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Abstract

We introduce Differentiable Reasoning (DR), a novel semi-supervised learning
technique which uses relational background knowledge to benefit from unlabeled data.
We apply it to the Semantic Image Interpretation (SII) task and show that background
knowledge provides significant improvement. We find that there is a strong but inter-
esting imbalance between the contributions of updates from Modus Ponens (MP) and
its logical equivalent Modus Tollens (MT) to the learning process, suggesting that our
approach is very sensitive to a phenomenon called the Raven Paradox [10]. We propose
a solution to overcome this situation.

1 Introduction

Semi-supervised learning is a common class of methods for machine learning tasks where
we consider not just labeled data, but also make use of unlabeled data [2]. This can be very
beneficial for training in tasks where labeled data is much harder to acquire than unlabeled
data.
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One such task is Semantic Image Interpretation (SII) in which the goal is to generate
a semantic description of the objects on an image [7]. This description is represented as
a labeled directed graph, which is known as a scene graph [13]. An example of a labeled
dataset for this problem is VisualGenome [15] which contains 108,077 images to train
156,722 different unary and binary predicates. The binary relations in particular make
this dataset very sparse, as there are many different pairs of objects that could be related.
However, a far larger, though unfortunately unlabeled, dataset like ImageNet [24] contains
over 14 million different pictures. Because it is so much larger, it will have many examples
of interactions that are not present in VisualGenome. We show that it is possible to improve
the performance of a simple classifier on the SII task significantly by adding the satisfaction
of a first-order logic (FOL) knowledge base to the supervised loss function. The computation
of this satisfaction uses an unlabeled dataset as its domain.

For this purpose, we introduce a statistical relational learning framework called Differ-
entiable Reasoning (DR) in Section 2, as our primary contribution. DR uses simple logical
formulas to deduce new training examples in an unlabeled dataset. This is done by adding a
differentiable loss term that evaluates the truth value of the formulas.

In the experimental analysis, we find that the gradient updates using the Modus Ponens
(MP) and Modus Tollens (MT) rules are disproportionate. That is, MT often strongly
dominates MP in the learning process. Such behavior suggests that our approach is highly
sensitive to the Raven Paradox [10]. It refers to the phenomenon that the observations
obtained from “All ravens are black” are dominated by its logically equivalent “All non-black
things are non-ravens”. Indeed, this is closely related to the material implication which
caused a lot of discussion throughout the history of logic and philosophy [8]. Our second
main contribution relies on its investigation in Section 2.4, and our proposal to cope with
it. Finally, we show results on a simple dataset in Section 3 and analyze the behavior of the
Raven Paradox in Section 4. Related works and conclusion closes the paper.

2 Differentiable Reasoning

2.1 Basics and Notation

We assume a knowledge base K is given in a relational logic language, where a formula
ϕ ∈ K is built from predicate symbols P ∈ P , a finite set D of objects (also called constants)
o ∈ Rm with m ∈ Z+, and variables x ∈ V , in the usual way (see [28]). We also assume
that every ϕ ∈ K is in Skolem normal form. For a vector of objects and variables, we use
boldfaced o and x, respectively. A ground atom is a formula with no logical connective and
no variables, e.g., partOf(cushion, chair) where partOf ∈ P and cushion, chair ∈ D.
Given a subset Di ⊆ D, a Herbrand base Ai corresponding to Di is the set of all ground
atoms generated from Di and P . A world (often called a Herbrand interpretation) wi for
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i = 1, · · · , |Ol| i = 1, · · · , |Ou|
ϕ ∈ K

θ

wl
i

Dl
i

Du
i

wu
i ϕ

Figure 1: The Bayesian network describing the joint probability p(Wl,Wu,K|Ol,Ou,θ).
The left plate is the supervised classification likelihood and the right plates the unsupervised
part in which we calculate the probability of the formulas K. The parameters θ are shared in
both parts.

Di assigns a binary truth value to each ground atom P(o) ∈ Ai i.e., wi(P(o)) ∈ {0, 1}.
Each predicate P has a corresponding differentiable function fθ

P(o) ∈ Rα(P)×m → [0, 1]
parameterized by θ (a vector of reals) with α(P) being the arity of P, which calculates the
probability of P(o). This function could be, for instance, a neural network.

Next, we define a Bernouilli distribution function over worlds as follows

p(wi|θ, Di) =
∏

P(o)∈Ai

fθ
P(o)wi(P(o)) · (1− fθ

P(o))1−wi(P(o)) (1)

where wi(P(o)) (similarly, 1−wi(P(o))) refers to the exponent. Given some world wi, the
valuation function v(ϕ,wi) is 1 if ϕ is true in that world, that is, wi |= ϕ, and 0 otherwise.

Next, we explain the domain we use in this article. We have a dataset D partitioned into
two parts: a labeled dataset Dl = 〈Ol,Wl〉 and an unlabeled dataset Du = 〈Ou, ∅〉 where
both Ol and Ou are sets of finite domains Di, andWl is a set containing the correct world
wl∗
i for all pictures i.

In Figure 1 we illustrate the Bayesian network associated with this problem. The left
plate denotes the usual supervised data likelihood p(Wl|Ol,θ) and the right plates denote
the probabilities of the truth values of the formulas ϕ ∈ K using p(K|Ou,θ).

It is important to note that the true worlds wu∗
i of the unlabeled dataset are not known,

that is, they are latent variables and they have to be marginalized over. The formulas in
knowledge base K are all assumed to be true. We can now obtain the optimization problem

3
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that we can solve using gradient descent as

θ∗ = arg max
θ

p(Wl|Ol,θ) · p(K|Ou,θ) (2)

= arg max
θ

|Ol|∏
i=1

p(wl∗
i |Dl

i,θ) ·
|Ou|∏
i=1

∑
wu

i

p(wu
i |Du

i ,θ) ·
∏
ϕ∈K

v(ϕ,wu
i ) (3)

= arg min
θ

−
|Ol|∑
i=1

log p(wl∗
i |Dl

i,θ)

−
|Ou|∑
i=1

log

∑
wu

i

p(wu
i |Du

i ,θ) ·
∏
ϕ∈K

v(ϕ,wu
i )

 (4)

where in the last step we take the log and minimize with respect to the negative value. The
optimization problem in Equation 4 consists of two terms. The first is the cross-entropy
loss for supervised labeled data. The second can be understood as follows: A world entails
a (full) knowledge base (i.e., w |= K) if w |= ϕ holds for all ϕ ∈ K (that is, the product
of their valuations is 1). For each domain Di, we then find the sum of the probabilities of
worlds that entail the knowledge base. This is an example of what we call the differentiable
reasoning loss. The general differentiable reasoning objective is given as

θ∗ = arg min
θ

−
|Ol|∑
i=1

log p(wl∗
i |Dl

i,θ) + LDR(θ;K,Ou). (5)

2.2 Differentiable Reasoning Using Product Real Logic

The marginalization over all possible worlds wu
i requires 2|Ai| combinations, so it is expo-

nential in the size of the Herbrand base. Therefore, the problem of finding the sum of the
probabilities p(wi|θ) for all worlds wi that entail the knowledge base K is #P-complete [23]
Instead, we shall perform a much simpler computation defined over logical formulas and the
parameters θ as follows:
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LDR(θ;K,Ou) =
∑
ϕ∈K
L(θ;ϕ,Ou) (6)

L(θ;∀xφ,Ou) = −
∑

D∈Ou,o∈D
log p̂(φ|x = o,θ) (7)

p̂(P(x1, ..., xα(P))|x = o,θ) = fθ
P(o1, ..., oα(P)) (8)

p̂(¬φ|x = o,θ) = 1− p̂(φ|x = o,θ) (9)

p̂(φ ∧ ψ|x = o,θ) = p̂(φ|x = o,θ) · p̂(ψ|x = o,θ) (10)

p̂(φ ∨ ψ|x = o,θ) = p̂(¬(¬φ ∧ ¬ψ)|x = o,θ) (11)

p̂(φ→ ψ|x = o,θ) = p̂(¬φ ∨ ψ|x = o,θ) (12)

where α : P → Z+ is the arity function for each predicate symbol, and φ and ψ are
subformulas of ϕ. p̂ computes the fuzzy degree of truth of some formula ϕ using the product
norm and the Reichenbach implication [1], which makes our approach a special case of Real
Logic [26] that we call Product Real Logic. The ∀ quantifier is interpreted in Equation 7 by
going through all instantiations, which in this case is all n-tuples in the domain Di, and also
looping over all domains Di in the set of domains (i.e., pictures) Oi.

Example 1. The loss term associated with the formula ϕ = ∀x, y chair(x)∧partOf(y, x)→
cushion(y) ∨ armRest(y) is computed as follows:

L(θ;ϕ,Ou) = −
∑

D∈O,o1,o2∈D
1− fθ

chair(o1) · fθ
partOf(o2, o1)·

(1− fθ
cushion(o2)) · (1− fθ

armRest(o2))

Say Ou contains the picture in Figure 2 whose domain is {a, b} and the model predicts
the following distribution over worlds:

fθ
chair(a) = 0.9 fθ

chair(b) = 0.4
fθ

cushion(a) = 0.05 fθ
cushion(b) = 0.5

fθ
armRest(a) = 0.05 fθ

armRest(b) = 0.1
fθ

partOf(a, a) = 0.001 fθ
partOf(b, b) = 0.001

fθ
partOf(a, b) = 0.01 fθ

partOf(b, a) = 0.95

The model returns high values for fθ
chair(a) and fθ

partOf(b, a) but it is not confident of
fθ

cushion(b), even though it is clearly higher than fθ
armRest(b). We can decreaseL(θ;ϕ,Ou) =

5
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∀xypartOf(a, a) ∧ → partOf(b, b)∧→

partOf(b, a)

∧ →

partOf(a, b)

∧→
cushion(a)

chair(a)

chair(b)

cushion(b)

Figure 3: The Bayesian network associated with grounding of the formula ∀x, y chair(x) ∧
partOf(y, x) → cushion(y) on the domain from Figure 2. We treat connectives and
quantifiers as binary random variables (which correspond to subformulas through their
parents) of which the conditional probabilities are computed using truth tables.

0.612 simply by increasing fθ
cushion(b), since fθ

cushion is a differentiable function with respect
to θ.

This example shows that we can find a new instance of the cushion predicate using
reasoning on an unlabeled dataset. This process uses both statistical reasoning and symbolic
rules. As more data improves generalization, those additional examples could help reducing
the sparsity of the SII problem. Furthermore, [7] showed that it is also possible to correct
wrong labels due to noisy data when these do not satisfy the formulas.

Figure 3 shows the Bayesian Network for this formula on the picture from Figure 2,
illustrating the computation path. We treat each subformula as a binary random variable
of which the conditional probabilities are given by truth tables. Because the graph is not
acyclic, we can use loopy belief propagation which is empirically shown to often be a good
approximation of the correct probability [18]. In fact, Product Real Logic can be seen as
performing a single iteration of belief propagation. However, this can be problematic. For
example, the degree of truth of the ground formula chair(o) ∧ chair(o) would be computed
using fθ

chair(o)2 instead of the probability of this statement, fθ
chair(o) [22]. We show in

Appendix A that Product Real Logic computes the correct probability p(K|Ou,θ) for a
corpus K under the strong assumption that, after grounding, each ground atom is used at
most once.

An interesting and useful property of our approach is that it can perform multi-hop
reasoning in an iterative, yet extremely noisy, manner. In one iteration it might, for instance,
increase fθ

cushion(o). And since fθ
cushion(o) will return higher values in future iterations, it

can be used to prove that the probability of other ground atoms that occur in formulas with
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cushion(o) should also be increased or decreased.

Figure 2: We can deduce that b
is a cushion if we are confident
about the truth value of chair(a)
and partOf(b, a) using the formula
∀x, y chair(x) ∧ partOf(y, x) →
cushion(y).

A convenient property of the SII task is that we
consider just binary relations between objects ap-
pearing on the same pictures. The Herbrand base
then contains O(|P| · |Di|2) ground atoms, which is
feasible as there are often not more than a few dozen
objects on an image. This property also holds in nat-
ural language to some degree in the following way:
only the words appearing in the same paragraph can
be related. This is in contrast to the knowledge base
completion task where we have a single graph with
many objects and predicates [27].

2.3 Implementation

We optimize the negative logarithm of the likelihood
function given in Equation 4. In particular, we use
minibatch gradient descent to decrease the computa-
tion time both for the supervised part of the loss and
the unsupervised part. We turn the unsupervised loss
into minibatch gradient descent by approximating
the computation of the ∀ quantifier: instead of summing over all n-tuples and all domains,
we randomly sample from these n-tuples independently from the domain it belongs to.

2.4 The Material Implication

To provide a better understanding of the inner machinery of our approach, we will elaborate
on some interesting partial derivatives. Say, we have a formula ϕ of the form ∀xφ(x) →
ψ(x), where φ(x) is the antecedent and ψ(x) the consequent of ϕ. First, we write out the
partial derivative of L(θ;ϕ,Ou) with respect to the consequent, where we make use of the
chain rule:

dMP
ϕ (o) := ∂ log p̂(ϕ|Ou,θ)

∂p̂(ψ|o,θ) =
∂

∑
o∈D,D∈Ou

log p̂(φ→ ψ|o,θ)
∂p̂(ψ|o,θ) (13)

=
∂

∑
o∈D,D∈Ou

log(1− p̂(φ|o,θ) · (1− p̂(ψ|o,θ)))
∂p̂(ψ|o,θ) (14)

= p̂(φ|o,θ)
1− p̂(φ|o,θ) · (1− p̂(ψ|o,θ))) = p̂(φ|o,θ)

p̂(φ→ ψ|o,θ) (15)

7



VAN KRIEKEN, ACAR AND VAN HARMELEN

dMP
ϕ (o) mirrors the application of the Modus Ponens (MP) rule using the implication

φ→ ψ for the assignment of o to x. The MP rule says that if φ is true and φ→ ψ, then ψ
should also be true. Similarly, if φ(o) is likely and φ→ ψ, then ψ(o) should also be likely.
Indeed, notice that dMP

ϕ (o) grows with p̂(φ|o,θ). Also, dMP
ϕ (o) is largest when p̂(φ|o,θ) is

high and p̂(ψ|o,θ) is low as it then approaches a singularity in the divisor. We next show
the derivation with respect to the negated antecedent:

dMT
ϕ (o) := ∂ log p̂(ϕ|Ou,θ)

∂p̂(¬φ|o,θ) = p̂(¬ψ|o,θ)
p̂(φ→ ψ|o,θ) (16)

Similarly, it mirrors the application of the Modus Tollens (MT) rule which says that if
ψ is false and φ→ ψ, then φ should also be false. Again, realize that dMT

ϕ (o) grows with
p̂(ψ|o,θ).

It is easy to see that dMP
ϕ (o) > dMT

ϕ (o) whenever p̂(φ|o,θ) > p̂(¬ψ|o,θ). Furthermore,
the global minimum of L(θ;ϕ,Ou) is some parameter value θ∗ so that p̂(φ|Ou,θ∗) = 0
and p̂(ψ|Ou,θ∗) = 1 for all o, which corresponds to the material implication.

Next, we show how these quantities are used in the updating of the parameters θ using
backpropagation and act as mixing components on the gradient updates:

log p̂(ϕ|Ou,θ)
∂θ

=
∑

o∈D,D∈Ou

dMP
ϕ (o) · ∂p̂(ψ|o,θ)

∂θ
+ dMT

ϕ (o) · ∂p̂(¬φ|o,θ)
∂θ

(17)

2.5 The Raven Paradox

In our experiments, we have found that this approach is very sensitive to the raven paradox
[10]. It is stated as follows: Assuming that observing an example of a statement is evidence
for that statement (i.e., the degree of belief in that statement increases), and that evidence for
a sentence also is evidence for all the other logically equivalent sentences, then our belief
in “ravens are black” increases when we observe non-black non-raven, by the contraposi-
tive “non-ravens are non-black”. Equation 17 shows however that the gradient is equally
determined by positive evidence (observing black ravens) as by contrapositive evidence
(observing non-black non-ravens). Because in the real world there are far more ravens than
non-black objects, optimizing p̂(∀o raven(o) → black(o)|Ou,θ) amounts to recognizing
that something is not a raven when it is not black. However, Machine Learning models tend
to be biased when the class distribution is unbalanced during training [30].

Figure 4 shows plots of dMP
ϕ (o) and dMT

ϕ (o) for different values of p̂(φ|o,θ) and
p̂(ψ|o,θ). In practice, for many formulas of this form, the most common case will be that
the model predicts ¬φ(o)∧¬ψ(o). Then, dMP

ϕ (o) approaches 0 and dMT
ϕ (o) will be around

1. For instance, the average value of dMP
ϕ (o) for the problem in Example 1 is 0.214, while

the average value of dMT
ϕ (o) is 0.458.
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Figure 4: Plots of dMP
ϕ (o) (Equation 15) and dMT

ϕ (o) (Equation 16). Note that the y axis is
using a log scale.

We analyze a naive way of dealing with this phenomenon. We normalize the contribution
to the total gradient of MP and MT reasoning by replacing the loss function L of rules of the
form ∀xφ(x)→ ψ(x) as follows:

L(θ;K,Ou) = −
∑
ϕ∈K

∑
o∈D,D∈Ou

µ · dMP
ϕ (o)∑

o′∈D,D∈Ou
dMP
ϕ (o′) · p̂(ψ|o,θ)

+
(1− µ) · dMT

ϕ (o)∑
o′∈D,D∈Ou

dMT
ϕ (o′) · p̂(¬φ|o,θ)

(18)

where µ is a hyperparameter that assigns the relative importance of Modus Ponens with
respect to Modus Tollens updates. We are then able to control how much either contributes
to the training process. We experiment with different values of µ and report our findings in
the next section.

3 Experiments

We carried out simple experiments on the PASCAL-PART dataset [3] in which the task is
to predict the type of the object in a bounding box and the partOf relation which expresses
that some bounding box is a part of another. For example, a tail can be a part of a cat. Like
in [7], the output softmax layer over the 64 object classes of a Fast R-CNN [9] detector is
used for the bounding box features. Note that this makes the problem of recognizing types

9
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very easy as the features correlate strongly with the true output types. Therefore, to get a
more realistic estimate, we randomly split the dataset into only 7 labeled pictures for Dl
and 2128 unlabeled pictures for Du. Additionally, we only consider 11 (related) types out
of 64 due to computational constraints. As there is a large amount of variance associated
with randomly splitting in this way, we do all our experiments on 20 random splits of the
dataset. The results are evaluated on a held-out validation set of 200 images. We compare
the accuracy of prediction of the type of the bounding box and the AUC (area under curve)
for the partOf relationship.

We model fθ
typei

(o) using a single Logic Tensor Network (LTN) layer [7] of width
10 followed by a softmax output layer to ensure mutual exclusivity of types. The term
fθ

partOf(o1, o2) is modeled using an LTN layer of width 2 and a sigmoid output layer. The loss
function is then optimized using RMSProp over 6000 iterations. We use the same relational
background knowledge as [7] which are rules like the following:

∀x, y chair(x) ∧ partOf(y, x)→ cushion(y) ∨ armRest(y)
∀x, y cushion(x) ∧ partOf(x, y)→ chair(y) ∨ bench(y)
∀x ¬partOf(x, x)
∀x, y partOf(x, y)→ ¬partOf(y, x)

Precision types
Supervised 0.440± 0.0013
Unnormalized 0.455± 0.0014
Normalized µ = 0 0.454± 0.0015
Normalized µ = 0.1 0.505± 0.0014
Normalized µ = 0.25 0.517± 0.0013
Normalized µ = 0.5 0.510± 0.0013
Normalized µ = 0.75 0.496± 0.0012
Normalized µ = 1 0.435± 0.0015

Table 1: Results of the experiments. 20 runs
using random splits of the data are averaged
alongside 95% confidence intervals. All results
are significant.

We compare three methods. In the
first one we train without any rules, which
forms the supervised baseline. In the sec-
ond, unnormalized, we add the rules to
the unlabeled data. This does not use any
technique for dealing with the raven para-
dox. In the last one called normalized, we
normalize MP and MT reasoning using
Equation 18 for several different values of
µ. The results in Table 1 are statistically
significant when using a paired t-test.

4 Analysis

Our experiments show that we can significantly improve on the classification of the types of
objects for this problem. The normalized method in particular outperforms the unnormalized
method, suggesting that explicitly dealing with the raven paradox is essential in this problem.

10
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4.1 Gradient Updates

We analyze how the different methods handle the implication using the quantities dMP
ϕ

and dMT
ϕ defined in Section 2.4. Figure 5 shows the average magnitude of dMP

ϕ and dMT
ϕ

in the unnormalized model, which is computed by averaging over all training examples
and formulas. This shows that the average MT gradient update is, in this problem, around
100 times larger than the average MP gradient update, i.e., it uses far more contrapositive
reasoning. The unnormalized method acts very similar to the normalized one with µ ≈ 0.01.

Figure 5: The average magnitude of Modus
Ponens and Modus Tollens gradients.

Next, we will analyze how accurate our
approach is at reasoning by comparing its
’decisions’ to what should have been the
correct ’decision’. We sample 2000 pairs of
bounding boxes from the PASCAL-PART

test set 〈Ot,Wt〉. We consider a pair of
bounding boxes o from an image i in the
test set Ot. dMP

ϕ (o) is a correctly reasoned
gradient if both φ(o) and ψ(o) are true
in wt

i. Likewise, dMT
ϕ (o) is a correctly rea-

soned gradient if ¬ψ(o) and ¬φ(o) are true
in wt

i. Furthermore, we say that dMP
ϕ (o) is

a correctly updated gradient if at least ψ(o)
is true in wt

i, and that dMT
ϕ (o) is correctly

updated when ¬φ(o) is true in wt
i. Then

the correctly reasoned ratios are computed using

crMP =
∑
ϕ∈K

∑
o∈Di,Di∈Ot

v(φ,wt
i) · v(ψ,wt

i) · dMP
ϕ (o)∑

ϕ∈K
∑

o′∈Di,Di∈Ot
dMP
ϕ (o′) (19)

crMT =
∑
ϕ∈K

∑
o∈Di,Di∈Ot

v(¬φ,wt
i) · v(¬ψ,wt

i) · dMT
ϕ (o)∑

ϕ∈K
∑

o′∈Di,Di∈Ot
dMT
ϕ (o′) . (20)

The definition of the correctly updated ratios (cuMP and cuMT) are nearly the same.
cuMP is found by removing the v(φ,wt

i) term from Equation 19, and cuMT by removing the
v(¬ψ,wt

i) term from Equation 20.
Figure 6 shows the value of these ratios during training. The dotted lines that represent

MT reasoning shows a convenient property, namely that is nearly always correct because of
the large class imbalance. This could be the reason there is a significant benefit to adding
contrapositive reasoning. Both normalized and unnormalized at µ = 1 seems to get ’better’
at reasoning during training, as the correctly updated ratios go up. After training for some

11
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Figure 6: The left plot shows crMP and crMT and the right plot cuMP and cuMT for the
Unnormalized method (denoted as Unnorm) and the Normalized methods with µ = 0.25
and µ = 1.

time, the unnormalized method seems to be best at reasoning correctly for both MP and
MT. Another interesting observation is the difference between crMP and cuMP. At many
points, about half of the gradient magnitude correctly increases p̂(ψ|o,θ) because the model
predicts a high value for p̂(φ|o,θ), even though φ(o) is not actually in the test labels. It is
interesting to see that, this kind of faulty reasoning which does lead to the right conclusion is
actually beneficial for training.

Furthermore, disabling MT completely by setting µ to 1 seems to destabilize the rea-
soning. This is also reflected in the validation accuracy that seems to decline when cuMP

declines. This suggests that contrapositive reasoning is required to increase the amount of
correct gradient updates.

5 Related work

5.1 Injecting Logic into Parameterized Models

Our work follows the recent works on Real Logic [26, 7], and the method we use is a special
case of Real Logic with some additional changes. A particular difference is that the logic we
employ has no function symbols, which was due to simplicity purposes. Injecting background
knowledge into vector embeddings of entities and relations has been studied in [5, 6, 20, 21].
In particular, [22] has some similarities with Real Logic and our method. However, this
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method is developed for regularizing vector embeddings instead of any parameterized model.
In this sense, it can also be seen as a special case of Real Logic. Semantic Loss [31] is a
very similar semi-supervised learning method. This loss is essentially Equation 4, which
makes it more accurate than Product Real Logic, but also exponential in runtime. To deal
with this, they compile SDD’s [4] to make the computation tractable. A recent direction is
DeepProbLog [17], a probabilistic version of Prolog with neural predicates that also uses
SDD’s. [11] also injects rules into a general model with a framework that transfers the
logic rules using a so-called teacher network. This model is significantly different from the
aforementioned ones, as it does not add a loss for each rule.

5.2 Semi-Supervised Learning

There is a large body of literature on semi-supervised methods [19, 2]. In particular, recent
research on graph-based semi-supervised learning [14, 32, 33] relates unlabeled and labeled
data through a graph structure. However, they do not use logically structured background
knowledge. It is generally used for entity classification, although in [25] it is also used on
link prediction. [16] introduced the surprisingly effective method Pseudo-Label that first
trains a model using the labeled dataset, then labels the unlabeled dataset using this model
and continues training on this newly labeled dataset. Our approach has a similar intuition
in that we use the current model to get an estimation about the correct labels of the labeled
dataset, and then use those labels to predict remaining labels, but the difference is that we
use background knowledge to choose these labels.

6 Conclusion and Future Work

We proposed a novel semi-supervised learning technique and showed that it is possible to
find labels for samples in an unlabeled dataset by evaluating them on relational background
knowledge. Since implication is at the core of logical reasoning, we analyzed this by
inspecting the gradients with respect to the antecedent and the consequent. Surprisingly, we
discovered a strong imbalance between the contributions of updates from MP and MT in the
induction process. It turned out that our approach is highly sensitive to the Raven paradox
[10] requiring us to handle positive and contrapositive reasoning separately. Normalizing
these different types of reasoning yields the largest improvements to the supervised baseline.
Since it is quite general, we suspect that issues with this imbalance could occur in many
systems that perform inductive reasoning.

We would like to investigate this phenomenon with different background knowledge
and different datasets such as VisualGenome and ImageNet. In particular, we are interested
in other approaches for modelling the implication like different Fuzzy Implications [12] or
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by taking inspiration from Bayesian treatments of the Raven paradox [29]. Furthermore, it
could be applied to natural language understanding tasks like semantic parsing.
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Appendices

A Conditional Optimality of Product Real Logic

Considering only a single domain D of objects x ∈ RD, we have the Herbrand base A. Let ϕ ∈ K
be a set of function-free FOL formulas in Skolem-normal form. Furthermore, let P = {P1, ...,PK}
be a set of predicates which for ease of notation and without loss of generality we assume to all have
the arity α.

Each ground atom P(o) ∼ Bern(fθ
P (o)) is a binary random variable that denotes the binary truth

value. It is distributed by a Bernoulli distribution with mean fθ
P ∈ Rα×D → [0, 1].

For each formula ϕ, we have the set of ground atoms Aϕ ⊆ A appearing in the instantiations of
ϕ. Likewise, the assignment of truth values of Aϕ is wϕ, which is a subset of the world w. We can
now express the joint probability, using Equation 1 and the valuation function defined in Section 2.1:

p(K,w|D,θ) = p(w|θ) ·
∏
φ∈K

v(φ,wϕ) (21)

We will first show that Product Real Logic is equal to this probability with two strong assumptions.
The first is that the sets of ground atoms Aϕ are disjoint for all formulas in the corpus, i.e. if

⋃
ϕ∈K

Aϕ = ∅ (22)

The second is that the set of ground atoms used in two children (a direct subformula) of some
subformula of a formula in K are disjoint. If pa(φ) returns the parent of φ and r(φ) returns the root
of φ (the formula highest up the tree), then

Aφ ∪Aψ = ∅,∀{φ, ψ|pa(φ) = pa(ψ) ∧ r(φ) ∈ K} (23)
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First, we marginalize over the different possible worlds:

p(K|D,θ) =
∑

w
p(w|θ) ·

∏
ϕ∈K

v(φ,wϕ) (24)

=
∑
wϕ1

p(wϕ1 |θ) ·

... · ∑
wϕ|K|

p(wϕ|K| |θ) ·
∏
ϕ∈K

v(φ,wϕ)

 (25)

=
∑
wϕ1

p(wϕ1 |θ) · v(ϕ1,wϕ1) ·

... · ∑
wϕ|K|

p(wϕ|K| |θ) · v(ϕ|K|,wϕ|K|)

 (26)

=
∏
ϕ∈K

∑
wϕ

p(wϕ|θ) · v(φ,wϕ) (27)

where we make use of Equation 22 to join the summations, the independence of the probabilities of
atoms from Equation 1 and marginalization of the atoms other than those in Aϕ.

We denote the set of instantiations of ϕ by Sϕ, and a particular instance by s. As ⊆ Aϕ then is
the set of ground atoms in s (and respectively for ws. Next we show that

∑
wϕ

p(wϕ|θ) ·v(ϕ,wϕ) =∏
s∈Sϕ p̂(ϕ|s,θ). As the formulas are in prenex normal form, ϕ = ∀x1, ..., xαφ. We find that, using

Equation 23 and the same procedure as in Equations 24-27∑
wϕ

p(wϕ|θ) · v(ϕ,wϕ) =
∑
wϕ

p(wϕ|θ) ·
∏
s∈Sϕ

v(φ,ws) (28)

=
∏
s∈Sϕ

∑
ws

p(ws|θ) · v(φ,ws). (29)

Then, it suffices to show that
∑

ws
p(ws|θ) · v(φ,ws) = p̂(φ|s,θ). This is done using recursion.

For brevity, we will only proof it for the ¬ and ∧ connectives, as we can proof the others using those.
Assume that φ = P(x1, ..., xn). Then if ws(P(x1, ..., xn)) is the binary random variable of the

ground atom P(x1, ..., xn) under the instantiation s,∑
ws

p(ws|θ) · v(P(x1, ..., xn),ws) (30)

=
∑

ws\{ws(P(x1,...,xn))}

p(ws\{ws(P(x1, ..., xn))}|θ)· (31)

∑
ws(P(x1,...,xn))

p(ws(P(x1, ..., xn))|θ) · ws(P(x1, ..., xn)) (32)

=p(ws(P(x1, ..., xn))|θ) = p̂(P(x1, ..., xn)|s,θ). (33)

Marginalize out all variables but ws(P(x1, ..., xn)). v(P(x1, ..., xn),ws) is 1 if ws(P(x1, ..., xn))
is, and 0 otherwise.
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Next, assume φ = ¬ψ. Then∑
ws

p(ws|θ) · v(¬ψ,ws) (34)

=
∑
ws

p(ws|θ) · (1− v(ψ,ws)) (35)

=
∑
ws

p(ws|θ)−
∑
ws

p(ws|θ) · v(ψ,ws) (36)

=1−
∑
ws

p(ws|θ) · v(ψ,ws) = p̂(¬ψ|s,θ) (37)

Finally, assume ϕ = φ ∧ ψ. Then∑
ws

p(ws|θ) · v(φ ∧ ψ,ws) (38)

=
∑
ws

p(ws|θ) · v(φ,ws) · v(ψ,ws) (39)

=
∑
wφs

∑
wψs

p(wφs |θ) · p(wψs |θ) · v(φ,wφs) · v(ψ,wψs)· (40)

∑
ws\(wφs∪wψs )

p(ws\ (wφs ∪wψs) |θ) (41)

=
∑
wφs

p(wφs |θ) · v(φ,wφs) ·
∑
wψs

p(wψs |θ) · v(ψ,wψs) (42)

=
∑
ws

p(ws|θ) · v(φ,ws) ·
∑
ws

p(ws|θ) · v(ψ,ws) (43)

=p̂(φ|s,θ) · p̂(ψ|s,θ) = p̂(φ ∧ ψ|s,θ) (44)

Using this result and equations 27 and 29, we find that

p(K|D,θ) =
∏
ϕ∈K

∑
wϕ

p(wϕ|θ) · v(φ,wϕ) (45)

=
∏
ϕ∈K

∏
s∈Sϕ

∑
ws

p(ws|θ) · v(φ,ws) (46)

=
∏
ϕ∈K

∏
s∈Sϕ

p̂(φ|s,θ) (47)
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