9 research outputs found

    Semi-Supervised Learning using Differentiable Reasoning

    Get PDF
    We introduce Differentiable Reasoning (DR), a novel semi-supervised learning technique which uses relational background knowledge to benefit from unlabeled data. We apply it to the Semantic Image Interpretation (SII) task and show that background knowledge provides significant improvement. We find that there is a strong but interesting imbalance between the contributions of updates from Modus Ponens (MP) and its logical equivalent Modus Tollens (MT) to the learning process, suggesting that our approach is very sensitive to a phenomenon called the Raven Paradox. We propose a solution to overcome this situation

    Teaching the old dog new tricks: Supervised learning with constraints

    Get PDF
    Methods for taking into account external knowledge in Machine Learning models have the potential to address outstanding issues in data-driven AI methods, such as improving safety and fairness, and can simplify training in the presence of scarce data. We propose a simple, but effective, method for injecting constraints at training time in supervised learning, based on decomposition and bi-level optimization: a master step is in charge of enforcing the constraints, while a learner step takes care of training the model. The process leads to approximate constraint satisfaction. The method is applicable to any ML approach for which the concept of label (or target) is well defined (most regression and classification scenarios), and allows to reuse existing training algorithms with no modifications. We require no assumption on the constraints, although their properties affect the shape and complexity of the master problem. Convergence guarantees are hard to provide, but we found that the approach performs well on ML tasks with fairness constraints and on classical datasets with synthetic constraints

    Teaching the Old Dog New Tricks: Supervised Learning with Constraints

    Full text link
    Adding constraint support in Machine Learning has the potential to address outstanding issues in data-driven AI systems, such as safety and fairness. Existing approaches typically apply constrained optimization techniques to ML training, enforce constraint satisfaction by adjusting the model design, or use constraints to correct the output. Here, we investigate a different, complementary, strategy based on "teaching" constraint satisfaction to a supervised ML method via the direct use of a state-of-the-art constraint solver: this enables taking advantage of decades of research on constrained optimization with limited effort. In practice, we use a decomposition scheme alternating master steps (in charge of enforcing the constraints) and learner steps (where any supervised ML model and training algorithm can be employed). The process leads to approximate constraint satisfaction in general, and convergence properties are difficult to establish; despite this fact, we found empirically that even a na\"ive setup of our approach performs well on ML tasks with fairness constraints, and on classical datasets with synthetic constraints

    Analyzing Differentiable Fuzzy Implications

    Get PDF

    T-Norms Driven Loss Functions for Machine Learning

    Get PDF
    Neural-symbolic approaches have recently gained popularity to inject prior knowledge into a learner without requiring it to induce this knowledge from data. These approaches can potentially learn competitive solutions with a significant reduction of the amount of supervised data. A large class of neural-symbolic approaches is based on First-Order Logic to represent prior knowledge, relaxed to a differentiable form using fuzzy logic. This paper shows that the loss function expressing these neural-symbolic learning tasks can be unambiguously determined given the selection of a t-norm generator. When restricted to supervised learning, the presented theoretical apparatus provides a clean justification to the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. However, the proposed learning formulation extends the advantages of the cross-entropy loss to the general knowledge that can be represented by a neural-symbolic method. Therefore, the methodology allows the development of a novel class of loss functions, which are shown in the experimental results to lead to faster convergence rates than the approaches previously proposed in the literature
    corecore