Inka C. ; HÖCK, Hendrik: Grundstruk-
tur für die Beschreibung von Dienstleistungen in der Auss-

www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

188 BIBLIOGRAPHY

chreibungsphase. Beuth Verlag GmbH, 2001. – Ref.Nr.
PAS1018:2002-12

[MH04] MCGUINNESS, Deborah L. ; HARMELEN, Frank van: OWL
Web Ontology Language. W3C Recommendation. http://
www.w3.org/TR/owl-features/. Version: February
2004

[MLM+06] MACKENZIE, C. M. ; LASKEY, Ken ; MCCABE, Francis ;
BROWN, Peter F. ; METZ, Rebekah: Reference Model for Ser-
vice Oriented Architecture 1.0. OASIS Committee Specifica-
tion, August 2006

[MM03] MILLER, Joaquin ; MUKERJI, Jishnu: MDA Guide Version
1.0.1. June 2003

[MMN+06] MENDLING, J. ; MOSER, M. ; NEUMANN, G. ; VERBEEK, H.
M. W. ; DONGEN, B. F. V.: A quantitative analysis of faulty
EPC in the SAP reference model. BPM Center Report BPM-
06-08, BPMcenter.org. http://is.tm.tue.nl/staff/
wvdaalst/BPMcenter/reports/2006/BPM-06-08.
pdf. Version: 2006

[Mom06] MOMOTKO, Mariusz: Integrated demonstrator for
service composition enactment, monitoring and visuali-
sation. Adaptive Services Grid Deliverable D4.III-
4. http://asg-platform.org/cgi-bin/twiki/
view/Public/PublicDeliverables. Version: August
2006

[MPA+07] MEDEIROS, A.K. A. ; PEDRINACI, C. ; AALST, W.M.P.
van d. ; DOMINGUE, J. ; SONG, M. ; ROZINAT, A. ; NOR-
TON, B. ; CABRAL, L.: An Outlook on Semantic Business
Process Mining and Monitoring. In: R.MEESMANN (Hrsg.)
; Z.TARI (Hrsg.) ; AL., P.Herrero et (Hrsg.): OTM 2007 Ws,
Part II, Springer-Verlag, 2007 (LNCS 4806), S. 1244–1255

[MTV09] MODICA, Giuseppe D. ; TOMARCHIO, Orazio ; VITA,
Lorenzo: A Framework for the Management of Dynamic
SLAs in Composite Service Scenarios. In: NITTO, E. D.
(Hrsg.) ; RIPEANU, M. (Hrsg.): ICSOC 2007 Workshops Bd.
LNCS 4907, Springer-Verlag Berlin Heidelberg, 2009, S.
139–150

[N.J80] N.J.NILSSON: Principles of Artificial Intelligence. Tioga Pub-
lishing Company, 1980

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-08.pdf
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-08.pdf
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-08.pdf
http://asg-platform.org/cgi-bin/twiki/view/Public/PublicDeliverables
http://asg-platform.org/cgi-bin/twiki/view/Public/PublicDeliverables

BIBLIOGRAPHY 189

[NRA08] NETJES, Mariska ; REIJERS, Hajo A. ; AALST, Wil M. d.:
On the Formal Generation of Process Redesigns. In:
ARDAGNA, Danilo (Hrsg.) ; MECELLA, Massimo (Hrsg.)
; JIANYANG (Hrsg.): Business Process Management Work-
shops, Springer, 2008 (LNBIP 17)

[OBB09] OBERLE, Daniel ; BHATTI, Nadeem ; BROCKMANS, Saartje:
Countering Service Information Challenges in the Internet
of Services. In: Business & Information Systems Engineering
1 (2009), 10, Nr. 5, S. 370–390

[OEC06] OECD: Electronic Data Interchange (EDI). Glossary of Sta-
tistical Terms. http://stats.oecd.org/glossary/
detail.asp?ID=3418. Version: January 2006. – last vis-
ited: 11.11.2008

[OMG05] OMG: OCL 2.0 Specification. OMG Specifica-
tion. http://www.omg.org/docs/ptc/05-06-06.
pdf. Version: June 2005

[OMG06] OMG: Meta Object Facility (MOF) Core Specification.
OMG Available Specification 2.0. http://www.omg.
org/docs/formal/06-01-01.pdf. Version: January
2006

[OMG09] OMG: OMG Unified Modeling LanguageTM (OMG
UML), Superstructure. OMG Specification. http://
www.omg.org/spec/UML/2.2/Superstructure.
Version: February 2009

[ope] OPENARCHITECTUREWARE.ORG: openArchitectureWare.
Project page. http://www.openarchitectureware.
org/

[Ore67] ORE, Oystein: Colloquium Publications. Bd. 38: Theory of
Graphs. American Mathematical Society, 1967

[O’S06] O’SULLIVAN, Justin: Towards a Precise Understanding of Ser-
vice Properties, Queensland University of Technology, Diss.,
2006

[OS08] OMER, Abrehet M. ; SCHILL, Alexander: A Frame-
work for Dependency Based Automatic Service Composi-
tion. In: ARDAGNA, Danilo (Hrsg.) ; MECELLA, Massimo
(Hrsg.) ; YANG, Jian (Hrsg.): Business Process Management
Workshops, BPM 2008 International Workshops, Milano, Italy,
September 1-4, 2008. Revised Papers Bd. 17, Springer, 2008

http://stats.oecd.org/glossary/detail.asp?ID=3418
http://stats.oecd.org/glossary/detail.asp?ID=3418
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/

190 BIBLIOGRAPHY

(Lecture Notes in Business Information Processing), S. 535–
541

[Pas05] PASCHKE, Adrian: RBSLA A declarative Rule-based Ser-
vice Level Agreement Language based on RuleML. In:
CIMCA ’05: Proceedings of the International Conference on
Computational Intelligence for Modelling, Control and Au-
tomation and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce Vol-2 (CIMCA-
IAWTIC’06). Washington, DC, USA : IEEE Computer So-
ciety, 2005. – ISBN 0–7695–2504–0–02, S. 308–314

[PMI08] PMI: A Guide to the Project Management Body of Knowledge
(PMBOK Guide). 4. Project Management Institute, 2008

[Pre08] PRESSEBÜRO, THESEUS: TEXO - Business
Webs im Internet der Dienste. http://theseus-
programm.de/scenarios/de/texo, March 2008

[RBFD01] REICHERT, Manfred ; BAUER, Thomas ; FRIES,
Thomas ; DADAM, Peter: Realisierung flexibler,
unternehmensweiter Workflow-Anwendungen mit
ADEPT. In: HORSTER, P. (Hrsg.): Proc. Elektronische
Geschäftsprozesse–Grundlagen, Sicherheitsaspekte, Real-
isierungen, Anwendungen, 2001, S. 217–228

[RBHJ07] ROSARIO, Sidney ; BENVENISTE, Albert ; HAAR, Stefan
; JARD, Claude: Probabilistic QoS and soft contracts for
transaction based Web services orchestrations. In: Proceed-
ings of IEEE International Conference on Web Services (ICWS),
2007

[RM09] RINDERLE-MA, Stefanie: Data Flow Correctness in Adap-
tive Workflow Systems. In: Emisa Forum 29 (2) (2009), S.
25–35

[RPU+07] RAEDTS, Ivo ; PETKOVIĆ, Marija ; USENKO, Yaroslav S. ;
WERF, Jan M. d. ; GROOTE, Jan F. ; SOMERS, Lou: Transfor-
mation of BPMN models for Behaviour Analysis. (2007), S.
126–137

[SAP] SAP: Enterprise Services Workplace. http://
esworkplace.sap.com/sdn. – last visited: June
18, 2010

[SBPM09] STEINBERG, Dave ; BUDINSKY, Frank ; PATERNOSTRO,
Marcelo ; MERKS, Ed ; GAMMA, Erich (Hrsg.) ; NACKMAN,

http://esworkplace.sap.com/sdn
http://esworkplace.sap.com/sdn

BIBLIOGRAPHY 191

Lee (Hrsg.) ; WIEGAND, John (Hrsg.): EMF Eclipse Model-
ing Framework Second Edition. Addison Wesley, 2009

[SFRM08] STATHEL, Stephan ; FINZEN, Jan ; RIEDL, Christoph ; MAY,
Norman: Service Innovation in Business Value Networks.
In: Proceedings of XVIII International RESER Conference 2008,
2008

[SJSJ05] SANGAL, Neeraj ; JORDAN, Ev ; SINHA, Vineet ; JACK-
SON, Daniel: Using dependency models to manage
complex software architecture. In: Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications 40 (2005),
Nr. 10, S. 167–176. http://dx.doi.org/http://
doi.acm.org/10.1145/1103845.1094824. – DOI
http://doi.acm.org/10.1145/1103845.1094824. – ISSN
0362–1340

[Ski08] SKIENA, Steven S.: The Algorithm Design Manual. 2.
Springer, 2008

[SMCC] SUN MICROSYSTEMS, Inc. ; COLLABNET, Inc. ; COG-
NISYNC, llc.: GlassFish Metro. GlassFish project page.
https://metro.dev.java.net/. – [Online; accessed
07-January-2010]

[TBMM04] THOMPSON, Henry S. ; BEECH, David ; MALONEY, Mur-
ray ; MENDELSOHN, Noah: XML Schema Part 1: Structures
Second Edition. W3C Recommendation. http://www.w3.
org/TR/xmlschema-1/. Version: October 2004

[TMPE04] TOSIC, Vladimir ; MA, Wei ; PAGUREK, Bernard ; ESFANDI-
ARI, Babak: Web Service Offerings Infrastructure (WSOI) -
a management infrastructure for XML Web services. In:
Managing Next Generation Convergence Networks and Ser-
vices, IEEE/IFIP Network Operations and Management Sym-
posium, NOMS 2004, Seoul, Korea, 19-23 April 2004, Proceed-
ings, IEEE, 2004, S. 817–830

[Tol03] TOLKSDORF, Robert: A Dependency Markup Language
for Web Services. In: AL., A.B. C. (Hrsg.): Web Databases
and Web Services 2002, Springer-Verlag Berlin Heidelberg,
2003 (LNCS), S. 129–140

[TPP02] TOSIC, Vladimir ; PATEL, Kruti ; PAGUREK, Bernard:
WSOL - Web Service Offerings Language. In: CAiSE ’02/
WES ’02: Revised Papers from the International Workshop on

http://dx.doi.org/http://doi.acm.org/10.1145/1103845.1094824
http://dx.doi.org/http://doi.acm.org/10.1145/1103845.1094824
https://metro.dev.java.net/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

192 BIBLIOGRAPHY

Web Services, E-Business, and the Semantic Web. London, UK
: Springer-Verlag, 2002. – ISBN 3–540–00198–0, S. 57–67

[VDATHKB03] VAN DER AALST, W. M. P. ; TER HOFSTEDE, A. H. M. ;
KIEPUSZEWSKI, B. ; BARROS, A. P.: Workflow Patterns. In:
Distrib. Parallel Databases 14 (2003), Nr. 1, S. 5–51. – ISSN
0926–8782

[VOH+06] VEDAMUTHU, Asir S. ; ORCHARD, David ; HIRSCH, Fred-
erick ; HONDO, Maryann ; YENDLURI, Prasad ; BOUBEZ,
Toufic ; YALÇINALP Ümit: Web Services Policy 1.5 - Frame-
work (WS-Policy). W3C Member Submission. http://
www.w3.org/TR/ws-policy/. Version: April 2006. –
last visited: 26.02.2010

[VVL07] VANHATALO, Jussi ; VÖLZER, Hagen ; LEYMANN, Frank:
Faster and More Focused Control-Flow Analysis for Busi-
ness Process Models Through SESE Decomposition. (2007),
S. 43–55. ISBN 978–3–540–74973–8

[Wae08] WAELDRICH, Oliver: WSAG4J. WSAG4J project
page. http://packcs-e0.scai.fraunhofer.de/
mss-project/wsag4j/index.html. Version: 2008. –
last visited: 29.01.2009

[WPSB07] WU, Qinyi ; PU, Calton ; SAHAI, Akhil ; BARGA, Roger:
Categorization and Optimization of Synchronization De-
pendencies in Business Processes. In: Proceedings of IEEE
23rd International Conference on Data Engineering (ICDE’07),
2007, S. 306–315

[WS09] WINKLER, Matthias ; SPRINGER, Thomas: SLA Man-
agement for the Internet of Services. In: SHISHKOV,
Boris (Hrsg.) ; CORDEIRO, José (Hrsg.) ; RANCHORDAS,
AlpeshKumar (Hrsg.) ; INSTICC (Veranst.): ICSOFT 2009 -
Proceedings of the 4th International Conference on Software and
Data Technologies, Volume 2, Sofia, Bulgaria, July 26-29, 2009
Bd. 2 INSTICC, INSTICC Press, 2009, S. 384–391

[ZBH08] ZHOU, Zhangbing ; BHIRI, Sami ; HAUSWIRTH, Man-
fred: Control and Data Dependencies in Business Pro-
cesses Based on Semantic Business Activities. In: KOTSIS,
Gabriele (Hrsg.) ; TANIAR, David (Hrsg.) ; PARDEDE, Eric
(Hrsg.) ; KHALIL, Ismail (Hrsg.): Proceedings of iiWAS2008,
ACM, 2008

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.html
http://packcs-e0.scai.fraunhofer.de/mss-project/wsag4j/index.html

BIBLIOGRAPHY 193

[ZPPN07] ZHOU, Jiehan ; PAKKALA, Daniel ; PERALA, Juho ;
NIEMELA, Eila: Dependency-aware Service Oriented Ar-
chitecture and Service Composition. In: IEEE International
Conference on Web Services, 2007, S. 1146–1149

[Zsc04] ZSCHALER, Steffen: Towards a semantic framework
for non-functional specifications of component-based sys-
tems. In: STEINMETZ, Mauthe A. R. (Hrsg.): Proc. EU-
ROMICRO Conf. 2004, Rennes, France, IEEE Computer So-
ciety, 2004

A
Validation Test Cases

TC-1 Negotiation of atomic and composite SLAs

Description: The composite service provider negotiates SLAs for the
atomic services, which are part of the composite service. Upon customer
request a SLA is also negotiated for the composite service.

Pre-conditions: The composite service provider has modeled a composite
service and selected atomic service providers for all services. No SLAs have
been negotiated with the atomic service providers or the composite service
consumer.

Post-conditions: All SLAs are available as SLA offer documents.

Prototype support: The prototype supports this test case.

TC-2 Composite service provider initiates dependency model discovery

Description: The composite service provider initiates the dependency
model creation process by starting the dependency discovery. He triggers
the discovery process via the ISE Workbench. The Analysis Manager com-
ponent loads the BPMN process description and the SLA offer documents
for the respective services. The analysis procedure is executed.

Pre-conditions: The composite service provider has modeled a compos-
ite service workflow (in BPMN notation) and selected atomic service
providers for all services. The SLA negotiation process has been started.

195

SLA offer documents or fully negotiated SLAs are available for all atomic
services and the composite service.

Post-conditions: The first version of the dependency model is created.

Prototype support: The prototype supports this test case.

TC-3 Creation of workflow paths

Description: As a first step of the analysis procedure the composite service
workflow is analyzed for all linear paths leading from the start node to the
end node of the process.

Pre-conditions: The composite service workflow was modeled e.g. in
BPMN notation.

Post-conditions: All linear paths for the composite service workflow are
created.

Prototype support: The prototype supports this test case.

TC-4 Creation of horizontal dependencies

Description: Based on a number of linear paths the horizontal dependen-
cies between the different activities within a path are determined.

Pre-conditions: Linear paths of composite service workflow are available.

Post-conditions: Time and resource dependencies between the atomic ser-
vices in the different paths are created.

Prototype support: The prototype supports this test case.

TC-5 Creation of vertical dependencies

Description: Based on the linear paths vertical dependencies are discov-
ered between the composite service and the atomic services.

Pre-conditions: Linear paths of composite service workflow are available.

Post-conditions: Vertical time and resource dependencies are created.

Prototype support: The prototype supports this test case.

TC-6 Manual extension of dependency model

Description: In order to extend and refine the dependency model, the com-
posite service provider opens the created dependency model using the De-
pendency Modeler. If no dependency model exists up to that point, a new

196 Validation Test Cases

model is created. This way it is also possible to create the dependency
model in a fully manual fashion. After finishing the modeling, the depen-
dency model is saved.

Pre-conditions: The composite service provider has modeled a composite
service (in BPMN notation) and selected atomic service providers for all
services. The SLA negotiation process has been started. SLA offer docu-
ments or fully negotiated SLAs are available for all atomic services and the
composite service.

Post-conditions: The (extended) dependency model is saved.

Prototype support: The prototype supports this test case.

TC-7 Recomputation of dependency model

Description: Upon structural changes of the composite service workflow
or changes to the SLAs of a service composition with regard to resources,
the dependency model needs to be adapted. This is realized by recomput-
ing the complete model.

Pre-conditions: The composite service workflow or the handled resources
of services have been changed.

Post-conditions: The new dependency model has been created.

Prototype support: The prototype supports this test case.

TC-8 Conflict detection / validation with regard to dependency model

and negotiated SLAs

Description: Based on the created dependency model the set of SLAs un-
der negotiation are validated. Errors are detected based on the automati-
cally discovered as well as modeled dependencies.

Pre-conditions: A dependency model was created and all SLAs have
reached the status of an agreement offer.

Post-conditions: Detected errors are displayed to the composite service
provider for further handling.

Prototype support: The prototype supports this test case.

TC-9 Conflict resolution between SLA offer documents

Description: When a conflict has been detected between the dependency
model and the SLAs of the composite service, this conflict needs to be re-
solved by the composite service provider. There may be different reasons

197

for the conflict including modeling errors with respect to the composite ser-
vice, false negotiated SLAs, or incorrectly specified dependencies in the de-
pendency model. The conflict is handled by the composite service provider,
e.g. by changing the respective SLA offers or by refining the dependency
model, depending on the cause for the error.

Pre-conditions: A conflict is detected between the dependency model and
the negotiated SLAs.

Post-conditions: The conflict, which was detected earlier, is resolved.

Prototype support: Conflict resolution is a manual task which is not sup-
ported by the prototype. However, the composite service provider uses the
tools for dependency modeling or SLA negotiation to handle the conflict
once the underlying cause was identified.

TC-10 Finalization of SLA negotiation

Description: After the successful completion of the validation of the de-
pendency model and the respective SLA offers (i.e. no conflicts are detected
any more), the negotiation of all SLAs is finished. First of all, the composite
service SLA is sent to the consumer for approval. If it is accepted the re-
spective offers of atomic service providers are also accepted. If the offer is
rejected by the consumer further steps need to be determined by the com-
posite service provider (e.g. replan the composite service or renegotiate
atomic service SLAs).

Pre-conditions: Dependency model as well as all SLA offers are without
conflict.

Post-conditions: All SLAs are successfully negotiated and the dependency
model is available for runtime handling.

Prototype support: The prototype supports this test case.

TC-11 Request to renegotiate composite service SLO by consumer

Description: The consumer of the composite service wants to renegotiate
its contract (the composite SLA). The request is received by the composite
service provider. The Runtime Dependency Evaluation components ex-
tract the relevant information from the request and validates it. Based on
the dependency model as well as relevant SLAs of other services, affected
services are determined.

Pre-conditions: The dependency model and the SLAs for the respective
service as well as potentially affected services are available.

198 Validation Test Cases

Post-conditions: Services affected by the respective request have been de-
termined. Depending on the special case the renegotiation request is suc-
cessful or requires further handling by the composite service provider.

Prototype support: The prototype supports this test case.

TC-12 Atomic service provider requests the renegotiation of a SLO

Description: An atomic service provider requests the renegotiation of one
of the SLOs of a contract (atomic SLA). The Runtime Dependency Evalu-
ation components determine the effects of the request. In the case of ef-
fects on other services this information is displayed to the composite ser-
vice provider.

Pre-conditions: The dependency model and the SLAs for the respective
service as well as potentially affected services are available.

Post-conditions: Services affected by the respective request have been de-
termined. Depending on the special case the renegotiation request is suc-
cessful or requires further handling by the composite service provider.

Prototype support: The prototype supports this test case.

TC-13 Atomic service provider violates SLA

Description: A provider of an atomic service violates different SLOs of
a SLA. The information about the violation is delivered to the composite
service provider, where the information is evaluated and the effects are
determined by the Runtime Dependency Evaluation components.

Pre-conditions: The dependency model and the SLAs for the respective
service as well as potentially affected services are available.

Post-conditions: The services affected by the violation have been deter-
mined.

Prototype support: The prototype supports this test case.

TC-14 Consumer violates the composite SLA

Description: The consumer of the composite service violates its SLA.

Pre-conditions: The dependency model and the SLAs for the respective
service as well as potentially affected services are available.

Post-conditions: The services affected by the violation have been deter-
mined.

Prototype support: The prototype supports this test case.

199

TC-15 Terminate dependency handling

Description: Once the contract for a composite service is terminated, the
dependency model is removed from the Dependency Model Store. This is
necessary in order avoid the further evaluation of this dependency model
when SLO violations or renegotiation requests occur.

Pre-conditions: The contract for provisioning of the composite service has
been terminated.

Post-conditions: The dependency model has been removed from the De-
pendency Model Store.

Prototype support: The prototype partially supports this test case. The
retirement needs to be triggered manually because the SLA management
system does not determine the state (e.g. terminated) of a SLA.

B
WS-Agreement SLA Document

1 <texoag:Template TemplateId=" H738T378−U323−83H3−83GZ−839
U348E8329 "

2 xmlns:wsag=" h t t p : //texo . net/wsag/type " xmlns:usdl=" h t t p :
//texo . net/usdl/type "

3 xmlns:texoag=" h t t p : //texo . net/texoag/type " xmlns :xs i="
h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "

4 xmlns:xs=" h t t p : //www. w3 . org /2001/XMLSchema">
5 <texoag:Name>OTMLTruckDE</texoag:Name>
6 <texoag:Context>
7 <wsag:TemplateId>H738T378−U323−83H3−83GZ−839U348E8329
8 </wsag:TemplateId>
9 <wsag:TemplateName>OTMLTruckDETemplate

10 </wsag:TemplateName>
11 <wsag:AgreementIni t ia tor x s i : t y p e =" x s : s t r i n g " />
12 <wsag:AgreementResponder x s i : t y p e =" x s : s t r i n g ">Jorge
13 Smith</wsag:AgreementResponder>
14 <wsag:ServiceProvider>AgreementResponder
15 </wsag:ServiceProvider>
16 <wsag:ExpirationTime>31−12−2010</wsag:ExpirationTime>
17 <usdl :prov ider >
18 <usdl :providerKey>Z283JD392−F738−8Z83−23JE−374

ZE278ZUE23
19 </usdl :providerKey>
20 <usdl:providerName>OnTheMove L o g i s t i c s </

usdl:providerName>
21 <usdl :providerAddress>3672 F i f t h Avenue , New York , NY

10028 , USA
22 </usdl :providerAddress>

201

23 <usdl:personName>Jorge Smith</usdl:personName>
24 <usdl:phone>+1 212 457 5842</usdl:phone>
25 <u s d l : e m a i l>Jorge . Smith@onthemove− l o g i s t i c s . com
26 </u s d l : e m a i l>
27 <usdl:www>www. onthemove− l o g i s t i c s . com
28 </usdl:www>
29 </usdl :prov ider >
30 </texoag:Context>
31
32 <texoag:Terms>
33 < t e x o a g : A l l >
34 <texoag:ServiceDescr ipt ionTerm>
35 < t e x o a g : s e r v i c e >
36 <usdl : serv iceKey >OTML Truck
37 DE_H738T378−U323−83H3−83GZ−839U348E8329</

usdl : serv iceKey >
38 <usdl : serv iceType >Atomic</usdl : serv iceType >
39 <usdl:serviceName>OTMLTruckDE</usdl:serviceName>
40 < u s d l : s e r v i c e V e r s i o n >V1 . 0 </ u s d l : s e r v i c e V e r s i o n >
41 </ t e x o a g : s e r v i c e >
42
43 < t e x o a g : l e g a l >
44 <usdl :prov iderRights>Provider has the r i g h t not to

handle
45 the shipment request i f there i s any suspic ions of

unserious
46 business</usdl :prov iderRights>
47 < u s d l : p r o v i d e r O b l i g a t i o n s ></u s d l : p r o v i d e r O b l i g a t i o n s

>
48 <usdl:consumerRights>User i s obl iged to hand in no

unserious
49 shipment reques t s</usdl:consumerRights>
50 <usdl :consumerObligat ions></usdl :consumerObligat ions

>
51 </ t e x o a g : l e g a l >
52 <usdl :market ing>
53 < u s d l : p r i c e >
54 <usdl:payPerUse>
55 <usdl:priceName>OTMLTruckDE</usdl:priceName>
56 <usdl :pr iceCurrency>USD</usdl :pr iceCurrency>
57 < u s d l : p r i c e V a t > 1 3 . 0 </ u s d l : p r i c e V a t >
58 <usdl :pr iceUnitType>Transporta t ion exesut ion
59 </usdl :pr iceUnitType>
60 < u s d l : p r i c e U n i t >600 .0</ u s d l : p r i c e U n i t >
61 <usdl :pr iceCountry>USA</usdl :pr iceCountry>
62 <usdl :pr i ceRegion></usdl :pr i ceRegion>
63 <usdl:paymentMethod>MasterCard</usdl:paymentMethod

>
64 </usdl:payPerUse>

202 WS-Agreement SLA Document

65 </ u s d l : p r i c e >
66
67 <usdl : channe ls >
68 <usdl : channel>
69 <usdl:channelType>Promotional campaign
70 </usdl:channelType>
71 <usdl:channelName>Transport in Germany
72 </usdl:channelName>
73 < u s d l : u r i >www. onthemove− l o g i s t i c s . com/TG. avi
74 </ u s d l : u r i >
75 </usdl : channel>
76 </usdl : channe ls >
77
78 < u s d l : c e r t i f i c a t i o n s >
79 < u s d l : c e r t i f i c a t i o n >
80 < u s d l : c e r t i f i c a t i o n T y p e >CSMS</

u s d l : c e r t i f i c a t i o n T y p e >
81 < u s d l : c e r t i f i c a t i o n N a m e >CSA283−072
82 </ u s d l : c e r t i f i c a t i o n N a m e >
83 </ u s d l : c e r t i f i c a t i o n >
84 </ u s d l : c e r t i f i c a t i o n s >
85 </usdl :market ing>
86 < u s d l : r a t i n g >
87 <usdl : ra t ingType>Community</usdl : ra t ingType>
88 <usdl:ratingName>German t r a n s p o r t s t a r s </

usdl:ratingName>
89 <usdl : ra t ingRange>1−5</usdl : ra t ingRange>
90 < u s d l : r a t i n g V a l u e> 1 . 0 </u s d l : r a t i n g V a l u e>
91 <usdl : ra t ingSuppor t >150 .0</usdl : ra t ingSuppor t >
92 </ u s d l : r a t i n g >
93 < u s d l : i n t e r a c t i o n />
94 < u s d l : o p e r a t i o n a l >
95 < u s d l : c l a s s i f i c a t i o n s >
96 </ u s d l : c l a s s i f i c a t i o n s >
97 < u s d l : o p e r a t i o n s >
98 < u s d l : o p e r a t i o n >
99 <usdl:operationName>OTMLTruckDE</

usdl:operationName>
100 < u s d l : o p e r a t i o n I n t e r f a c e s >
101 < u s d l : o p e r a t i o n I n t e r f a c e >
102 <usdl : interfaceName></usdl : interfaceName>
103 < u s d l : i n p u t I n t e r f a c e >
104 < u s d l : p o r t s >
105 < u s d l : p o r t >
106 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
107 <usdl:resourceName></usdl:resourceName>
108 <resourceID>R1</resourceID>
109 </ u s d l : p o r t >

203

110 < u s d l : p o r t >
111 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
112 <usdl:resourceName></usdl:resourceName>
113 <resourceID>R2</resourceID>
114 </ u s d l : p o r t >
115 < u s d l : p o r t >
116 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
117 <usdl:resourceName></usdl:resourceName>
118 <resourceID>R3</resourceID>
119 </ u s d l : p o r t >
120 < u s d l : p o r t >
121 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
122 <usdl:resourceName></usdl:resourceName>
123 <resourceID>R4</resourceID>
124 </ u s d l : p o r t >
125 < u s d l : p o r t >
126 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
127 <usdl:resourceName></usdl:resourceName>
128 <resourceID>R5</resourceID>
129 </ u s d l : p o r t >
130 < u s d l : p o r t >
131 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
132 <usdl:resourceName></usdl:resourceName>
133 <resourceID>R6</resourceID>
134 </ u s d l : p o r t >
135 </ u s d l : p o r t s >
136 <time>2009−11−10 T 0 6 : 0 0 : 0 0 +0100/2009−11−10

T 0 8 : 0 0 : 0 0 +0100
137 </time>
138 < l o c a t i o n >Bahnhofstr . 85 , 01269 Dresden ,
139 Germany
140 </ l o c a t i o n >
141 </ u s d l : i n p u t I n t e r f a c e >
142 < u s d l : o u t p u t I n t e r f a c e >
143 < u s d l : p o r t s >
144 < u s d l : p o r t >
145 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
146 <usdl:resourceName></usdl:resourceName>
147 <resourceID>R1</resourceID>
148 </ u s d l : p o r t >
149 < u s d l : p o r t >
150 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>

204 WS-Agreement SLA Document

151 <usdl:resourceName></usdl:resourceName>
152 <resourceID>R2</resourceID>
153 </ u s d l : p o r t >
154 < u s d l : p o r t >
155 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
156 <usdl:resourceName></usdl:resourceName>
157 <resourceID>R3</resourceID>
158 </ u s d l : p o r t >
159 < u s d l : p o r t >
160 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
161 <usdl:resourceName></usdl:resourceName>
162 <resourceID>R4</resourceID>
163 </ u s d l : p o r t >
164 < u s d l : p o r t >
165 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
166 <usdl:resourceName></usdl:resourceName>
167 <resourceID>R5</resourceID>
168 </ u s d l : p o r t >
169 < u s d l : p o r t >
170 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
171 <usdl:resourceName></usdl:resourceName>
172 <resourceID>R6</resourceID>
173 </ u s d l : p o r t >
174 </ u s d l : p o r t s >
175 <time>2009−11−10 T 1 2 : 0 0 : 0 0 +0100/2009−11−10

T 1 4 : 0 0 : 0 0 +0100
176 </time>
177 < l o c a t i o n >Gutestr . 76 , 20095 Hamburg , Germany
178 </ l o c a t i o n >
179 </ u s d l : o u t p u t I n t e r f a c e >
180 </ u s d l : o p e r a t i o n I n t e r f a c e >
181 </ u s d l : o p e r a t i o n I n t e r f a c e s >
182 </ u s d l : o p e r a t i o n >
183 </ u s d l : o p e r a t i o n s >
184 </ u s d l : o p e r a t i o n a l >
185 < u s d l : l o g i s t i c s S e r v i c e >
186 < t r a n s p o r t S e r v i c e >
187 <transportZone>Germany</transportZone>
188 <transportat ionModes>ROAD</transportat ionModes>
189 <natureOfCargo>General Cargo</natureOfCargo>
190 <maxValueOfGoods>1000000 .0</maxValueOfGoods>
191 <currency>EURO</currency>
192 <shipper>
193 <organiza t ion>Dresden L o g i s t i c s </organiza t ion>
194 <address>Bahnhofstr . 85 , 01269 Dresden , Germany

205

195 </address>
196 <contactPerson>Wilma Berger</contactPerson>
197 <phone>+49 (3 5 1) 455 84 45</phone>
198 <email>W. Berger@dresden− l o g i s t i c s . de
199 </email>
200 <www>www. dresden− l o g i s t i c s . de</www>
201 </shipper>
202 <consignee>
203 <organiza t ion>OnTheMove L o g i s t i c s </organiza t ion>
204 <address>Gutestr . 76 , 20095 Hamburg , Germany</

address>
205 <contactPerson>Helga Scholze</contactPerson>
206 <phone>+49 (4 0) 839 74 38</phone>
207 <email>H. Scholze@onthemove− l o g i s t i c s . com
208 </email>
209 <www>www. onthemove− l o g i s t i c s . com</www>
210 </consignee>
211 <source>Bahnhofstr . 85 , 01269 Dresden , Germany</

source>
212 < d e s t i n a t i o n >Gutestr . 76 , 20095 Hamburg , Germany
213 </ d e s t i n a t i o n >
214 < t r a n s p o r t S t a g e s >
215 <stage>
216 <source>Bahnhofstr . 85 , 01269 Dresden , Germany
217 </source>
218 < d e s t i n a t i o n >Gutestr . 76 , 20095 Hamburg , Germany
219 </ d e s t i n a t i o n >
220 < s t a r t t i m e >2009−11−10 T 0 6 : 0 0 : 0 0 +0100/2009−11−10

T 0 8 : 0 0 : 0 0 +0100
221 </ s t a r t t i m e >
222 <endtime>2009−11−10 T 1 2 : 0 0 : 0 0 +0100/2009−11−10

T 1 4 : 0 0 : 0 0 +0100
223 </endtime>
224 <modeOfTransportation>ROAD</modeOfTransportation>
225 <meansOfTransport>Truck</meansOfTransport>
226 < l o g i s t i c s S e r v i c e P r o v i d e r >OnTheMove L o g i s t i c s
227 </ l o g i s t i c s S e r v i c e P r o v i d e r >
228 </stage>
229 </ t r a n s p o r t S t a g e s >
230
231 <order ingParty>
232 <organiza t ion>Dresden Spare P a r t s</organiza t ion>
233 <address>Teegasse 83 , 01159 Dresden , Germany
234 </address>
235 <contactPerson>Herbert Hase</contactPerson>
236 <phone>+49 (3 5 1) 456−7451</phone>
237 <email>H. Hase@spare−parts−dd . de
238 </email>
239 <www>www. spare−parts−dd . de</www>

206 WS-Agreement SLA Document

240 </order ingParty>
241
242 < l o g i s t i c s S e r v i c e P r o v i d e r s >
243 < l o g i s t i c s S e r v i c e P r o v i d e r >
244 <organiza t ion>OnTheMove L o g i s t i c s </organiza t ion>
245 <address>3672 F i f t h Avenue , New York , NY 10028 ,

USA
246 </address>
247 <contactPerson>Jorge Smith</contactPerson>
248 <phone>+1 212 457 5842</phone>
249 <email> J . Smith@onthemove− l o g i s t i c s . com
250 </email>
251 <www>www. onthemove− l o g i s t i c s . com
252 </www>
253 </ l o g i s t i c s S e r v i c e P r o v i d e r >
254 </ l o g i s t i c s S e r v i c e P r o v i d e r s >
255
256 <usdl :productData>
257 <productID>AU−2839</productID>
258 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
259 </usdl:natureOfCargo>
260 < u s d l : f r e i g h t U n i t >
261 </ u s d l : f r e i g h t U n i t >
262 <numberOfFreightUnits> 0 . 0 </numberOfFreightUnits>
263 <usdl:valueOfGoods>5546 .0</usdl:valueOfGoods>
264 <usdl : currency >EURO</usdl : currency >
265 < u s d l : t o t a l W e i g h t >600 .0</ u s d l : t o t a l W e i g h t >
266 <usdl:weightUOM>kg</usdl:weightUOM>
267 <usdl : tota lVolume> 6 . 0 </usdl : tota lVolume>
268 <usdl:volumeUOM>m3</usdl:volumeUOM>
269 <regula toryInformat ion > h t t p : //www. spare−parts−dd .

de/regInfo . pdf
270 </regula toryInformat ion >
271 <items>
272 <usdl : i t em>
273 <itemID>R1</itemID>
274 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
275 </usdl:natureOfCargo>
276 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
277 <p i e c e s > 1 . 0 </p i e c e s >
278 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
279 <volume> 1 . 0 </volume>
280 <usdl : tota lVolume> 6 . 0 </usdl : tota lVolume>
281 <usdl:volumeUOM>m3</usdl:volumeUOM>
282 < u s d l : t o t a l W e i g h t >600 .0</ u s d l : t o t a l W e i g h t >
283 <usdl:weightUOM>kg</usdl:weightUOM>
284 <usdl:valueOfGoods>5546 .0</usdl:valueOfGoods>
285 <usdl : currency>EURO</usdl : currency >
286 <regula toryInformat ion >

207

287 h t t p : //www. spare−parts−dd . de/regInfo . pdf
288 </regula toryInformat ion >
289 </usdl : i t em>
290
291 <usdl : i t em>
292 <itemID>R2</itemID>
293 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
294 </usdl:natureOfCargo>
295 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
296 <p i e c e s > 1 . 0 </p i e c e s >
297 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
298 <volume> 1 . 0 </volume>
299 <usdl : tota lVolume> 1 . 0 </usdl : tota lVolume>
300 <usdl:volumeUOM>cm3</usdl:volumeUOM>
301 < u s d l : t o t a l W e i g h t >1000 .0</ u s d l : t o t a l W e i g h t >
302 <usdl:weightUOM>kg</usdl:weightUOM>
303 <usdl:valueOfGoods> 0 . 0 </usdl:valueOfGoods>
304 <usdl : currency>USD</usdl : currency >
305 <regula toryInformat ion ></regula toryInformat ion >
306 </usdl : i t em>
307
308 <usdl : i t em>
309 <itemID>R3</itemID>
310 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
311 </usdl:natureOfCargo>
312 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
313 <p i e c e s > 1 . 0 </p i e c e s >
314 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
315 <volume> 1 . 0 </volume>
316 <usdl : tota lVolume> 1 . 0 </usdl : tota lVolume>
317 <usdl:volumeUOM>cm3</usdl:volumeUOM>
318 < u s d l : t o t a l W e i g h t > 0 . 0 </ u s d l : t o t a l W e i g h t >
319 <usdl:weightUOM>kg</usdl:weightUOM>
320 <usdl:valueOfGoods> 0 . 0 </usdl:valueOfGoods>
321 <usdl : currency>USD</usdl : currency >
322 <regula toryInformat ion ></regula toryInformat ion >
323 </usdl : i t em>
324
325 <usdl : i t em>
326 <itemID>R4</itemID>
327 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
328 </usdl:natureOfCargo>
329 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
330 <p i e c e s > 1 . 0 </p i e c e s >
331 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
332 <volume> 1 . 0 </volume>
333 <usdl : tota lVolume> 1 . 0 </usdl : tota lVolume>
334 <usdl:volumeUOM>cm3</usdl:volumeUOM>
335 < u s d l : t o t a l W e i g h t > 0 . 0 </ u s d l : t o t a l W e i g h t >

208 WS-Agreement SLA Document

336 <usdl:weightUOM>kg</usdl:weightUOM>
337 <usdl:valueOfGoods> 0 . 0 </usdl:valueOfGoods>
338 <usdl : currency>USD</usdl : currency >
339 <regula toryInformat ion ></regula toryInformat ion >
340 </usdl : i t em>
341
342 <usdl : i t em>
343 <itemID>R5</itemID>
344 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
345 </usdl:natureOfCargo>
346 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
347 <p i e c e s > 1 . 0 </p i e c e s >
348 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
349 <volume> 1 . 0 </volume>
350 <usdl : tota lVolume> 1 . 0 </usdl : tota lVolume>
351 <usdl:volumeUOM>cm3</usdl:volumeUOM>
352 < u s d l : t o t a l W e i g h t > 0 . 0 </ u s d l : t o t a l W e i g h t >
353 <usdl:weightUOM>kg</usdl:weightUOM>
354 <usdl:valueOfGoods> 0 . 0 </usdl:valueOfGoods>
355 <usdl : currency>USD</usdl : currency >
356 <regula toryInformat ion ></regula toryInformat ion >
357 </usdl : i t em>
358
359 <usdl : i t em>
360 <itemID>R6</itemID>
361 <usdl:natureOfCargo>General cargo , P a l l e t i z e d
362 </usdl:natureOfCargo>
363 < d e s c r i p t i o n >spare p a r t s</ d e s c r i p t i o n >
364 <p i e c e s > 1 . 0 </p i e c e s >
365 < u s d l : p i e c e s U n i t > e u r o p a l l e t </ u s d l : p i e c e s U n i t >
366 <volume> 1 . 0 </volume>
367 <usdl : tota lVolume> 1 . 0 </usdl : tota lVolume>
368 <usdl:volumeUOM>cm3</usdl:volumeUOM>
369 < u s d l : t o t a l W e i g h t > 0 . 0 </ u s d l : t o t a l W e i g h t >
370 <usdl:weightUOM>kg</usdl:weightUOM>
371 <usdl:valueOfGoods> 0 . 0 </usdl:valueOfGoods>
372 <usdl : currency>USD</usdl : currency >
373 <regula toryInformat ion ></regula toryInformat ion >
374 </usdl : i t em>
375 </items>
376 </usdl :productData>
377 </ t r a n s p o r t S e r v i c e >
378 </ u s d l : l o g i s t i c s S e r v i c e >
379 </texoag:ServiceDescr ipt ionTerm>
380
381 < !−− WSAG−S e r v i c e _ R e f e r e n c e S e c t i o n−−>
382 < t e x o a g : S e r v i c e R e f e r e n c e ServiceName="OTMLTruckDE"
383 Name=" OTMLTruckDEReference " />
384

209

385 < !−− WSAG−S e r v i c e _ P r o p e r t i e s S e c t i o n−−>
386 < t e x o a g : S e r v i c e P r o p e r t i e s ServiceName="OTMLTruckDE"
387 Name=" OTMLTruckDEProperties ">
388 <wsag:Var iableSet>
389 <wsag:Variable Name=" temperature " Metric=" ◦C">
390 <wsag:Location />
391 </wsag:Variable>
392 </wsag:Var iableSet>
393 </ t e x o a g : S e r v i c e P r o p e r t i e s >
394
395 < !−− WSAG Terms_Guarantee S e c t i o n −−>
396 < !−− WSAG SLOs from USDL S e r v i c e L e v e l O b j e c t i v e s −−>
397 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
398 Name=" temperature_Guarantee ">
399 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e SLOID="

SLOID_temperature_Guarantee " r e n e g o t i a t a b l e =" t rue "
>

400 <monitoringURI></monitoringURI>
401 <wsag:KPITarget>
402 <wsag:KPIName>temperature</wsag:KPIName>
403 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
404 < t e x o a g : o p e r a t o r > l t e </t e x o a g : o p e r a t o r >
405 <texoag :va lue x s i : t y p e =" xs :double "> 1 5 . 0 </

texoag :va lue>
406 </wsag:Target>
407 </wsag:KPITarget>
408 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
409 </texoag:GuaranteeTerm>
410
411 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
412 Name=" OTMLTruckDE_startLocation_Guarantee ">
413 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e SLOID="

SLOID_OTMLTruckDE_startLocation " r e n e g o t i a t a b l e ="
t rue ">

414 <wsag:KPITarget>
415 <wsag:KPIName> s t a r t L o c a t i o n </wsag:KPIName>
416 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
417 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
418 <texoag :va lue x s i : t y p e =" x s : s t r i n g ">Bahnhofstr . 85 ,
419 01269 Dresden , Saxony , Germany</texoag :va lue>
420 </wsag:Target>
421 </wsag:KPITarget>
422 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
423 </texoag:GuaranteeTerm>
424
425 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
426 Name=" OTMLTruckDE_startTime_Guarantee ">

210 WS-Agreement SLA Document

427 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e SLOID="
SLOID_OTMLTruckDE_startTime " r e n e g o t i a t a b l e =" t rue "
>

428 <wsag:KPITarget>
429 <wsag:KPIName>star tTime</wsag:KPIName>
430 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
431 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
432 <texoag :va lue x s i : t y p e =" x s : s t r i n g ">
433 2009−11−10 T 0 6 : 0 0 : 0 0 +0100/2009−11−10 T 0 8 : 0 0 : 0 0 +0100

</texoag :va lue>
434 </wsag:Target>
435 </wsag:KPITarget>
436 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
437 </texoag:GuaranteeTerm>
438
439 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
440 Name=" OTMLTruckDE_inputResource_R1_Guarantee ">
441 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
442 SLOID=" SLOID_OTMLTruckDE_inputResource_R1 "

r e n e g o t i a t a b l e =" t rue ">
443 <wsag:KPITarget>
444 <wsag:KPIName>inputResource_R1
445 </wsag:KPIName>
446 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
447 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
448 <texoag :va lue x s i : t y p e =" usdl :PortType ">
449 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
450 <usdl:resourceName></usdl:resourceName>
451 <resourceID>R1</resourceID>
452 </texoag :va lue>
453 </wsag:Target>
454 </wsag:KPITarget>
455 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
456 </texoag:GuaranteeTerm>
457
458 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
459 Name=" OTMLTruckDE_inputResource_R2_Guarantee ">
460 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
461 SLOID=" SLOID_OTMLTruckDE_inputResource_R2 "

r e n e g o t i a t a b l e =" t rue ">
462 <wsag:KPITarget>
463 <wsag:KPIName>inputResource_R2
464 </wsag:KPIName>
465 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
466 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
467 <texoag :va lue x s i : t y p e =" usdl :PortType ">
468 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>

211

469 <usdl:resourceName></usdl:resourceName>
470 <resourceID>R2</resourceID>
471 </texoag :va lue>
472 </wsag:Target>
473 </wsag:KPITarget>
474 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
475 </texoag:GuaranteeTerm>
476
477 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
478 Name=" OTMLTruckDE_inputResource_R3_Guarantee ">
479 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
480 SLOID=" SLOID_OTMLTruckDE_inputResource_R3 "

r e n e g o t i a t a b l e =" t rue ">
481 <wsag:KPITarget>
482 <wsag:KPIName>inputResource_R3
483 </wsag:KPIName>
484 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
485 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
486 <texoag :va lue x s i : t y p e =" usdl :PortType ">
487 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
488 <usdl:resourceName></usdl:resourceName>
489 <resourceID>R3</resourceID>
490 </texoag :va lue>
491 </wsag:Target>
492 </wsag:KPITarget>
493 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
494 </texoag:GuaranteeTerm>
495
496 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
497 Name=" OTMLTruckDE_inputResource_R4_Guarantee ">
498 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
499 SLOID=" SLOID_OTMLTruckDE_inputResource_R4 "

r e n e g o t i a t a b l e =" t rue ">
500 <wsag:KPITarget>
501 <wsag:KPIName>inputResource_R4
502 </wsag:KPIName>
503 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
504 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
505 <texoag :va lue x s i : t y p e =" usdl :PortType ">
506 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
507 <usdl:resourceName></usdl:resourceName>
508 <resourceID>R4</resourceID>
509 </texoag :va lue>
510 </wsag:Target>
511 </wsag:KPITarget>
512 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
513 </texoag:GuaranteeTerm>

212 WS-Agreement SLA Document

514
515 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
516 Name=" OTMLTruckDE_inputResource_R5_Guarantee ">
517 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
518 SLOID=" SLOID_OTMLTruckDE_inputResource_R5 "

r e n e g o t i a t a b l e =" t rue ">
519 <wsag:KPITarget>
520 <wsag:KPIName>inputResource_R5
521 </wsag:KPIName>
522 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
523 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
524 <texoag :va lue x s i : t y p e =" usdl :PortType ">
525 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
526 <usdl:resourceName></usdl:resourceName>
527 <resourceID>R5</resourceID>
528 </texoag :va lue>
529 </wsag:Target>
530 </wsag:KPITarget>
531 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
532 </texoag:GuaranteeTerm>
533
534 <texoag:GuaranteeTerm Obligated=" ServiceConsumer "
535 Name=" OTMLTruckDE_inputResource_R6_Guarantee ">
536 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
537 SLOID=" SLOID_OTMLTruckDE_inputResource_R6 "

r e n e g o t i a t a b l e =" t rue ">
538 <wsag:KPITarget>
539 <wsag:KPIName>inputResource_R6
540 </wsag:KPIName>
541 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
542 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
543 <texoag :va lue x s i : t y p e =" usdl :PortType ">
544 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
545 <usdl:resourceName></usdl:resourceName>
546 <resourceID>R6</resourceID>
547 </texoag :va lue>
548 </wsag:Target>
549 </wsag:KPITarget>
550 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
551 </texoag:GuaranteeTerm>
552
553 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
554 Name=" OTMLTruckDE_endLocation_Guarantee ">
555 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e SLOID="

SLOID_OTMLTruckDE_endLocation " r e n e g o t i a t a b l e ="
t rue ">

556 <wsag:KPITarget>

213

557 <wsag:KPIName>endLocation</wsag:KPIName>
558 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
559 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
560 <texoag :va lue x s i : t y p e =" x s : s t r i n g ">Gutestr . 76 ,

20095
561 Hamburg , Germany</texoag :va lue>
562 </wsag:Target>
563 </wsag:KPITarget>
564 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
565 </texoag:GuaranteeTerm>
566
567 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
568 Name=" OTMLTruckDE_endTime_Guarantee ">
569 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e SLOID="

SLOID_OTMLTruckDE_endTime " r e n e g o t i a t a b l e =" t rue ">
570 <wsag:KPITarget>
571 <wsag:KPIName>endTime</wsag:KPIName>
572 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
573 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
574 <texoag :va lue x s i : t y p e =" x s : s t r i n g ">
575 2009−11−10 T 1 2 : 0 0 : 0 0 +0100/2009−11−10 T 1 4 : 0 0 : 0 0 +0100

</texoag :va lue>
576 </wsag:Target>
577 </wsag:KPITarget>
578 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
579 </texoag:GuaranteeTerm>
580
581 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
582 Name=" OTMLTruckDE_outputResource_R1_Guarantee ">
583 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
584 SLOID=" SLOID_OTMLTruckDE_outputResource_R1 "

r e n e g o t i a t a b l e =" f a l s e ">
585 <wsag:KPITarget>
586 <wsag:KPIName>outputResource_R1
587 </wsag:KPIName>
588 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
589 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
590 <texoag :va lue x s i : t y p e =" usdl :PortType ">
591 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
592 <usdl:resourceName></usdl:resourceName>
593 <resourceID>R1</resourceID>
594 </texoag :va lue>
595 </wsag:Target>
596 </wsag:KPITarget>
597 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
598 </texoag:GuaranteeTerm>
599
600 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "

214 WS-Agreement SLA Document

601 Name=" OTMLTruckDE_outputResource_R2_Guarantee ">
602 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
603 SLOID=" SLOID_OTMLTruckDE_outputResource_R2 "

r e n e g o t i a t a b l e =" f a l s e ">
604 <wsag:KPITarget>
605 <wsag:KPIName>outputResource_R2
606 </wsag:KPIName>
607 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
608 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
609 <texoag :va lue x s i : t y p e =" usdl :PortType ">
610 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
611 <usdl:resourceName></usdl:resourceName>
612 <resourceID>R2</resourceID>
613 </texoag :va lue>
614 </wsag:Target>
615 </wsag:KPITarget>
616 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
617 </texoag:GuaranteeTerm>
618
619 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
620 Name=" OTMLTruckDE_outputResource_R3_Guarantee "

r e n e g o t i a t a b l e =" f a l s e ">
621 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
622 SLOID=" SLOID_OTMLTruckDE_outputResource_R3 ">
623 <wsag:KPITarget>
624 <wsag:KPIName>outputResource_R3
625 </wsag:KPIName>
626 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
627 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
628 <texoag :va lue x s i : t y p e =" usdl :PortType ">
629 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
630 <usdl:resourceName></usdl:resourceName>
631 <resourceID>R3</resourceID>
632 </texoag :va lue>
633 </wsag:Target>
634 </wsag:KPITarget>
635 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
636 </texoag:GuaranteeTerm>
637
638 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
639 Name=" OTMLTruckDE_outputResource_R4_Guarantee ">
640 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
641 SLOID=" SLOID_OTMLTruckDE_outputResource_R4 "

r e n e g o t i a t a b l e =" f a l s e ">
642 <wsag:KPITarget>
643 <wsag:KPIName>outputResource_R4
644 </wsag:KPIName>

215

645 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
646 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
647 <texoag :va lue x s i : t y p e =" usdl :PortType ">
648 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
649 <usdl:resourceName></usdl:resourceName>
650 <resourceID>R4</resourceID>
651 </texoag :va lue>
652 </wsag:Target>
653 </wsag:KPITarget>
654 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
655 </texoag:GuaranteeTerm>
656
657 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
658 Name=" OTMLTruckDE_outputResource_R5_Guarantee ">
659 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
660 SLOID=" SLOID_OTMLTruckDE_outputResource_R5 "

r e n e g o t i a t a b l e =" f a l s e ">
661 <wsag:KPITarget>
662 <wsag:KPIName>outputResource_R5
663 </wsag:KPIName>
664 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
665 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
666 <texoag :va lue x s i : t y p e =" usdl :PortType ">
667 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
668 <usdl:resourceName></usdl:resourceName>
669 <resourceID>R5</resourceID>
670 </texoag :va lue>
671 </wsag:Target>
672 </wsag:KPITarget>
673 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
674 </texoag:GuaranteeTerm>
675
676 <texoag:GuaranteeTerm Obligated=" Serv iceProvider "
677 Name=" OTMLTruckDE_outputResource_R6_Guarantee "

r e n e g o t i a t a b l e =" f a l s e ">
678 < t e x o a g : S e r v i c e L e v e l O b j e c t i v e
679 SLOID=" SLOID_OTMLTruckDE_outputResource_R6 ">
680 <wsag:KPITarget>
681 <wsag:KPIName>outputResource_R6
682 </wsag:KPIName>
683 <wsag:Target x s i : t y p e =" texoag:S impleTarget ">
684 < t e x o a g : o p e r a t o r >eq</t e x o a g : o p e r a t o r >
685 <texoag :va lue x s i : t y p e =" usdl :PortType ">
686 <usdl : resourceType>Auto spare p a r t s</

usdl : resourceType>
687 <usdl:resourceName></usdl:resourceName>
688 <resourceID>R6</resourceID>

216 WS-Agreement SLA Document

689 </texoag :va lue>
690 </wsag:Target>
691 </wsag:KPITarget>
692 </ t e x o a g : S e r v i c e L e v e l O b j e c t i v e >
693 </texoag:GuaranteeTerm>
694 </ t e x o a g : A l l >
695 </texoag:Terms>
696 < t e x o a g : C r e a t i o n C o n s t r a i n t s />
697 </texoag:Template>

Listing B.1: SLA template document for logistics service

C
Logistics Scenario Evaluation

Documents

Workflow paths

Based on the workflow of the logistics scenario, the following paths were
created:

Path 1: AutoTrans DD – WarehouseDD – Truck DE – Warehouse HH – HH
Local – Receive Goods – Prepare Shipment – Export Handling – Security
Check – Ship Goods – Sea Shipping DE-US – OTML Warehouse NYC –
Eastern Truck US

Path 2: AutoTrans DD – WarehouseDD – Truck DE – Warehouse HH –
HH Star Truck – Receive Goods – Prepare Shipment – Export Handling –
Security Check – Ship Goods – Sea Shipping DE-US – OTML Warehouse
NYC – Eastern Truck US

Path 3: AutoTrans DD – WarehouseDD – Truck DE – Warehouse HH –
Truck HH – Receive Goods – Prepare Shipment – Export Handling – Secu-
rity Check – Ship Goods – Sea Shipping DE-US – OTML Warehouse NYC –
Eastern Truck US

Path 4: Truck DD – WarehouseDD – Truck DE – Warehouse HH – HH Local
– Receive Goods – Prepare Shipment – Export Handling – Security Check
– Ship Goods – Sea Shipping DE-US – OTML Warehouse NYC – Eastern
Truck US

218 Logistics Scenario Evaluation Documents

Path 5: Truck DD – WarehouseDD – Truck DE – Warehouse HH – HH Star
Truck – Receive Goods – Prepare Shipment – Export Handling – Security
Check – Ship Goods – Sea Shipping DE-US – OTML Warehouse NYC –
Eastern Truck US

Path 6: Truck DD – WarehouseDD – Truck DE – Warehouse HH – Truck HH
– Receive Goods – Prepare Shipment – Export Handling – Security Check
– Ship Goods – Sea Shipping DE-US – OTML Warehouse NYC – Eastern
Truck US

Dependency model

1 <?xml version=" 1 . 0 " encoding=" ASCII " ?>
2 <depend:DependencyModel xmi :vers ion=" 2 . 0 " xmlns:xmi="

h t t p : //www. omg . org/XMI" xmlns :xs i=" h t t p : //www. w3 . org
/2001/XMLSchema−i n s t a n c e " xmlns:depend=" net . texo . i s e /
dependency " xmlns:resourceDependency=" net . texo . i s e /
depencency . resource " xmlns:timeDependency=" net . texo .
i s e /depencency . time " id="DEP−MODEL_1274348438937 "
compositeServiceKey=" OTMLTransWorld_H378G8329−J378−9
U47−2ZU3−U378ZE8329EU " compositeServiceAgreementId="
OTMLTransWorld_H378G8329−J378−9U47−2ZU3−
U378ZE8329EU_SLA17 ">

3 < h a s S e r v i c e E n t i t i e s serviceName="OTML TransWorld "
serviceKey=" OTMLTransWorld_H378G8329−J378−9U47−2ZU3−
U378ZE8329EU " provider=" Z283JD392−F738−8Z83−23JE−374
ZE278ZUE23 " s l a I d =" OTMLTransWorld_H378G8329−J378−9
U47−2ZU3−U378ZE8329EU_SLA17 " isDependent="//
@hasDependencies . 1 9 //@hasDependencies . 3 8 "
isAntecedent="//@hasDependencies . 1 7 //
@hasDependencies . 1 8 //@hasDependencies . 3 7 //
@hasDependencies . 3 9 "/>

4 < h a s S e r v i c e E n t i t i e s serviceName=" AutoTrans DD"
serviceKey=" AutoTrans DD_Z3734ZE8−H372−5Z83−23JE
−4849H3892G32 " provider="D0R7G6U9−F738−8Z83−23JE−45
G738625B64 " s l a I d =" AutoTrans DD_Z3734ZE8−H372−5Z83
−23JE−4849H3892G32_SLA6 " isDependent="//
@hasDependencies . 1 7 //@hasDependencies . 3 7 "
isAntecedent="//@hasDependencies . 0 //
@hasDependencies . 2 0 "/>

5 < h a s S e r v i c e E n t i t i e s serviceName=" Warehouse DD"
serviceKey=" Warehouse Dresden_G782T293−U287−IE828−
K738H−341ER278RTW23" provider="H8ZSH8Z6−J782−U73H8
−53JE−341ER278RTW23" s l a I d =" Warehouse
Dresden_G782T293−U287−IE828−K738H−341
ER278RTW23_SLA15 " isDependent="//@hasDependencies . 0
//@hasDependencies . 1 6 //@hasDependencies . 2 0 //

219

@hasDependencies . 3 6 " isAntecedent="//
@hasDependencies . 1 //@hasDependencies . 2 1 "/>

6 < h a s S e r v i c e E n t i t i e s serviceName=" Truck DE" serviceKey="
OTML Truck DE_H738T378−U323−83H3−83GZ−839U348E8329 "
provider=" Z283JD392−F738−8Z83−23JE−374ZE278ZUE23 "
s l a I d ="OTML Truck DE_H738T378−U323−83H3−83GZ−839
U348E8329_SLA9 " isDependent="//@hasDependencies . 1 //
@hasDependencies . 2 1 " isAntecedent="//
@hasDependencies . 2 //@hasDependencies . 2 2 "/>

7 < h a s S e r v i c e E n t i t i e s serviceName=" Warehouse HH"
serviceKey="OTML Warehouse Hamburg_H837Z3782−I839−3
Z734−Z378−374ZE278ZUE23 " provider=" Z283JD392−F738−8
Z83−23JE−374ZE278ZUE23 " s l a I d ="OTML Warehouse
Hamburg_H837Z3782−I839−3Z734−Z378−374
ZE278ZUE23_SLA16 " isDependent="//@hasDependencies . 2
//@hasDependencies . 2 2 " isAntecedent="//
@hasDependencies . 3 //@hasDependencies . 1 2 //
@hasDependencies . 1 4 //@hasDependencies . 2 3 //
@hasDependencies . 3 2 //@hasDependencies . 3 4 "/>

8 < h a s S e r v i c e E n t i t i e s serviceName="HH Local " serviceKey="
HH Local_G637Z337−J3784−I384−H373−74Z392N328 "
provider=" D323G344−H324−64ZH−84Z3−374Z392N328 " s l a I d
="HH Local_G637Z337−J3784−I384−H373−74Z392N328_SLA11
" isDependent="//@hasDependencies . 3 //
@hasDependencies . 2 3 " isAntecedent="//
@hasDependencies . 4 //@hasDependencies . 2 4 "/>

9 < h a s S e r v i c e E n t i t i e s serviceName=" Receive Goods "
serviceKey=" WarehousePortHH_ReceiveGoods_RG347−221PJ
" provider=" " s l a I d ="
WarehousePortHH_ReceiveGoods_RG347−221PJ_SLA14 "
isDependent="//@hasDependencies . 4 //@hasDependencies
. 1 3 //@hasDependencies . 1 5 //@hasDependencies . 2 4 //
@hasDependencies . 3 3 //@hasDependencies . 3 5 "
isAntecedent="//@hasDependencies . 5 //
@hasDependencies . 2 5 "/>

10 < h a s S e r v i c e E n t i t i e s serviceName=" Prepare Shipment "
serviceKey=" WarehousePortHH_PrepareShipment_PS347
−221PJ " provider=" " s l a I d ="
WarehousePortHH_PrepareShipment_PS347−221PJ_SLA3 "
isDependent="//@hasDependencies . 5 //@hasDependencies
. 2 5 " isAntecedent="//@hasDependencies . 6 //
@hasDependencies . 2 6 "/>

11 < h a s S e r v i c e E n t i t i e s serviceName=" Export Handling "
serviceKey=" WarehousePortHH_ExportHandling_EH347−221
PJ " provider=" " s l a I d ="
WarehousePortHH_ExportHandling_EH347−221PJ_SLA12 "
isDependent="//@hasDependencies . 6 //@hasDependencies
. 2 6 " isAntecedent="//@hasDependencies . 7 //
@hasDependencies . 2 7 "/>

220 Logistics Scenario Evaluation Documents

12 < h a s S e r v i c e E n t i t i e s serviceName=" S e c u r i t y Check "
serviceKey=" WarehousePortHH_SecurityCheck_SC347−221
PJ " provider=" " s l a I d ="
WarehousePortHH_SecurityCheck_SC347−221PJ_SLA5 "
isDependent="//@hasDependencies . 7 //@hasDependencies
. 2 7 " isAntecedent="//@hasDependencies . 8 //
@hasDependencies . 2 8 "/>

13 < h a s S e r v i c e E n t i t i e s serviceName=" Ship Goods " serviceKey
=" WarehousePortHH_ShipGoods_SG347−221PJ " provider=" "

s l a I d =" WarehousePortHH_ShipGoods_SG347−221PJ_SLA10 "
isDependent="//@hasDependencies . 8 //

@hasDependencies . 2 8 " isAntecedent="//
@hasDependencies . 9 //@hasDependencies . 2 9 "/>

14 < h a s S e r v i c e E n t i t i e s serviceName=" Sea Shipping DE−US"
serviceKey=" SeaShippingDE−US_T736H367−F738−7G37−83N4
−748H349V3428 " provider=" U473J482−F738−7G37−83N4−748
H349V3428 " s l a I d =" SeaShippingDE−US_T736H367−F738−7
G37−83N4−748H349V3428_SLA8 " isDependent="//
@hasDependencies . 9 //@hasDependencies . 2 9 "
isAntecedent="//@hasDependencies . 1 0 //
@hasDependencies . 3 0 "/>

15 < h a s S e r v i c e E n t i t i e s serviceName="OTML Warehouse NYC"
serviceKey="OTMLWarehouseNYC_L7838A748−F738−8Z83−23
JE−374ZE278ZUE23 " provider=" Z283JD392−F738−8Z83−23JE
−374ZE278ZUE23 " s l a I d ="OTMLWarehouseNYC_L7838A748−
F738−8Z83−23JE−374ZE278ZUE23_SLA4 " isDependent="//
@hasDependencies . 1 0 //@hasDependencies . 3 0 "
isAntecedent="//@hasDependencies . 1 1 //
@hasDependencies . 3 1 "/>

16 < h a s S e r v i c e E n t i t i e s serviceName=" Eastern Truck US"
serviceKey=" Eastern Truck US_H0T34822−U374−84Z7−23JE
−45G738625B64 " provider=" T6Z34822−U374−8H38−23JE−45
H733625B64 " s l a I d =" Eastern Truck US_H0T34822−U374−84
Z7−23JE−45G738625B64_SLA1 " isDependent="//
@hasDependencies . 1 1 //@hasDependencies . 3 1 "
isAntecedent="//@hasDependencies . 1 9 //
@hasDependencies . 3 8 "/>

17 < h a s S e r v i c e E n t i t i e s serviceName="HH S t a r Truck "
serviceKey="HH S t a r Truck_H378U378−J378−K329−U384−
H273WU324" provider=" U378H834−N393−8H473−H382−
H273WU324" s l a I d ="HH S t a r Truck_H378U378−J378−K329−
U384−H273WU324_SLA2" isDependent="//@hasDependencies
. 1 2 //@hasDependencies . 3 2 " isAntecedent="//
@hasDependencies . 1 3 //@hasDependencies . 3 3 "/>

18 < h a s S e r v i c e E n t i t i e s serviceName=" Truck HH" serviceKey="
Truck HH_T637Z378−H374−9H73−67ZE−374ZE278ZUE23 "
provider=" H637Z3942−U238−7W63−73ZE−374ZE278ZUE23 "
s l a I d =" Truck HH_T637Z378−H374−9H73−67ZE−374
ZE278ZUE23_SLA13 " isDependent="//@hasDependencies . 1 4

221

//@hasDependencies . 3 4 " isAntecedent="//
@hasDependencies . 1 5 //@hasDependencies . 3 5 "/>

19 < h a s S e r v i c e E n t i t i e s serviceName=" Truck DD" serviceKey="
Truck DD_G273Z389−U2833−J238G3−I493 −341ER278RTW23"
provider="H8ZSH8Z6−J782−U73H8−53JE−341ER278RTW23"
s l a I d =" Truck DD_G273Z389−U2833−J238G3−I493 −341
ER278RTW23_SLA7" isDependent="//@hasDependencies . 1 8
//@hasDependencies . 3 9 " isAntecedent="//
@hasDependencies . 1 6 //@hasDependencies . 3 6 "/>

20 <hasDependencies x s i : t y p e ="
resourceDependency:ResourceDependency " id="
DEP_4654816320257276500 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

21 <resource IDLis t>R1</resource IDLis t >
22 <resource IDLis t>R2</resource IDLis t >
23 <resource IDLis t>R3</resource IDLis t >
24 </hasDependencies>
25 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_2809616772717469205 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

26 <resource IDLis t>R1</resource IDLis t >
27 <resource IDLis t>R2</resource IDLis t >
28 <resource IDLis t>R3</resource IDLis t >
29 <resource IDLis t>R4</resource IDLis t >
30 <resource IDLis t>R5</resource IDLis t >
31 <resource IDLis t>R6</resource IDLis t >
32 </hasDependencies>
33 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_6890171781742065052 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 3 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

34 <resource IDLis t>R1</resource IDLis t >
35 <resource IDLis t>R2</resource IDLis t >
36 <resource IDLis t>R3</resource IDLis t >
37 <resource IDLis t>R4</resource IDLis t >
38 <resource IDLis t>R5</resource IDLis t >
39 <resource IDLis t>R6</resource IDLis t >
40 </hasDependencies>

222 Logistics Scenario Evaluation Documents

41 <hasDependencies x s i : t y p e ="
resourceDependency:ResourceDependency " id="
DEP_8054735613852779508 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

42 <resource IDLis t>R5</resource IDLis t >
43 <resource IDLis t>R6</resource IDLis t >
44 </hasDependencies>
45 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_8843868546912478521 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

46 <resource IDLis t>R5</resource IDLis t >
47 <resource IDLis t>R6</resource IDLis t >
48 </hasDependencies>
49 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_7457589716723400975 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 7 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 6 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

50 <resource IDLis t>R1</resource IDLis t >
51 <resource IDLis t>R2</resource IDLis t >
52 <resource IDLis t>R3</resource IDLis t >
53 <resource IDLis t>R4</resource IDLis t >
54 <resource IDLis t>R5</resource IDLis t >
55 <resource IDLis t>R6</resource IDLis t >
56 </hasDependencies>
57 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_908671097329286228 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 7 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

58 <resource IDLis t>R1</resource IDLis t >
59 <resource IDLis t>R2</resource IDLis t >
60 <resource IDLis t>R3</resource IDLis t >
61 <resource IDLis t>R4</resource IDLis t >
62 <resource IDLis t>R5</resource IDLis t >
63 <resource IDLis t>R6</resource IDLis t >
64 </hasDependencies>

223

65 <hasDependencies x s i : t y p e ="
resourceDependency:ResourceDependency " id="
DEP_1156137052082001816 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 9 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

66 <resource IDLis t>R1</resource IDLis t >
67 <resource IDLis t>R2</resource IDLis t >
68 <resource IDLis t>R3</resource IDLis t >
69 <resource IDLis t>R4</resource IDLis t >
70 <resource IDLis t>R5</resource IDLis t >
71 <resource IDLis t>R6</resource IDLis t >
72 </hasDependencies>
73 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5947715936416711726 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 9 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

74 <resource IDLis t>R1</resource IDLis t >
75 <resource IDLis t>R2</resource IDLis t >
76 <resource IDLis t>R3</resource IDLis t >
77 <resource IDLis t>R4</resource IDLis t >
78 <resource IDLis t>R5</resource IDLis t >
79 <resource IDLis t>R6</resource IDLis t >
80 </hasDependencies>
81 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_7864414597975473277 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 0 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

82 <resource IDLis t>R1</resource IDLis t >
83 <resource IDLis t>R2</resource IDLis t >
84 <resource IDLis t>R3</resource IDLis t >
85 <resource IDLis t>R4</resource IDLis t >
86 <resource IDLis t>R5</resource IDLis t >
87 <resource IDLis t>R6</resource IDLis t >
88 </hasDependencies>
89 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_1837412450888701281 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

224 Logistics Scenario Evaluation Documents

90 <resource IDLis t>R1</resource IDLis t >
91 <resource IDLis t>R2</resource IDLis t >
92 <resource IDLis t>R3</resource IDLis t >
93 <resource IDLis t>R4</resource IDLis t >
94 <resource IDLis t>R5</resource IDLis t >
95 <resource IDLis t>R6</resource IDLis t >
96 </hasDependencies>
97 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_4208444788860258083 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

98 <resource IDLis t>R1</resource IDLis t >
99 <resource IDLis t>R2</resource IDLis t >

100 <resource IDLis t>R3</resource IDLis t >
101 <resource IDLis t>R4</resource IDLis t >
102 <resource IDLis t>R5</resource IDLis t >
103 <resource IDLis t>R6</resource IDLis t >
104 </hasDependencies>
105 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_560216919220316170 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

106 <resource IDLis t>R3</resource IDLis t >
107 <resource IDLis t>R4</resource IDLis t >
108 </hasDependencies>
109 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_6808086829702630139 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 4 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

110 <resource IDLis t>R3</resource IDLis t >
111 <resource IDLis t>R4</resource IDLis t >
112 </hasDependencies>
113 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_8589037997630980865 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

114 <resource IDLis t>R1</resource IDLis t >

225

115 <resource IDLis t>R2</resource IDLis t >
116 </hasDependencies>
117 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5658000557955160558 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 5 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

118 <resource IDLis t>R1</resource IDLis t >
119 <resource IDLis t>R2</resource IDLis t >
120 </hasDependencies>
121 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_4550343590911930243 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 6 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

122 <resource IDLis t>R4</resource IDLis t >
123 <resource IDLis t>R5</resource IDLis t >
124 <resource IDLis t>R6</resource IDLis t >
125 </hasDependencies>
126 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_3644406465514665996 " dependentKpiName="
inputResource " antecedentKpiName=" inputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

127 <resource IDLis t>R1</resource IDLis t >
128 <resource IDLis t>R2</resource IDLis t >
129 <resource IDLis t>R3</resource IDLis t >
130 </hasDependencies>
131 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_3420401336548117185 " dependentKpiName="
inputResource " antecedentKpiName=" inputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

132 <resource IDLis t>R4</resource IDLis t >
133 <resource IDLis t>R5</resource IDLis t >
134 <resource IDLis t>R6</resource IDLis t >
135 </hasDependencies>
136 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5921978982428827668 " dependentKpiName="
outputResource " antecedentKpiName=" outputResource "

226 Logistics Scenario Evaluation Documents

dependent="// @ h a s S e r v i c e E n t i t i e s . 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

137 <resource IDLis t>R1</resource IDLis t >
138 <resource IDLis t>R2</resource IDLis t >
139 <resource IDLis t>R3</resource IDLis t >
140 <resource IDLis t>R4</resource IDLis t >
141 <resource IDLis t>R5</resource IDLis t >
142 <resource IDLis t>R6</resource IDLis t >
143 </hasDependencies>
144 <hasDependencies x s i : t y p e ="

timeDependency:TimeDependency " id="
DEP_8683363751178791236 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

145 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_5599405348357593374 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

146 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_489445985970284373 " dependentKpiName=" star tTime "

antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 3 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

147 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_5610421649882518205 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

148 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3085096819141771722 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

149 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_1538628474424631540 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//

227

@ h a s S e r v i c e E n t i t i e s . 7 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 6 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

150 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_9209396800649480176 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 7 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

151 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_8890397700087597467 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 9 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

152 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_6175222539544770722 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 9 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

153 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3054666569836456037 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 0 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

154 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_322242023808470795 " dependentKpiName=" star tTime "

antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 1 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

155 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_2258205153677280023 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

156 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_4286004822163747665 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//

228 Logistics Scenario Evaluation Documents

@ h a s S e r v i c e E n t i t i e s . 1 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

157 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_7558257731186336001 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 4 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

158 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_9030337593121072648 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

159 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_4758728845319329828 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 5 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

160 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_1786128740466725969 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 6 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

161 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_8556964388459659605 " dependentKpiName=" star tTime
" antecedentKpiName=" star tTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " timeOperator=" s t a r t _ t o _ s t a r t "
/>

162 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_6321987276126315834 " dependentKpiName=" endTime "
antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " timeOperator="
f i n i s h _ t o _ f i n i s h "/>

163 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_7743259469322219250 " dependentKpiName=" star tTime
" antecedentKpiName=" star tTime " dependent="//

229

@ h a s S e r v i c e E n t i t i e s . 1 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " timeOperator=" s t a r t _ t o _ s t a r t "
/>

164 </depend:DependencyModel>

Listing C.1: Dependency model for logistics service

D
Health Care Scenario Evaluation

Documents

Workflow paths

Based on the workflow of the healthcare scenario, the following paths were
created:

Path 1: Patient admission – Patient Data collection – Examine blood –
Check examination results – Follow-up treatment determination – Dis-
charge patient

Path 2: Patient admission – Patient Data collection – Examine blood –
Check examination results – Follow-up treatment determination – Create
Report

Path 3: Patient admission – Patient Data collection – Medical record cre-
ation – Patient transport – Expert examination – Patient transport – Check
examination results – Follow-up treatment determination – Discharge pa-
tient

Path 4: Patient admission – Patient Data collection – Medical record cre-
ation – Patient transport – Expert examination – Patient transport – Check
examination results – Follow-up treatment determination – Create Report

Path 5: Patient admission – Patient Data collection – Medical record cre-
ation – Determine medication – Procurement of medication – Give Medi-
cation – Check examination results – Follow-up treatment determination –
Discharge patient

231

Path 6: Patient admission – Patient Data collection – Medical record cre-
ation – Determine medication – Procurement of medication – Give Medi-
cation – Check examination results – Follow-up treatment determination –
Create Report

Path 7: Patient admission – Patient examination – Medical record creation
– Patient transport – Expert examination – Patient transport – Check exam-
ination results – Follow-up treatment determination – Discharge patient

Path 8: Patient admission – Patient examination – Medical record creation
– Patient transport – Expert examination – Patient transport – Check exam-
ination results – Follow-up treatment determination – Create Report

Path 9: Patient admission – Patient examination – Medical record creation
– Determine medication – Procurement of medication – Give Medication
– Check examination results – Follow-up treatment determination – Dis-
charge patient

Path 10: Patient admission – Patient examination – Medical record creation
– Determine medication – Procurement of medication – Give Medication –
Check examination results – Follow-up treatment determination – Create
Report

Dependency model

1 <?xml version=" 1 . 0 " encoding=" ASCII " ?>
2 <depend:DependencyModel xmi :vers ion=" 2 . 0 " xmlns:xmi="

h t t p : //www. omg . org/XMI" xmlns :xs i=" h t t p : //www. w3 . org
/2001/XMLSchema−i n s t a n c e " xmlns:depend=" net . texo . i s e /
dependency " xmlns:resourceDependency=" net . texo . i s e /
depencency . resource " xmlns:timeDependency=" net . texo .
i s e /depencency . time " id="DEP−MODEL_1272351127562 "
compositeServiceKey=" Stat ionaryPatientCheckup_2345−
SD234 " compositeServiceAgreementId="
Stat ionaryPatientCheckup_2345−SD234_SLA16 ">

3 < h a s S e r v i c e E n t i t i e s serviceName=" S t a t i o n a r y P a t i e n t
Checkup " serviceKey=" Stat ionaryPatientCheckup_2345−
SD234 " provider=" VC2235−F55J−PY51 " s l a I d ="
Stat ionaryPatientCheckup_2345−SD234_SLA16 "
isDependent="//@hasDependencies . 1 9 //
@hasDependencies . 3 8 //@hasDependencies . 3 9 "
isAntecedent="//@hasDependencies . 1 8 //
@hasDependencies . 3 7 "/>

4 < h a s S e r v i c e E n t i t i e s serviceName=" P a t i e n t Admission "
serviceKey=" PatientAdmission_98J5−RI57 " provider=" "
s l a I d =" PatientAdmission_98J5−RI57_SLA1 " isDependent=
"//@hasDependencies . 1 8 //@hasDependencies . 3 7 "
isAntecedent="//@hasDependencies . 0 //
@hasDependencies . 1 //@hasDependencies . 6 //

232 Health Care Scenario Evaluation Documents

@hasDependencies . 1 2 //@hasDependencies . 1 6 //
@hasDependencies . 2 0 //@hasDependencies . 3 5 "/>

5 < h a s S e r v i c e E n t i t i e s serviceName=" P a t i e n t Data
C o l l e c t i o n " serviceKey=" PatientDataCollection_PDC7−7
ZI9 " provider=" " s l a I d =" PatientDataCollection_PDC7−7
ZI9_SLA3 " isDependent="//@hasDependencies . 0 //
@hasDependencies . 2 0 " isAntecedent="//
@hasDependencies . 2 //@hasDependencies . 7 //
@hasDependencies . 2 1 //@hasDependencies . 2 6 "/>

6 < h a s S e r v i c e E n t i t i e s serviceName=" Examine Blood "
serviceKey=" ExamineBlood_EB39−TT7P " provider=" "
s l a I d =" ExamineBlood_EB39−TT7P_SLA14 " isDependent="//
@hasDependencies . 1 //@hasDependencies . 2 //
@hasDependencies . 2 1 " isAntecedent="//
@hasDependencies . 3 //@hasDependencies . 2 2 "/>

7 < h a s S e r v i c e E n t i t i e s serviceName=" Check Examination
Resul t s " serviceKey=" CheckExaminationResults_J876−
PWL3" provider=" " s l a I d ="
CheckExaminationResults_J876−PWL3_SLA13" isDependent
="//@hasDependencies . 3 //@hasDependencies . 9 //
@hasDependencies . 1 1 //@hasDependencies . 2 2 //
@hasDependencies . 3 0 //@hasDependencies . 3 4 "
isAntecedent="//@hasDependencies . 2 3 "/>

8 < h a s S e r v i c e E n t i t i e s serviceName=" Follow−up Treatment
Determination " serviceKey=" Follow−
upTreatmentDetermination_FUTD−0815 " provider=" "
s l a I d =" Follow−upTreatmentDetermination_FUTD−0815
_SLA12 " isDependent="//@hasDependencies . 1 0 //
@hasDependencies . 2 3 " isAntecedent="//
@hasDependencies . 4 //@hasDependencies . 5 //
@hasDependencies . 2 4 //@hasDependencies . 2 5 "/>

9 < h a s S e r v i c e E n t i t i e s serviceName=" Discharge P a t i e n t "
serviceKey=" DischargePatient_DP08 −55K9" provider="
HCKP−15" s l a I d =" DischargePatient_DP08 −55K9_SLA6 "
isDependent="//@hasDependencies . 4 //@hasDependencies
. 2 4 " isAntecedent="//@hasDependencies . 3 8 "/>

10 < h a s S e r v i c e E n t i t i e s serviceName=" Create Report "
serviceKey=" ReportCreation_RC38−05L1 " provider="VC1C
−T51L−40OR" s l a I d =" ReportCreation_RC38−05L1_SLA4 "
isDependent="//@hasDependencies . 5 //@hasDependencies
. 2 5 " isAntecedent="//@hasDependencies . 1 9 //
@hasDependencies . 3 9 "/>

11 < h a s S e r v i c e E n t i t i e s serviceName=" Medical Record
Creat ion " serviceKey=" MedicalRecordCreation_MRC1
−9128 " provider="HCKP−8" s l a I d ="
MedicalRecordCreation_MRC1−9128_SLA8 " isDependent="
//@hasDependencies . 6 //@hasDependencies . 7 //
@hasDependencies . 1 7 //@hasDependencies . 2 6 //
@hasDependencies . 3 6 " isAntecedent="//

233

@hasDependencies . 8 //@hasDependencies . 9 //
@hasDependencies . 1 0 //@hasDependencies . 1 3 //
@hasDependencies . 2 7 //@hasDependencies . 3 1 "/>

12 < h a s S e r v i c e E n t i t i e s serviceName=" Expert Examination "
serviceKey=" ExpertExamination_EE57−ZV5Q" provider="
HCKP−13" s l a I d =" ExpertExamination_EE57−ZV5Q_SLA11"
isDependent="//@hasDependencies . 8 //@hasDependencies
. 2 8 " isAntecedent="//@hasDependencies . 1 1 //
@hasDependencies . 2 9 "/>

13 < h a s S e r v i c e E n t i t i e s serviceName=" P a t i e n t Transport "
serviceKey=" PatientTransport_PT96−JL7Y " provider="
HCKP−3" s l a I d =" PatientTransport_PT96−JL7Y_SLA7 "
isDependent="//@hasDependencies . 2 7 " isAntecedent="//
@hasDependencies . 2 8 "/>

14 < h a s S e r v i c e E n t i t i e s serviceName=" P a t i e n t Transport "
serviceKey=" PatientTransport_PT0M−GG9S" provider="
HCKP−4" s l a I d =" PatientTransport_PT0M−GG9S_SLA9"
isDependent="//@hasDependencies . 2 9 " isAntecedent="//
@hasDependencies . 3 0 "/>

15 < h a s S e r v i c e E n t i t i e s serviceName=" Procurement of
Medication " serviceKey="
ProcurementOfMedication_POM4_90W1 " provider="HCKP−2"

s l a I d =" ProcurementOfMedication_POM4_90W1_SLA5 "
isDependent="//@hasDependencies . 1 2 //
@hasDependencies . 1 4 //@hasDependencies . 3 2 "
isAntecedent="//@hasDependencies . 1 5 //
@hasDependencies . 3 3 "/>

16 < h a s S e r v i c e E n t i t i e s serviceName=" Determine Medication "
serviceKey=" DetermineMedication_DM98−1298 " provider=
"HCKP−16" s l a I d =" DetermineMedication_DM98−1298_SLA15
" isDependent="//@hasDependencies . 1 3 //
@hasDependencies . 3 1 " isAntecedent="//
@hasDependencies . 1 4 //@hasDependencies . 3 2 "/>

17 < h a s S e r v i c e E n t i t i e s serviceName=" Give Medication "
serviceKey=" GiveMedication_GM73−668R" provider=" "
s l a I d =" GiveMedication_GM73−668R_SLA2" isDependent="
//@hasDependencies . 1 5 //@hasDependencies . 3 3 "
isAntecedent="//@hasDependencies . 3 4 "/>

18 < h a s S e r v i c e E n t i t i e s serviceName=" P a t i e n t Examination "
serviceKey=" PatientExamination_PE39 −12ZX" provider="
HCKP−5" s l a I d =" PatientExamination_PE39 −12ZX_SLA10"
isDependent="//@hasDependencies . 1 6 //
@hasDependencies . 3 5 " isAntecedent="//
@hasDependencies . 1 7 //@hasDependencies . 3 6 "/>

19 <hasDependencies x s i : t y p e ="
resourceDependency:ResourceDependency " id="
DEP_3122198522849526067 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//

234 Health Care Scenario Evaluation Documents

@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

20 <resource IDLis t>pat ient ID</resource IDLis t >
21 </hasDependencies>
22 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_3235787490193518363 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

23 <resource IDLis t>pat ient ID</resource IDLis t >
24 </hasDependencies>
25 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_4726928565072001116 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

26 <resource IDLis t>bloodSample</resource IDLis t >
27 </hasDependencies>
28 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_6838204256045487745 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 3 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

29 <resource IDLis t> l a b o r a t o r y T e s t R e s u l t </resource IDLis t >
30 </hasDependencies>
31 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_1988522268136441289 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

32 <resource IDLis t>medicalRecord</resource IDLis t >
33 </hasDependencies>
34 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_8503263781163168326 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 7 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

35 <resource IDLis t>medicalRecord</resource IDLis t >
36 </hasDependencies>

235

37 <hasDependencies x s i : t y p e ="
resourceDependency:ResourceDependency " id="
DEP_4488314381232341727 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

38 <resource IDLis t>pat ient ID</resource IDLis t >
39 </hasDependencies>
40 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5758159868971947099 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

41 <resource IDLis t>pat ientGeneralData</resource IDLis t >
42 </hasDependencies>
43 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_4571900140280303028 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 9 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

44 <resource IDLis t>medicalRecord</resource IDLis t >
45 </hasDependencies>
46 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_109277824995689495 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

47 <resource IDLis t>medicalRecord</resource IDLis t >
48 </hasDependencies>
49 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_7203788845200534650 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

50 <resource IDLis t>medicalRecord</resource IDLis t >
51 </hasDependencies>
52 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_8445576661365936021 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "

236 Health Care Scenario Evaluation Documents

dependent="// @ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 9 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

53 <resource IDLis t>examinat ionResults</resource IDLis t >
54 </hasDependencies>
55 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5692286028398201659 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

56 <resource IDLis t>pat ient ID</resource IDLis t >
57 </hasDependencies>
58 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_5768855607347483111 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

59 <resource IDLis t>medicalRecord</resource IDLis t >
60 </hasDependencies>
61 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_7350673158800343343 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

62 <resource IDLis t>medicationOrder</resource IDLis t >
63 </hasDependencies>
64 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_1878476987512499705 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

65 <resource IDLis t>medication</resource IDLis t >
66 </hasDependencies>
67 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_7505131736359921750 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

68 <resource IDLis t>pat ient ID</resource IDLis t >

237

69 </hasDependencies>
70 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_8119398668251628684 " dependentKpiName="
inputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 5 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

71 <resource IDLis t>healthCheckData</resource IDLis t >
72 </hasDependencies>
73 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_83379073609732100 " dependentKpiName="
inputResource " antecedentKpiName=" inputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

74 <resource IDLis t> b i l l i n g information</resource IDLis t >
75 </hasDependencies>
76 <hasDependencies x s i : t y p e ="

resourceDependency:ResourceDependency " id="
DEP_1483439213203111681 " dependentKpiName="
outputResource " antecedentKpiName=" outputResource "
dependent="// @ h a s S e r v i c e E n t i t i e s . 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 7 " i s B i d i r e c t i o n a l =" t rue "
i s T r a n s i t i v e =" t rue ">

77 <resource IDLis t>examinationReport</resource IDLis t >
78 <resource IDLis t>medical repor t</resource IDLis t >
79 </hasDependencies>
80 <hasDependencies x s i : t y p e ="

timeDependency:TimeDependency " id="
DEP_7967556643402429598 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

81 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3408208673744307361 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

82 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_1793760504173610380 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//

238 Health Care Scenario Evaluation Documents

@ h a s S e r v i c e E n t i t i e s . 3 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

83 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_1904139078890547379 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 4 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

84 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3275455577448539318 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 6 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

85 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_6554961286330239770 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 7 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 5 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

86 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_820379226549464573 " dependentKpiName=" star tTime "

antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 2 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

87 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_4875848928162081674 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

88 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_5077528085248911993 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 9 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 0 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

89 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_6053961840993521907 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 1 " antecedents="//

239

@ h a s S e r v i c e E n t i t i e s . 9 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

90 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_2731745990842422567 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 1 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

91 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_4543076148445051841 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 8 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

92 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_8588721146078344280 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 3 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

93 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3970245298381945313 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 2 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

94 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_7895712797732936793 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 4 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 4 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

95 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_243188543101594581 " dependentKpiName=" star tTime "

antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 5 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 1 " timeOperator=" f i n i s h _ t o _ s t a r t
"/>

96 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_8218852081092408259 " dependentKpiName=" star tTime
" antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 8 " antecedents="//

240 Health Care Scenario Evaluation Documents

@ h a s S e r v i c e E n t i t i e s . 1 5 " timeOperator="
f i n i s h _ t o _ s t a r t "/>

97 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_5390268172396839755 " dependentKpiName=" star tTime
" antecedentKpiName=" star tTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 1 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 0 " timeOperator=" s t a r t _ t o _ s t a r t "
/>

98 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_4690594766522528545 " dependentKpiName=" endTime "
antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 6 " timeOperator="
f i n i s h _ t o _ f i n i s h "/>

99 <hasDependencies x s i : t y p e ="
timeDependency:TimeDependency " id="
DEP_3711626503308735243 " dependentKpiName=" endTime "
antecedentKpiName=" endTime " dependent="//
@ h a s S e r v i c e E n t i t i e s . 0 " antecedents="//
@ h a s S e r v i c e E n t i t i e s . 7 " timeOperator="
f i n i s h _ t o _ f i n i s h "/>

100 </depend:DependencyModel>

Listing D.1: Dependency model for healthcare service

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Background Information
	1.2 Problem Statement
	1.3 Motivation
	1.4 Thesis Scope and Research Questions
	1.5 Research Methodology
	1.6 Outline of this Document

	2 Foundations and Requirements Analysis
	2.1 Services in the Internet of Services
	2.1.1 Composite Services
	2.1.2 The Service Lifecycle
	2.1.3 The Need for Service Description

	2.2 Service Level Agreements
	2.2.1 Defining Service Level Agreements
	2.2.2 A SLA Lifecycle for the Internet of Services

	2.3 Monitoring services
	2.4 Use Cases
	2.4.1 Use Case: Logistics
	2.4.2 Use Case: Healthcare

	2.5 Introduction of Service Dependencies
	2.5.1 Examples of Dependencies in Service Compositions
	2.5.2 Requirements for a Solution

	2.6 Summary

	3 Related Work
	3.1 Formalizing Service Level Agreements
	3.1.1 First Research on SLA Specification
	3.1.2 Web Service Offerings Language
	3.1.3 WS-Policy
	3.1.4 Rule-Based Service Level Agreements
	3.1.5 WS-Agreement
	3.1.6 Discussion

	3.2 Approaches to SLA (Re-)Negotiation and Monitoring
	3.2.1 WSAG4J
	3.2.2 Cremona
	3.2.3 The GRIA SLA Management Service
	3.2.4 SALMon
	3.2.5 ASG Project
	3.2.6 Renegotiation of Service Level Agreements
	3.2.7 Discussion

	3.3 Foundations and Approaches of Dependency Management
	3.3.1 Relevance of Dependencies
	3.3.2 Types of Dependencies
	3.3.3 Approaches to Handling Dependencies

	3.4 Summary and Discussion

	4 A Concept for Managing Dependencies of Business Services
	4.1 Solution Overview
	4.2 The Nature of Service Dependencies
	4.2.1 Defining Dependencies
	4.2.2 Horizontal and Vertical Dependencies
	4.2.3 Dependency Classes
	4.2.4 Symmetry and Transitivity of Service Dependencies
	4.2.5 A Classification of Service Dependencies
	4.2.6 Relevance of Dependency Management
	4.2.7 Summary

	4.3 Implicit and Explicit Representation of Service Dependencies
	4.3.1 Dependency Related Information in SLAs
	4.3.2 Service Dependency Model Concept

	4.4 Managing Service Dependencies
	4.4.1 Lifecycle of Dependency Models
	4.4.2 Creation and Recomputation of Dependency Models
	4.4.3 Dependency Model Validation
	4.4.4 Dependency Model Usage
	4.4.5 Dependency Model Retirement

	4.5 A Platform for Service Dependency Management
	4.5.1 An Architecture for Service and SLA Management
	4.5.2 Dependency Management Extensions

	4.6 Summary

	5 Validation
	5.1 Validation Approach
	5.2 Prototypical Implementation of the System
	5.2.1 Eclipse Architecture Overview
	5.2.2 Prototype Implementation
	5.2.3 Discussion of Prototype Capabilities and Limitations

	5.3 Scenario-based Validation
	5.3.1 Dependency Model Creation and Recomputation
	5.3.2 Dependency Model Validation
	5.3.3 Dependency Model Usage
	5.3.4 Dependency Model Retirement
	5.3.5 Discussion of Test Cases

	5.4 Performance Evaluation
	5.4.1 Theoretical Discussion of Complexity
	5.4.2 Performance Measurements for Use Cases
	5.4.3 Discussion of Performance Evaluation Results

	5.5 Evaluation of Requirements and Discussion of Results
	5.6 Summary and Discussion

	6 Summary and Outlook
	6.1 Summary and Discussion of Contributions
	6.2 Future Work

	References
	A Validation Test Cases
	B WS-Agreement SLA Document
	C Logistics Scenario Evaluation Documents
	D Health Care Scenario Evaluation Documents

