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Abstract
Injecting prior knowledge into the learning process of a neural architecture is one of the main challenges currently faced
by the artificial intelligence community, which also motivated the emergence of neural-symbolic models. One of the main
advantages of these approaches is their capacity to learn competitive solutions with a significant reduction of the amount
of supervised data. In this regard, a commonly adopted solution consists of representing the prior knowledge via first-
order logic formulas, then relaxing the formulas into a set of differentiable constraints by using a t-norm fuzzy logic. This
paper shows that this relaxation, together with the choice of the penalty terms enforcing the constraint satisfaction, can
be unambiguously determined by the selection of a t-norm generator, providing numerical simplification properties and
a tighter integration between the logic knowledge and the learning objective. When restricted to supervised learning, the
presented theoretical framework provides a straight derivation of the popular cross-entropy loss, which has been shown to
provide faster convergence and to reduce the vanishing gradient problem in very deep structures. However, the proposed
learning formulation extends the advantages of the cross-entropy loss to the general knowledge that can be represented by
neural-symbolic methods. In addition, the presented methodology allows the development of novel classes of loss functions,
which are shown in the experimental results to lead to faster convergence rates than the approaches previously proposed in
the literature.

Keywords Learning from constraints · T-norm generators · Loss functions · Integration of logic and learning ·
Neural-symbolic integration

1 Introduction

Deep Neural Networks [1] have been a break-through
for several classification problems involving sequential or
high-dimensional data. However, deep neural architectures
strongly rely on a large amount of labeled data to
develop powerful feature representations. Unfortunately,
it is difficult and labor intensive to annotate such large
collections of data. In this regard, prior knowledge
expressed by First-Order Logic (FOL) rules represents
a natural solution to make learning efficient when the
training data is scarce and some domain expert knowledge
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is available. The integration of logic inference with
learning could also overcome another limitation of deep
architectures, namely that they mainly act as black-
boxes from a human perspective, making their usage
difficult in safety critical applications, like in health or
car industry applications [2]. For these reasons, Neural-
Symbolic (NeSy) approaches [3, 4] integrating logic and
learning have become one of the fundamental research
lines for the machine learning and artificial intelligence
communities. One of the most common approaches to
exploit logic knowledge to train a deep neural learner
relies on mapping the FOL knowledge into differentiable
constraints using t-norms. Then, the constraints can be
enforced using gradient-based optimization techniques, like
done in [5, 6]. Most work in this area approached the
problem of translating logic rules into a differentiable
form by defining a collection of heuristics that often
lack semantic consistency and have no clear motivation
from a theoretical point of view. For instance, there is
no agreement on the relation between the selected t-norm
and the aggregation function corresponding to the logic
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quantifiers, nor even on the chosen loss to enforce the
constraints.

This paper first traces back the properties of t-norm
fuzzy logic operators down to the selection of a generator
function. Then, we show that the loss function of a learning
problem accounting for both supervised data and logic
constraints can also be determined by the single choice
of the t-norm generator. The generator determines the
fuzzy relaxation of connectives and quantifiers occurring in
the logic rules. As a result, a simplified and semantically
consistent optimization problem can be formulated. In this
framework, the classical fitting of supervised training data
can be enforced by atomic logic constraints. Since the
careful choice of loss functions has been crucial to the
success of deep learning, this paper also investigates the
relation between supervised training losses and generator
choices. As a special case, we get a novel justification for
the popular cross-entropy loss [7], that has been shown
to provide faster convergence and to reduce the vanishing
gradient problem in very deep structures.

Contributions This paper introduces a theoretical frame-
work centered around the notion of t-norm generator, unify-
ing the choice of the logic semantics and of the loss function
in neural-symbolic learners. In particular, we extend the
preliminary formalization sketched in [8], together with a
more comprehensive experimental validation. This unifica-
tion results in a simplified learning objective that is shown
to be numerically more stable, while retaining the flexi-
bility to customize the learning process on the considered
applications.

The paper is organized as follows: Section 2 presents
some prior work on the integration of learning and logic
inference, Section 3 presents the basic concepts about t-
norms, generators and aggregator functions and Section 4
introduces a general neural-symbolic framework used to
extend supervised learning with logic rules. Section 5
presents the main results of the paper, showing the link
between t-norm generators and loss functions and how these
can be exploited in neural-symbolic approaches. Section 6
presents the experimental results and a discussion on the
presented methodology is provided in Section 7. Finally,
Section 8 draws some conclusions.

2 Related works

Neural-symbolic approaches [9, 10] aim at combining
symbolic reasoning with (deep) neural networks, e.g. by
exploiting additional logic knowledge when available. This
knowledge can be either injected into the learner internal
structure (e.g. by constraining the network architecture)
or enforced on the learner outputs (e.g. by adding

new loss terms). In this context, First-Order Logic
is commonly chosen as the declarative framework to
represent the knowledge because of its flexibility and
expressive power. NeSy methodologies are rooted in
previous work on Statistical Relational Learning (SRL)
[3, 11], which developed frameworks for performing logic
inference in presence of uncertainty. For instance, Markov
Logic Networks (MLN) [12] and Probabilistic Soft Logic
(PSL) [13] integrate FOL and probabilistic graphical
models by using the logic rules as potential functions
defining a probability distribution. MLNs have received
a lot of attention by the SRL community [14–16] and
have been widely used in different tasks like information
extraction, entity resolution and text mining [17, 18]. More
recently, MLNs have also been extended to work with neural
potential functions in [19], showing impressive results e.g.
in generating molecular data. PSL can be considered a
fuzzy extension of MLNs, as it exploits a fuzzy relaxation
of the logic potentials by using Łukasiewicz Logic. The
framework proposed in this paper builds upon t-norm fuzzy
logics, however it is not limited to any specific t-norm.
Hence it could be also adopted to define alternative logic
potential functions for PSL.

A common solution to integrate logic reasoning and
deep learning relies on using deep neural networks to
approximate the truth values (i.e. fuzzy semantics) or the
probabilities (i.e. probabilistic semantics) of certain target
predicates, and then apply logic or probabilistic inference
on the network outputs [20]. In the former case, the logic
rules can be relaxed according to a differentiable fuzzy
logic and then the overall architecture can be optimized
end-to-end. This approach is followed with minor variants
by Semantic-Based Regularization (SBR) [5], Lyrics [21]
and Logic Tensor Networks (LTN) [6], especially for
classification problems. On the other hand, some examples
of NeSy approaches based on probabilistic logic are given
by Semantic Loss [22], Differentiable Reasoning [23],
Deep Logic Models [24], Relational Neural Machines [25]
and DeepProbLog [26]. Similarly, Lifted Relational Neural
Networks [27] and Neural Theorem Provers [28, 29] realize
a soft forward or backward chaining via an end-to-end
gradient based scheme. This paper investigates the bound
between the selected logic semantics to represent the
knowledge and the loss function in the learning task. This
is a common problem for all NeSy approaches, that encode
the logic knowledge into differentiable constraints used by
a deep learner.

Learning with fuzzy logic constraints In general, if some
FOL knowledge is available for a learning problem, this
is expressed in Boolean form. To define a differentiable
learning objective is then fundamental to establish a
mapping to relax the logic formulas into differentiable
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functional constraints by means of an appropriate fuzzy
logic. For instance, Serafini et al. [30] introduces a learning
framework where the formulas are converted according to
the t-norm and t-conorm of Łukasiewicz logic. Giannini
et al. [31] also proposes to convert the formulas according
to Łukasiewicz logic, however they exploit the weak
conjunction in place of the t-norm, thus guaranteeing convex
functional constraints. A more empirical approach has been
considered in SBR, where all the fundamental t-norms have
been evaluated on different learning settings to select the
best t-norm on the single tasks [5]. More recent studies
on the learning properties of different fuzzy logic operators
have also been proposed by Van Krieken et al. [32, 33].
By combining different logic semantics for the connectives,
the authors achieved the most significant performance
improvement, but the dependence between the connectives
is no longer obeying any specific logic theory.

The relaxation of logic quantifiers has also been the
subject of a wide range of studies. On the performance
side, different quantifier conversions have been taken into
account and validated. For instance, in Diligenti et al. [5]
the arithmetic mean and the maximum operator have been
used to convert the universal and existential quantifiers,
respectively. Different possibilities have been considered
for the universal quantifier in Donadello et al. [34], while
the existential quantifier depends on this choice via the
application of the strong negation using the DeMorgan law.
However, the arithmetic mean operator has been shown
to achieve better performances in the conversion of the
universal quantifier [34], with the existential quantifier
implemented by Skolemization. In spite of improving
the performances, the universal and existential quantifiers
should be thought of as a generalized AND and OR,
respectively. Therefore, converting these quantifiers using
a mean operator has no direct justification inside a logic
theory, and spoil the original semantics.

There have been a few attempts in the literature to address
the problem of choosing semantically driven loss functions
to enforce the satisfaction of the logic constraints. However,
these works are generally not fully semantically coherent
or too specific. A unified principle to select a suitable loss
function that can be logically interpreted according to the
adopted fuzzy logic semantics is still missing. For instance,
both SBR [5] and LTN [30] rely on minimizing the strong
negation of each logic constraint, whereas Lyrics [21] also
allows the usage of the negative logarithm. A different
perspective is considered in Semantic Loss [22], where the
authors propose a new loss function that is very close to
the negative logarithm one and that is able to achieve (near)
state-of-the-art performances on semi-supervised learning
tasks, by combining neural networks and logic constraints.
In this paper, we show that these loss functions (and
infinitely many more) are special cases of t-norm generators

that can be uniquely determined by the choice of a fuzzy
logic relaxation.

3 Background on t-norm fuzzy logic

Many-valued logics have been introduced in order to extend
the admissible set of truth values from true (1) and false
(0) to a scale of truth-degree having absolutely true and
absolutely false as boundary cases. A fuzzy logic is a
many-valued logic, whose set of truth values coincides with
the real unit interval [0, 1]. This section introduces the
basic notions of fuzzy logic together with some illustrative
examples.

T-norms [35] are a special kind of binary operations on
the real unit interval [0, 1], representing an extension of the
Boolean conjunction.

Definition 1 T : [0, 1]2 → [0, 1] is a t-norm if and only if
for every x, y, z ∈ [0, 1]:

T (x, y)=T (y, x), T (x, T (y, z)) = T (T (x, y), z),

T (x, 1)=x, T (x, 0)=0, if x ≤y then T (x, z)≤T (y, z) .

T is a continuous t-norm if it is a continuous function
in [0, 1].

A fuzzy logic can be uniquely defined according
to the choice of a certain t-norm T [36]. A wide
variety of operations corresponding to different fuzzy
logic connectives are defined starting from T and the
strong negation “¬”, and their notation is introduced in
Definition 2. Table 1 reports the algebraic semantics of these
connectives for Gödel, Łukasiewicz and Product logics,
which are referred as the fundamental fuzzy logics, because
all the continuous t-norms can be obtained from them by
ordinal sums [37].

Definition 2

(t-norm) x ⊗ y = T (x, y)
(residuum) x ⇒ y = max{z : x ⊗ z ≤ y}
(bi-residuum) x ⇔ y = (x ⇒ y) ⊗ (y ⇒ x)
(weak conjunction) x ∧ y = x ⊗ (x ⇒ y)
(weak disjunction) x ∨ y =((x ⇒y) ⇒ y) ⊗ ((y ⇒ x) ⇒ x)
(residual negation) ∼ x = x ⇒ 0
(strong negation) ¬x = 1 − x
(t-conorm) x ⊕ y = ¬(¬x ⊗ ¬y)
(material implication) x → y = ¬x ⊕ y

3.1 Archimedean t-norms

Continuous Archimedean t-norms [35] are special t-norms
that can be constructed by means of unary monotone
functions, called generators.
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Table 1 The truth functions
for the t-norm, residuum,
bi-residuum, weak conjunction,
weak disjunction, residual
negation, strong negation,
t-conorm and material
implication of the fundamental
fuzzy logics

Gödel Łukasiewicz Product

x ⊗ y min{x, y} max{0, x + y − 1} x · y

x ⇒ y x ≤ y?1 : y min{1, 1 − x + y} min{1,
y
x
}

x ⇔ y x ≤ y?x : y 1− | x − y | x = y?1 : min
{

x
y
,

y
x

}

x ∧ y min{x, y} min{x, y} min{x, y}
x ∨ y max{x, y} max{x, y} max{x, y}
∼ x x = 0?1 : 0 1 − x x = 0?1 : 0

¬x 1 − x 1 − x 1 − x

x ⊕ y max{x, y} min{1, x + y} x + y − x · y

x → y max{1 − x, y} min{1, 1 − x + y} 1 − x + x · y

Definition 3 A t-norm T is Archimedean if for every x ∈
(0, 1) it holds T (x, x) < x. T is said to be strict if for all
x ∈ (0, 1) we have 0 < T (x, x) < x, otherwise it is said to
be nilpotent.

For example, Łukasiewicz (TL) and Product (TP ) t-norms
are nilpotent and strict respectively, while Gödel (TG) t-
norm is idempotent (i.e. ∀x : TG(x, x) = x) and hence
not even Archimedean. In addition, all the nilpotent and
strict t-norms can be related to the Łukasiewicz and Product
t-norms as follows.

Theorem 1 ([35]) Any nilpotent t-norm is isomorphic to TL

and any strict t-norm is isomorphic to TP .

The next theorem shows how to construct t-norms by
additive1 generators [35].

Theorem 2 Let g : [0, 1] → [0, +∞] be a strictly
decreasing function with g(1) = 0 and g(x) + g(y) ∈
Range(g) ∪ {g(0+),+∞} for all x, y in [0, 1], and g(−1)

its pseudo-inverse. Then the function T : [0, 1]2 → [0, 1]
defined as

T (x, y) = g−1 (min{g(0+), g(x) + g(y)}) (1)

is a t-norm and g is said an additive generator for T .
Moreover, T is strict if g(0+) = +∞, otherwise T is
nilpotent.

Example 1 If we take g(x) = 1−x, we get the Łukasiewicz
t-norm TL.

T (x, y) = 1 − min{1, 1 − x + 1 − y} = max{0, x + y − 1}

Example 2 If we take g(x) = − log(x), we get the Product
t-norm TP .

T (x, y) = exp
(− (min{+∞, − log(x) − log(y)})) = x · y

1Since here we only deal with additive generators, we will drop the
term “additive” for simplicity.

According to (1), the other fuzzy logic connectives
deriving from the t-norm can be expressed with respect to
the generator. For instance:

x ⇒ y = g−1 (max{0, g(y) − g(x)})
x ⇔ y = g−1 (| g(x) − g(y) |) (2)

x ⊕ y = 1 − g−1 (min{g(0+), g(1 − x) + g(1 − y)})

3.2 Parameterized classes of t-norms

T-norm generators can also depend on a parameter, by
consequently defining a parameterized class of t-norms. For
instance, given a generator g of a t-norm T and λ > 0, then
T λ denotes a class of increasing t-norms that correspond to
the generator function gλ(x) = (g(x))λ. In addition, let TD

and TG denote the Drastic (TD(x, y) = (x = y = 1)?1 : 0)
and Gödel t-norms respectively, we get:

lim
λ→0+ T λ = TD and lim

λ→∞ T λ = TM

Over the years, several parameterized families of t-norms
have been introduced and studied in the literature [35, 38].
In the following, we recall some prominent examples that
we will exploit in the experimental evaluation.

Definition 4 (The Schweizer-Sklar family) For λ ∈
(−∞, +∞), consider:

gSS
λ (x) =

{
− log(x) if λ = 0
1−xλ

λ
otherwise

The t-norms corresponding to this generator are called
Schweizer-Sklar t-norms, and they are defined according to:

T SS
λ (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TG(x, y) if λ = −∞
(xλ + yλ − 1)

1
λ if − ∞ < λ < 0

TP (x, y) if λ = 0

max{0, xλ + yλ − 1} 1
λ if 0 < λ < +∞

TD(x, y) if λ = +∞
The Schweizer-Sklar t-norm T SS

λ is Archimedean if and
only if λ > −∞, continuous if and only if λ < +∞, strict
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if and only if −∞ < λ ≤ 0 and nilpotent if and only if
0 < λ < +∞. This t-norm family is strictly decreasing for
λ ≥ 0 and continuous with respect to λ ∈ [−∞, +∞], in
addition T SS

1 = TL.

Definition 5 (Frank t-norms) For λ ∈ [0, +∞], consider:

gF
λ (x) =

⎧⎪⎨
⎪⎩

− log(x) ifλ = 1
1 − x ifλ = +∞
log
(

λ−1
λx−1

)
otherwise

The t-norms corresponding to this generator are called
Frank t-norms and they are strict if λ < +∞. The overall
class of Frank t-norms is decreasing and continuous.

T F
λ (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TG if λ = 0
TP if λ = 1
TL if λ = +∞
logλ

(
1 + (λx−1)(λy−1)

λ−1

)
otherwise

4 Background on the integration of learning
and logic reasoning

According to the learning from logical constraints
paradigm [20], the available prior knowledge is represented
by a set of logic rules. which are relaxed into continuous
and differentiable constraints over the task functions (imple-
menting FOL predicates). Positive and negative supervised
samples can also be seen as atomic constraints, and the
learning process corresponds to finding the task functions
that best satisfy the constraints.

Example 3 Let us assume that the prior knowledge for an
image classification task is expressed by the following sen-
tences “lions live in savanna or in zoos” and “there are no walls
in the savanna” (see Fig. 1). This domain knowledge can
be represented in FOL as “∀x Lion(x) → LiveIn(x,

savanna) ∨ LiveIn(x, zoo)” and “∀x Wall(x) →
¬LiveIn(x, savanna)”, being Lion, Wall two unary pred-
icates, LiveIn a binary predicate and savanna, zoo two
constants. If a neural classifier is able to correctly detect the
presence of a lion and a wall in Fig. 1, it is also able to estab-
lish that the lion is living in a zoo by exploiting the symbolic
knowledge.

In the following, we introduce more formally the
framework where our work takes place. Let us consider
a multi-task learning problem where BP = (P1, . . . , PJ )

denotes the vector of real-valued functions (task functions)
to be determined. Given the set X ⊆ R

n of available data,
a supervised learning problem can be generally formulated
as minBP

L(X ,BP ) where L is a positive-valued functional
denoting a certain loss. In our framework, we assume that

Fig. 1 Image labeled with the presence of a lion and a wall.
Classification tasks performed by sub-symbolic models can benefit
from logic inference on additional symbolic knowledge

the task functions are FOL predicates and all the available
knowledge about these predicates, including supervisions,
is collected into a knowledge base KB = {ψ1, . . . , ψH }
of FOL formulas. The learning task is then expressed
as:

min
BP

L(X , KB,BP )

The link between FOL knowledge and learning was also
presented e.g. in [21] and it can be summarized as follows.

• Each Individual is an element of a specific domain,
which can be used to ground the predicates defined
on such a domain. Any replacement of variables with
individuals for a certain predicate is called grounding.

• Predicates express the truth degree of some property for
an individual (unary predicate) or group of individuals
(n-ary predicate). In particular, this paper will focus
on learnable predicate functions implemented by (deep)
neural networks, but other models can also be used.
FOL functions can be included and learned in a similar
fashion [39]. However, in this presentation, function-
free FOL is used to keep the notation simpler.

• Knowledge Base (KB) is a collection of FOL formulas
expressing the learning task. The integration of learning
and logical reasoning is achieved by compiling the
logical rules into continuous real-valued constraints
correlating all the defined elements and enforcing some
expected behavior on them.

Given any rule in KB, individuals, predicates, logical
connectives and quantifiers can all be seen as nodes of an
expression tree [40]. Then, the translation into a functional
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constraint corresponds to a post-fix visit of the expression
tree, consisting of the following steps:

• visiting a variable substitutes the variable with the
corresponding feature representation of the individual
to which the variable is currently assigned;

• visiting a predicate computes the output of the predicate
with the current input groundings;

• visiting a connective combines the grounded predicate
values by means of the real-valued operation associated
to the connective;

• visiting a quantifier aggregates the outputs of the
expressions obtained for the single individuals (variable
groundings).

Thus, the compilation of the expression tree allows us to
convert a formula into a real-valued function, represented by
a computational graph. The different functions correspond-
ing to predicates are composed (i.e. aggregated) by means of
the truth-functions corresponding to connectives and quanti-
fiers. Given a formula ϕ, we denote by fϕ its corresponding
real-valued functional representation. fϕ tightly depends on
the chosen t-norm driving the fuzzy relaxation. The expres-
sion tree corresponding to the FOL formula ∀x Wall(x) →
¬LiveIn(x, savanna) is reported in Fig. 2 as an example.

Example 4 Given two predicates P1, P2 and the formula
ϕ(x) = P1(x) ⇒ P2(x), the functional representation of ϕ

is given by fϕ(x,BP ) = min{1, 1 − P1(x) + P2(x)} and
fϕ(x,BP ) = min{1, P2(x)/P1(x)} in the Łukasiewicz and
Product logics, respectively.

A special note concerns quantifiers. They aggregate the
truth-values of predicates over their corresponding domains.
For instance, according to [41], that first proposed a

fuzzy generalization of FOL, the universal and existential
quantifiers may be converted as the infimum and supremum
over a domain variable (coinciding with minimum and
maximum when dealing with finite domains). In particular,
given a formula ϕ(x) depending on a certain variable x ∈ X ,
where X denotes the finite set of available samples for one
of the involved predicates in ϕ, the fuzzy semantics of the
quantifiers is given by:

ψ = ∀x ϕ(x) −→ fψ(X ,BP ) = min
x∈X

fϕ(x,BP )

ψ = ∃x ϕ(x) −→ fψ(X ,BP ) = max
x∈X

fϕ(x,BP )

As shown in the next section, this quantifier relaxation is
not convenient for all the t-norms and we propose a more
principled approach for the translation.

Once all the formulas in KB are converted into real-
valued functions, their distance from satisfaction (i.e.
distance from 1-evaluation) can be computed according to
a certain decreasing mapping L expressing the penalty for
the violation of any constraint. In order to satisfy all the
constraints, the learning problem can be formulated as the
joint minimization over the single rules using the following
loss function factorization:

L(X , KB,BP ) =
∑

ψ∈KB

βψL
(
fψ(X ,BP )

)
(3)

Here any βψ denotes the weight for the logical constraint
ψ in the KB, which can be selected via cross-validation or
jointly learned [24, 42], fψ is the functional representation
of the formula ψ according to a certain t-norm fuzzy
logic and L is a decreasing function denoting the penalty
associated to the distance from satisfaction of formulas, so
that L(1) = 0.

Fig. 2 The expression tree
corresponding to ∀x Wall(x) →
¬LiveIn(x, savanna) for the
domain of constants
X = {x1, x2}
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As described in Section 2, in this neural-symbolic
scenario all the steps involved in the translation of
FOL formulas into a loss function are treated separately,
involving very heterogeneous choices. In the next section,
we show instead that these steps are intrinsically connected
and they can be uniformly derived from a unique global
choice: the selection of a t-norm generator.

5 Loss functions by t-norms generators

This section presents a generalization of the approach
introduced in [8], which was limited to supervised learning.
In this paper, we present a unified principle to translate
the fuzzy relaxation of FOL formulas into the loss function
of general machine learning tasks. In particular, we study
the mapping of FOL formulas into functional constraints
by means of continuous Archimedean t-norm fuzzy logics.
We adopt the t-norm generator to penalize the violation of
the constraints, i.e. we take L = g. Moreover, since the
quantifiers can be seen as generalized AND and OR over
the grounded expressions (see Remark 1), we show that
by adopting the same fuzzy conversion for connectives and
quantifiers, the overall loss function expressed in (3) only
depends on the chosen t-norm generator g.

Remark 1 Given a formula ϕ(x) defined on the available set
of samples X = {x1, . . . , xN }, the roles of the quantifiers
have to be interpreted as follows:

∀x ϕ(x) � ϕ(x1) AND . . . AND ϕ(xN)

∃x ϕ(x) � ϕ(x1) OR . . . OR ϕ(xN)

5.1 General formulas

Given a certain formula ϕ(x) depending on a variable x

that ranges in the set X and its corresponding functional
representation fϕ(x,BP ), the conversion of any universal
quantifier may be carried out by means of an Archimedean
t-norm T , while the existential quantifier by a t-conorm. For
instance, given the formula ψ = ∀x ϕ(x), we have:

fψ(X ,BP ) = g−1

(
min

{
g(0+),

∑
x∈X

g
(
fϕ(x,BP )

)})

(4)

where g is a generator of the t-norm T .
Since any generator function g is decreasing and g(1) =

0, a generator is a suitable choice to map the fuzzy conversion
of a formula into a constraint loss to be minimized. By

exploiting the same generator of T as loss function (i.e.
taking L = g) for ψ = ∀x ϕ(x) expressed by (4), we get
the following term L

(
fψ(X ,BP )

)
to be minimized:

L
(
fψ(X ,BP )

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

{
g(0+),

∑
x∈X

g(fϕ(x,BP ))

}
if T is nilpotent

∑
x∈X

g(fϕ(x,BP )) if T is strict

(5)

As a consequence, the following result can be provided with
respect to the convexity of the loss L

(
fψ(X ,BP )

)
.

Proposition 1 If g is a linear function and fψ is concave
then L

(
fψ(X ,BP )

)
is convex. If g is a convex function and

fψ is linear then L
(
fψ(X ,BP )

)
is convex.

Proof Both the arguments follow since, if fψ is concave
(we recall that a linear function is both concave and convex)
and g is a convex non-increasing function defined over a
univariate domain, then g ◦ fψ is convex.

Proposition 1 establishes a general criterion to define
convex constraints according to a certain generator depend-
ing on the fuzzy conversion fψ and, in turn, by the logical
expression ψ . In the following of this section, we show
some application cases of this proposition.

So far, we did not make any hypothesis on the formula
ϕ. In the following, different cases of interest for the
main connective of ϕ are reported. Given an additive
generator g for a t-norm T , additional connectives may
be expressed with respect to g, as reported by (2). If
P1, P2 are two unary predicate functions sharing the
same input domain X , the following formulas yield the
following penalty terms, where we supposed T strict for
simplicity:

∀x P1(x) −→ ∑
x∈X

g(P1(x))

∀x P1(x) ⇒ P2(x) −→ ∑
x∈X

max{0, g(P2(x)) − g(P1(x))}
∀x P1(x) ⇔ P2(x) −→ ∑

x∈X
| g(P1(x)) − g(P2(x)) |

Examples of derived losses According to the selection of
the generator, the same FOL formula can be mapped
to different loss functions. This enables us to design
customized losses that are more suitable for a specific
learning problem, or to provide a theoretical justification
to the losses that are already commonly utilized by the
machine learning community. Examples 5–8 show some
application cases. In particular, also the cross-entropy loss
(see Example 6) can be justified under the same logical
perspective.
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Example 5 If g(x) = 1 − x we get the Łukasiewicz t-norm,
that is nilpotent. Hence, from (5) we get:

L
(
fψ(X ,BP )

) = min

{
1,
∑
x∈X

(1 − (fϕ(x,BP )))

}
.

In case fψ is concave (e.g. if ψ belongs to the concave
fragment of Łukasiewicz logic [31]), this function is convex.

Example 6 If g(x) = − log(x) we get the Product t-
norm, that is strict. From (5) we get a generalization of the
cross-entropy loss:

L
(
fψ(X ,BP )

) = −
∑
x∈X

log(fϕ(x)) .

In case fψ(x) is linear (e.g. a literal), this function is convex.

Example 7 If g(x) = 1
x

− 1, with corresponding strict t-
norm T (x, y) = xy

x+y−xy
, the penalty term that is obtained

applying g to the formula ψ =∀x P1(x) ⇒ P2(x) is given
by

L
(
fψ(X ,BP )

) =
∑
x∈X

max

{
0,

1

P2(x)
− 1

P1(x)

}
.

Example 8 If g(x) = 1 − x2, with corresponding nilpotent
t-norm T (x, y) = min{1, 2 − x2 − y2}, we get for ψ =
∀x P1(x) ⇒ P2(x)

L
(
fψ(X ,BP )

)=min

{
1,
∑
x∈X

max
{

0, (P1(x))2 − (P2(x))2
}}

.

5.2 Simplication property

An interesting property of the presented formulation
consists in the fact that, in case of compound formulas,
several occurrences of the generator may be simplified.
For instance, the conversion fψ(X ,BP ) of the formula
ψ =∀x P1(x)⊗P2(x) ⇒ P3(x) with respect to the selection
of a strict t-norm generator g becomes:

quantif ier︷ ︸︸ ︷

g−1

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
x

g

⎛
⎜⎜⎜⎜⎜⎜⎝

implication︷ ︸︸ ︷

g−1

⎛
⎜⎝max

⎧⎪⎨
⎪⎩

0, g(P3(x))−g

⎛
⎜⎝

conjunction︷ ︸︸ ︷
g−1(g(P1(x))+g(P2(x)))

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= g−1
(∑

x max {0, g(P3(x)) − g(P1(x)) − g(P2(x))})

The simplification expressed on the lower side is general
and can be applied to a wide range of logical operators,
reducing the required number of applications of g−1 to
just the one in front of the expression. In these cases, by
applying L = g, the overall penalty of the formula can be
determined by just evaluating g on the predicate functions

and without applying g−1. Since g and g−1 can be in general
affected by numerical issues (e.g. g = − log), this property
may allow the implementation of more numerically stable
loss functions, totally preserving the initial semantics of the
formula.

However, this property does not hold for all the
connectives that are definable upon a certain generated t-
norm (see Definition 2). For instance, ∀x P1(x) ⊕ P2(x)

becomes:

g−1
(∑

x

g(1 − g−1(g(1 − P1(x)) + g(1 − P2(x))))
)

This suggests to identify the connectives that allow, on
one hand the simplification of any occurrence of g−1 in
L
(
fψ(X ,BP )

)
, and on the other hand the evaluation of g

only on grounded predicates. For short, in the following we
say that the formulas built upon such connectives have the
simplification property.

Lemma 1 Any formula ϕ whose connectives are restricted
to {∧, ∨, ⊗, ⇒, ∼, ⇔} has the simplification property.

Proof The proof is by induction with respect to the number
l ≥ 0 of connectives occurring in ϕ.

• If l = 0, i.e. ϕ = Pj (xi) for a certain j ≤ J and xi ∈ X ,
then g(fϕ) = g(Pj (xi)). Hence ϕ has the simplification
property.

• If l = k + 1 then ϕ = (α ◦ β) for ◦ ∈ {∧, ∨, ⊗, ⇒, ∼,

⇔} and we have the following cases.

– If ϕ = (α ∧ β) then we get g(min{fα, fβ}) =
max{g(fα), g(fβ)}. The claim follows by an
inductive hypothesis on α, β whose number of
involved connectives is less or equal than k.
The argument still holds replacing ∧ with ∨
and min with max.

– If ϕ = (α ⊗ β) then we get

g(g−1(min{g(0+), g(fα) + g(fβ)}))
= min{g(0+), g(fα) + g(fβ)} .

As in the previous case, the claim follows by
inductive hypothesis on α, β.

– The remaining of the cases can be treated in
the same way and noting that ∼ α = α ⇒ 0.

The simplification property provides several advantages
from an implementation point of view. First, it allows
the evaluation of the generator function only on grounded
predicate expressions and avoids an explicit computation
of the pseudo-inverse g−1. Second, this property provides
a general method to implement n-ary t-norms, of which
universal quantifiers can be seen as a special case since we
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only deal with finite domains (see Section 7). Moreover, it
is worth to notice that this property does not rely on specific
assumptions on the neural models adopted to implement the
predicate functions nor on the chosen fuzzy logic exploited
for the relaxation. As a result, Lemma 1 can be applied in a
wide range of cases.

Finally, the simplification property yields an interesting
analogy between truth-functions and loss functions. In
logic, the truth degree of a formula is obtained by combining
the truth degree of its sub-formulas by means of connectives
and quantifiers. In the same way, the loss corresponding
to a formula that satisfies the simplification property is
obtained by combining the losses corresponding to its sub-
formulas, while connectives and quantifiers combine losses
rather than truth degrees.

5.3 Manifold regularization: an example

Let us consider a simple multi-task classification problem
where two objects A, B must be detected in a set of input
images I, represented as a set of features. The learning
task consists in determining the predicates PA(i), PB(i),
which return true if and only if the input image i is
predicted to contain the object A, B, respectively. The
positive supervised examples are provided as two sets (or
equivalently their membership functions) PA ⊂ I, PB ⊂
I with the images known to contain the object A, B,
respectively. The negative supervised examples for A, B

are instead provided as two sets NA ⊂ I, NB ⊂ I.
Furthermore, the location where the images have been taken
is assumed to be known, and a predicate SameLoc(i1, i2) is
used to express whether two images i1, i2 have been taken in
the same location. Finally, we assume that two images taken
in the same location are likely to contain the same object.
This knowledge about the environment can be enforced via
Manifold Regularization, which regularizes the classifier
outputs over the manifold built by the image co-location
defined via the SameLoc predicate.

The overall knowledge on this learning task can be
expressed using FOL via the statement declarations shown
in Table 2, where it was assumed that images i 23, i 60
have been taken in the same location and it holds that
PA = {i 10, i 101}, PB = {i 103}, NA = {i 11} and

Table 2 Example of a learning task expressed using FOL

∀i1, i2 : SameLoc(i1, i2) ⇒ (PA(i1) ⇔ PA(i2))

∀i1, i2 : SameLoc(i1, i2) ⇒ (PB(i1) ⇔ PB(i2))

∀i : (PA(i) ⇒ PA(i)) ∧ (NA(i) ⇒ ¬PA(i))

∀i : (PB(i) ⇒ PB(i)) ∧ (NB(i) ⇒ ¬PB(i))

PA(i 10) = 1, PA(i 101) = 1, NA(i 11) = 1, PB(i 103) = 1

SameLoc(i 23, i 60) = 1

NB = ∅. The statements define the constraints that the
learners must respect on all the available samples, expressed
as FOL rules. Please note that also the fitting of the
supervisions on specific input images are expressed as
constraints.

Given the selection of a strict generator g and a set of
images I⊆ I, the FOL knowledge in Table 2 is compiled
into the following optimization task:

arg min
BP

β1

∑
i∈PA

g(PA(i)) + β2

∑
i∈NA

g(1 − PA(i))

+β3

∑
i∈PB

g(PB(i)) + β4

∑
i∈NB

g(1 − PB(i))

+β5

∑
(i1,i2)∈Isl

| g(PA(i1)) − g(PA(i2)) |

+β6

∑
(i1,i2)∈Isl

| g(PB(i1)) − g(PB(i2)) |

where BP = {PA, PB}, each βi is a meta-parameter
deciding how strongly the i-th contribution should be
weighted, Isl is the set of image pairs having the same
location Isl = {(i1, i2) : SameLoc(i1, i2)}. The first
four elements of the cost function express the fitting of
the supervised data, while the latter two express manifold
regularization over co-located images.

6 Experimental results

The experimental results have been carried out using the
Deep Fuzzy Logic (DFL) software2 which allows us to
inject prior knowledge in form of a set of FOL formulas
into a machine learning task. The formulas are compiled
into differentiable constraints using the theory of generators
as described in the previous sections. The learning task
is then cast into an optimization problem like shown in
Section 5.3 and, finally, optimized using the TensorFlow
(TF) environment3 [43]. In the following section, it is
assumed that each FOL constant corresponds to a tensor
storing its feature representation. Predicates are mapped to
generic functions in the TF computational graph. If the
function does not contain any learnable parameter in the
graph, it is said to be given, otherwise the function/predicate
is said to be learnable, and its parameters will be optimized
to maximize the constraints satisfaction. Please note that
any learner expressed as a TF computational graph can be
transparently incorporated into DFL.

2http://sailab.diism.unisi.it/deep-logic-framework/
3https://www.tensorflow.org/
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6.1 The learning task

The CiteSeer dataset [44] consists of 3312 scientific papers,
each one assigned to one of six classes: Agents, AI, DB,
IR, ML and HCI. The papers are not independent as they
are connected by a citation network with 4732 links. This
dataset defines a relational learning benchmark, where it
is assumed that the representation of an input document is
not sufficient for its classification without exploiting the
citation network. The citation network can be used to inject
useful information into the learning task, as it is often true
that two papers connected by a citation belong to the same
category.

This knowledge can be expressed by providing a general
rule of the form: ∀x ∀y Cite(x, y) ⇒ (

P(x) ⇐⇒ P(y)
)
,

where Cite is a binary predicate encoding the fact that
x is citing y and P is a task function implementing
the membership function of one of the six considered
categories. This logical formula expresses a form of
manifold regularization, which often emerges in relational
learning tasks. Indeed, by linking the prediction of two
distinct documents, the behavior of the underlying task
functions is regularized enforcing smooth transition over the
manifold induced by the Cite relation.

Each paper is represented via its bag-of-words, which is
a vector having the same size of the vocabulary with the
i-th element having a value equal to 1 or 0, depending on
whether the i-th word in the vocabulary is present or absent
in the document, respectively. In particular, the dictionary
in this task consists of 3703 unique words. The set of input
document representations is indicated by X, which is split
into a train and test set Xtr and Xte, respectively. The
percentage of documents in the two splits is varied across
the different experiments. The six task functions Pi with
i ∈ {Agents, AI, DB, IR, ML, HCI } are bound to the six
outputs of a Multi-Layer-Perceptron (MLP) implemented
in TF. The neural architecture has 3 hidden layers, with
100 ReLU units each, and softmax activation on the output.
Therefore, the task functions share the weights of the
hidden layers in such a way that all of them can exploit
a common hidden representation. The Cite predicate is a
given function, which outputs 1 if the document passed
as first argument cites the document passed as second
argument, otherwise it outputs 0. Furthermore, an additional
given predicate Pi is defined for each Pi , such that it outputs
1 if and only if x is a positive example for the category
i (i.e. it belongs to that category). Pi is a supervision
predicate, which easily allows us to introduce a supervised
signal using FOL ( Section 5.1). A manifold regularization
learning problem [46] can be defined by providing, ∀i ∈

{Agents, AI, DB, IR, ML, HCI }, the following two FOL
formulas:

∀x ∀y Cite(x, y) ⇒ (
Pi(x) ⇔ Pi(y)

)
(6)

∀x Pi (x) ⇒ Pi(x) (7)

where only positive supervisions have been provided
because the trained networks for this task employ a softmax
activation function on the output layer, which has the effect
of imposing mutually exclusivity among the task functions,
reinforcing the positive class and discouraging all the others.

DFL allows the user to specify the weights of the
formulas, which are treated as hyperparameters. Since we
use two formulas per predicate, the weight of the formula
expressing the fitting of the supervisions (7) is set to a
fixed value equal to 1, while the weight of the manifold
regularization rule (6) is cross-validated from the grid of
values {0.1, 0.01, 0.006, 0.003, 0.001, 0.0001}.

6.2 Results

The experimental results measure different aspects of the
integration of the prior logic knowledge into a supervised
learning task. In particular, different experiments have been
designed to track the speed at which the training process
converges to the best solution, and how the classification
accuracy changes with a variable amount of training data.

Training convergence rate This experimental setup aims at
verifying the relation between the choice of the generator
and the speed of convergence of the training process. In
particular, a simple supervised learning setup is assumed
for this experiment, where the learning task enforces the
fitting of the supervised examples as defined by (7). The
training and test sets are composed of 90% and 10% of
the total number of papers, respectively. Two parameterized
families of t-norms have been considered: the SS family
(Definition 4) and the Frank family (Definition 5). Their
parameter λ was varied to construct classical t-norms for
some special values of the parameter but also to evaluate
some intermediate ones. In order to keep a clear intuition
behind the results, optimization was initially carried out
using simply a Gradient Descent schema with a fixed
learning rate equal to η = 10−5. Results are shown in
Fig. 3(-a) and (-b): it is evident that strict t-norms tend
to learn faster than nilpotent ones by penalizing more
strongly highly unsatisfied ground formulas. This difference
is significant, although slightly reduced, when leveraging
the state-of-the-art dynamic learning rate optimization
algorithm Adam [45] as shown in Fig. 3-c and -d. This
finding is consistent with the empirically well known fact
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Fig. 3 Learning dynamics in
terms of test accuracy on a
supervised task when choosing
different t-norms generated by
the parameterized SS and Frank
families: (a.) and (b.) are
learning processes optimized
with standard gradient descent,
while (c.) and (d.) are optimized
with Adam [45]

that the cross-entropy loss performs well in supervised
learning tasks for deep architectures, because it is effective
in avoiding gradient vanishing in deep architectures. The
cross-entropy loss corresponds to a strict generator with
λ = 0 and λ = 1 in the SS and Frank families, respectively.
This selection corresponds to a fast and stable converging
solution when paired with Adam, while there are faster
converging solutions when using a fixed learning rate.

Classification accuracy The effect of the selection of the
generator on the classification accuracy is tested on a
classification problem with manifold regularization. This
learning task works in a transductive setting, where all
the data is available at training time, even if only the
training set supervisions are used during learning. In
particular, the data is split into different datasets, where
{10%, 25%, 50%, 75%, 90%} of the available data is used
as a test set, while the remaining data is used as training
set. The fitting of the supervised data defined by (7) is
enforced for the training data during the learning process,
whereas manifold regularization (6) can be enforced on all
the available data. The Adam optimizer and the SS family of
parametric t-norms have been employed in this experiment.
Table 3 shows the average test accuracy and its standard
deviation over 10 different samples of the train/test splits.
As expected, all generator selections improve the final

accuracy over what obtained by pure supervised learning, as
manifold regularization brings relevant information to the
learner.

Table 3 also shows the test accuracy when the parameter
λ of the SS parametric family is selected from the grid
{−1.5, −1, 0, 1, 1.5}, where values of λ ≤ 0 move across
strict t-norms (with λ = 0 being the product t-norm), and
values greater than 0 move across nilpotent t-norms (with
λ = 1 being the Łukasiewicz t-norm). Strict t-norms seem to
provide slightly better performances than nilpotent ones on
supervised tasks for the vast majority of the splits. However,
this does not hold in manifold regularization learning tasks
and a limited number of supervisions, where nilpotent t-
norms perform better. An explanation of this behavior can
be found in the different nature of the two constraints.
Indeed, while supervisions provide hard constraints that
need to be strongly satisfied, manifold regularization is a
general soft rule, which should allow exceptions. When the
number of supervision is small and manifold regularization
drives the learning process, the milder behavior of nilpotent
t-norms performs better, as it more closely models the
semantics of the prior knowledge. Finally, it is worth
noticing that very strict t-norms (e.g. λ = −1.5 in the
considered experiment) provide higher standard deviations
compared to other t-norms, especially in the manifold
regularization setup. This provides some evidence of a
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Table 3 Test accuracy of collective classification in a transductive
setting on the Citeseer dataset for different percentages of available
training data and different selections of the parameter λ of the SS
generator family

% Test λ Supervised Manifold

Avg Accuracy Stddev Avg Accuracy Stddev

10% −1.5 72.44 0.8 79.07 1.07

−1.0 72.26 0.96 79.37 0.68

0.0 71.63 0.74 79.37 0.84

1.0 71.57 0.88 78.58 0.69

1.5 71.93 1.11 77.77 0.89

25% −1.5 72.22 0.46 77.17 0.70

−1.0 72.02 0.52 77.51 0.72

0.0 71.35 0.56 77.39 0.50

1.0 71.22 0.47 77.36 0.64

1.5 71.51 0.77 76.41 0.57

50% −1.5 70.94 0.56 75.52 0.46

−1.0 70.98 0.51 76.16 0.32

0.0 70.49 0.52 75.71 0.39

1.0 70.07 1.71 76.39 0.46

1.5 70.09 0.47 75.97 0.55

75% −1.5 67.06 0.58 72.25 0.50

−1.0 66.96 0.44 72.48 0.50

0.0 67.02 0.54 72.73 0.61

1.0 66.34 0.29 73.77 0.34

1.5 65.93 0.64 73.37 0.37

90% −1.5 61.09 0.78 66.02 2.51

−1.0 61.59 0.44 67.24 1.72

0.0 61.52 0.33 68.60 0.75

1.0 61.31 0.52 70.69 0.52

1.5 61.17 0.84 70.32 0.89

trade-off between the improved learning speed provided by
strict t-norms and the introduced training instability due to
their extremely non-linear behavior.

Competitive evaluation Table 4 compares the accuracy
of the selected neural model (NN) trained only with
the supervised constraint against other two content-based
classifiers, namely logistic regression (LR) and Naive Bayes
(NB). These baseline classifiers have been compared against
collective classification approaches using the citation
network data: Iterative Classification Algorithm (ICA) [47]
and Gibbs Sampling (GS) [48] applied on top of the output
of the LR and NB content-based classifiers.

Furthermore, the results are compared against the two
top performers on this task: Loopy Belief Propagation
(LBP) [49] and Relaxation Labeling through Mean-Field
Approach (MF) [49]. Finally, the results of DFL were built
by training the same neural network with both supervision

Table 4 Comparison of the test accuracy on the Citeseer dataset
obtained by content based and relational classifiers against supervised
and relational learning expressed using DFL

Classification

Method Accuracy

Naive Bayes 74.87

ICA Naive Bayes 76.83

GS Naive Bayes 76.80

Logistic Regression 73.21

ICA Logistic Regression 77.32

GS Logistic Regression 76.99

Loopy Belief Propagation 77.59

Mean Field 77.32

NN 72.26

DFL 79.37

All reported results are computed as average over 10 random splits of
the train and test data. The bold number indicates the best performer
and a statistically significant improvement over the competitors

and manifold regularization constraints, for which it was
used a generator from the SS family with λ = −1. The
accuracy values are obtained as an average over 10-folds
created by random splits of 90% and 10% of the data for the
train and test sets, respectively. Unlike the other relational
approaches that can only be executed at inference time
(collective classification), DFL can distill the knowledge
in the weights of the neural network. The accuracy results
are the highest among all the tested methodologies, in
spite of the fact that the neural network trained only on
the supervisions performs slightly worse than the other
content-based competitors.

7 Discussion and practical implications

The presented framework can be contextualized among
a new class of learning frameworks, which exploits the
continuous relaxation of FOL to integrate logic knowledge
in the learning process [5, 6, 21, 33].

Ease of design andnumerical stability Previous frameworks
in this class require an a-priori definition of the operators of
a given t-norm fuzzy logic. On the other hand, the presented
framework requires only the generator to be defined. This
provides two main advantages: a minimum design effort and
an improved numerical stability. Indeed, it is possible to
apply the generator only on grounded atoms by exploiting
the simplification property to apply the penalty function
(generator) to the atoms, whereas all compositions are
performed via stable operators (e.g. min,max,sum). On the
contrary, the previous FOL relaxations correspond to an
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arbitrary mix of non-linear operators, which can potentially
lead to numerically unstable implementations.

Tensor-based integration The presented framework pro-
vides a fundamental advantage in the integration with
tensor-based machine learning frameworks like Tensor-
Flow [43] or PyTorch [50]. Modern deep learning archi-
tectures can be effectively trained by leveraging tensor
operations performed via Graphics Processing Units (GPU).
However, this ability is conditioned on the possibility of
concisely express the operators in terms of parallelizable
operations like sums or products over n arguments, which
are often implemented as atomic operations in GPU com-
puting frameworks, without requiring to resort to slow
iterative procedures. Fuzzy logic operators can not be
easily generalized to their n-ary form. For example, the
Łukasiewicz conjunction TL(x, y) = max{0, x + y − 1}
can be generalized to n-ary form as TL(x1, x2, . . . , xn) =
max{0,

∑n
i=1(xi) − n + 1}. On the other hand, the gen-

eral SS t-norm T SS
λ (x, y) = (xλ + yλ − 1)

1
λ , with −∞ <

λ < 0, does not have any (similarly simple) general-
ization and the implementation of the n-ary form must
resort to an iterative application of the binary form, which
is very inefficient in tensor-based computations. Previous
frameworks like LTN and SBR had to limit the form of
the formulas that can be expressed, or carefully select the
t-norms in order to provide efficient n-ary implementa-
tions. However, the presented framework can express oper-
ators in n-ary form in terms of the generators. Thanks to
the simplification property, n-ary operators for any con-
tinuous Archimedean t-norm can always be expressed as
T (x1, x2, . . . , xn) = g−1(min{g(0+),

∑n
i=1 g(xi)}) in gen-

eral, and T (x1, x2, . . . , xn) = g−1(
∑n

i=1 g(xi)) if T is
strict.

Limitations Linking the loss function to the desired fuzzy
semantics via the single choice of the t-norm generator
guarantees logic coherence and simplification properties,
but does not guarantee to achieve the highest accuracy for
a given task. Another limitation of this approach is that it
may not be directly applicable to neural-symbolic models
not relaxing the Boolean formulas using t-norm fuzzy logic
operators.

8 Conclusions

This paper presents a framework to embed prior knowledge
expressed as logic statements into a learning task yielding
several important contributions. First, we showed how
human knowledge in the form of logical rules can be
translated into differentiable loss functions used during
learning. A critical aspect of our approach is that the

translation from logic formulas to loss functions is uniquely
defined by the choice of a unique operator, i.e. the
generator of the corresponding t-norm. This feature clearly
distinguishes our approach from the majority of related
methods, which are often based on multiple specific choices
for each of the fuzzy operators. Second, we have shown
that the classical loss functions for supervised learning
are naturally recovered within the theory, and that the use
of parametric t-norm generators allows the definition of
entire classes of loss functions with different convergence
properties. The choice of the parameter can therefore be
guided by the requirements of the specific applications.
Third, the presented theory has driven to the implementation
of a general software simulator, called Deep Fuzzy Logic
(DFL), which bridges logic reasoning and deep learning
using the unifying concept of t-norm generator, as general
abstraction to translate any FOL declarative knowledge into
an optimization problem solved in TensorFlow. Finally, we
designed and implemented multiple experiments in DFL
which show how the proposed method allows the definition
of new loss functions with better performances both in
terms of accuracy and training efficiency. Furthermore, by
being able to incorporate logical knowledge seamlessly, our
method outperforms several related works on the task of
document classification in citation networks.

As future work, we plan to extend the method by
allowing the learning of the parameters of the t-norm
generator from data. In this regard, casting what presented
in this paper within a Bayesian framework [24] is likely
a promising direction. Furthermore, we plan to expand the
range of applications of DFL to domains like visual question
answering [51] and structure learning [3].

Funding This project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement
No 825619. This work was also supported by TAILOR, a project
funded by EU Horizon 2020 research and innovation programme under
GA No 952215. Giuseppe Marra is funded by Research Foundation-
Flanders (FWO-Vlaanderen, 1239422N). This project has received
funding from the European Union’s Horizon-MSCA-2021 research
and innovation program under grant agreement No 101073307.

Declarations

Conflict of Interests The authors declare that they have no competing
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

18787T-Norms driven loss functions for machine learning

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436

2. Selbst A, Powles J (2018) meaningful information and the right
to explanation. In: Conference on fairness, accountability and
transparency. PMLR, pp 48–48
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