4,185 research outputs found

    Median evidential c-means algorithm and its application to community detection

    Get PDF
    Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical framework of belief functions is proposed. The median variant relaxes the restriction of a metric space embedding for the objects but constrains the prototypes to be in the original data set. Due to these properties, MECM could be applied to graph clustering problems. A community detection scheme for social networks based on MECM is investigated and the obtained credal partitions of graphs, which are more refined than crisp and fuzzy ones, enable us to have a better understanding of the graph structures. An initial prototype-selection scheme based on evidential semi-centrality is presented to avoid local premature convergence and an evidential modularity function is defined to choose the optimal number of communities. Finally, experiments in synthetic and real data sets illustrate the performance of MECM and show its difference to other methods

    Enrichment Procedures for Soft Clusters: A Statistical Test and its Applications

    Get PDF
    Clusters, typically mined by modeling locality of attribute spaces, are often evaluated for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure evaluates the membership of a cluster for significant representation in pre-defined categories of interest. While classical enrichment procedures assume a hard clustering definition, in this paper we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an application of this test in refining and evaluating soft clusters for classification of remotely sensed images

    Adaptive constrained clustering with application to dynamic image database categorization and visualization.

    Get PDF
    The advent of larger storage spaces, affordable digital capturing devices, and an ever growing online community dedicated to sharing images has created a great need for efficient analysis methods. In fact, analyzing images for the purpose of automatic categorization and retrieval is quickly becoming an overwhelming task even for the casual user. Initially, systems designed for these applications relied on contextual information associated with images. However, it was realized that this approach does not scale to very large data sets and can be subjective. Then researchers proposed methods relying on the content of the images. This approach has also proved to be limited due to the semantic gap between the low-level representation of the image and the high-level user perception. In this dissertation, we introduce a novel clustering technique that is designed to combine multiple forms of information in order to overcome the disadvantages observed while using a single information domain. Our proposed approach, called Adaptive Constrained Clustering (ACC), is a robust, dynamic, and semi-supervised algorithm. It is based on minimizing a single objective function incorporating the abilities to: (i) use multiple feature subsets while learning cluster independent feature relevance weights; (ii) search for the optimal number of clusters; and (iii) incorporate partial supervision in the form of pairwise constraints. The content of the images is used to extract the features used in the clustering process. The context information is used in constructing a set of appropriate constraints. These constraints are used as partial supervision information to guide the clustering process. The ACC algorithm is dynamic in the sense that the number of categories are allowed to expand and contract depending on the distribution of the data and the available set of constraints. We show that the proposed ACC algorithm is able to partition a given data set into meaningful clusters using an adaptive, soft constraint satisfaction methodology for the purpose of automatically categorizing and summarizing an image database. We show that the ACC algorithm has the ability to incorporate various types of contextual information. This contextual information includes: spatial information provided by geo-referenced images that include GPS coordinates pinpointing their location, temporal information provided by each image\u27s time stamp indicating the capture time, and textual information provided by a set of keywords describing the semantics of the associated images

    Continuous Iterative Guided Spectral Class Rejection Classification Algorithm: Part 1

    Get PDF
    This paper outlines the changes necessary to convert the iterative guided spectral class rejection (IGSCR) classification algorithm to a soft classification algorithm. IGSCR uses a hypothesis test to select clusters to use in classification and iteratively refines clusters not yet selected for classification. Both steps assume that cluster and class memberships are crisp (either zero or one). In order to make soft cluster and class assignments (between zero and one), a new hypothesis test and iterative refinement technique are introduced that are suitable for soft clusters. The new hypothesis test, called the (class) association significance test, is based on the normal distribution, and a proof is supplied to show that the assumption of normality is reasonable. Soft clusters are iteratively refined by creating new clusters using information contained in a targeted soft cluster. Soft cluster evaluation and refinement can then be combined to form a soft classification algorithm, continuous iterative guided spectral class rejection (CIGSCR)

    Unsupervised and semi-supervised fuzzy clustering with multiple kernels.

    Get PDF
    For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Recently, kernel-based clustering has been proposed to perform clustering in a higher-dimensional feature space spanned by embedding maps and corresponding kernel functions. Although good results were obtained using the Gaussian kernel function, its performance depends on the selection of the scaling parameter among an extensive range of possibilities. This step is often heavily influenced by prior knowledge about the data and by the patterns we expect to discover. Unfortunately, it is often unclear which kernels are more suitable for a particular task. The problem is aggravated for many real-world clustering applications, in which the distributions of the different clusters in the feature space exhibit large variations. Thus, in the absence of a priori knowledge, a single kernel selected from a predefined group is sometimes insufficient to represent the data. One way to learn optimal scaling parameters is through an exhaustive search of one optimal scaling parameter for each cluster. However, this approach is not practical since it is computationally expensive, especially when the data includes a large number of clusters and when the dynamic range of possible values of the scaling parameters is large. Moreover, the evaluation of the resulting partition in order to select the optimal parameters is not an easy task. To overcome the above drawbacks, we introduce two novel fuzzy clustering techniques that use Multiple Kernel Learning to provide an elegant solution for parameter selection. The Fuzzy C-Means with Multiple Kernels algorithm (FCMK) simultaneously finds the optimal partition and the cluster-dependent kernel combination weights that reflect the intrinsic structure of the data. The Relational Fuzzy Clustering with Multiple Kernels (RFCMK) learns the kernel combination weights by optimizing the relational dissimilarities. Consequently, the learned kernel combination weights reflect the relative density, size, and position of each cluster with respect to the other clusters. We also extended FCMK and RFCMK to the semi-supervised paradigms. We show that the incorporation of prior knowledge in the unsupervised clustering task in the form of a small set of constraints on which instances should or should not reside in the same cluster, guides the unsupervised approaches to a better partitioning of the data and avoid local minima, especially for high dimensional real world data. All of the proposed algorithms are optimized iteratively by dynamically updating the partition and the kernel combination weights in each iteration. This makes these algorithms simple and fast. Moreover, our algorithms are formulated to work on both vector and relational data. This makes them applicable to data where objects cannot be represented by vectors or when clusters of similar objects cannot be represented efficiently by a single prototype. We also introduced two relational fuzzy clustering with multiple kernel algorithms for large data to deal with the scalability issue of RFCMK. The random sample and extend RFCMK (rseRFCMK) computes cluster prototypes from a smaller sample of randomly selected objects, and then extends the partition to the remainder of the data. The single pass RFCMK (spRFCMK) sequentially loads manageable sized chunks, clustering the chunks in a single pass, and then combining the results from each chunk. Our extensive experiments show that RFCMK and SS-RFCMK outperform existing algorithms. In particular, we show that when data include clusters with various intrinsic structures and densities, learning kernel weights that vary over clusters is crucial in obtaining a good partition

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Unsupervised and semi-supervised clustering with learnable cluster dependent kernels.

    Get PDF
    Despite the large number of existing clustering methods, clustering remains a challenging task especially when the structure of the data does not correspond to easily separable categories, and when clusters vary in size, density and shape. Existing kernel based approaches allow to adapt a specific similarity measure in order to make the problem easier. Although good results were obtained using the Gaussian kernel function, its performance depends on the selection of the scaling parameter. Moreover, since one global parameter is used for the entire data set, it may not be possible to find one optimal scaling parameter when there are large variations between the distributions of the different clusters in the feature space. One way to learn optimal scaling parameters is through an exhaustive search of one optimal scaling parameter for each cluster. However, this approach is not practical since it is computationally expensive especially when the data includes a large number of clusters and when the dynamic range of possible values of the scaling parameters is large. Moreover, it is not trivial to evaluate the resulting partition in order to select the optimal parameters. To overcome this limitation, we introduce two new fuzzy relational clustering techniques that learn cluster dependent Gaussian kernels. The first algorithm called clustering and Local Scale Learning algorithm (LSL) minimizes one objective function for both the optimal partition and for cluster dependent scaling parameters that reflect the intra-cluster characteristics of the data. The second algorithm, called Fuzzy clustering with Learnable Cluster dependent Kernels (FLeCK) learns the scaling parameters by optimizing both the intra-cluster and the inter-cluster dissimilarities. Consequently, the learned scale parameters reflect the relative density, size, and position of each cluster with respect to the other clusters. We also introduce semi-supervised versions of LSL and FLeCK. These algorithms generate a fuzzy partition of the data and learn the optimal kernel resolution of each cluster simultaneously. We show that the incorporation of a small set of constraints can guide the clustering process to better learn the scaling parameters and the fuzzy memberships in order to obtain a better partition of the data. In particular, we show that the partial supervision is even more useful on real high dimensional data sets where the algorithms are more susceptible to local minima. All of the proposed algorithms are optimized iteratively by dynamically updating the partition and the scaling parameter in each iteration. This makes these algorithms simple and fast. Moreover, our algorithms are formulated to work on relational data. This makes them applicable to data where objects cannot be represented by vectors or when clusters of similar objects cannot be represented efficiently by a single prototype. Our extensive experiments show that FLeCK and SS-FLeCK outperform existing algorithms. In particular, we show that when data include clusters with various inter-cluster and intra-cluster distances, learning cluster dependent kernel is crucial in obtaining a good partition
    corecore