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ABSTRACT 

ADAPTIVE CONSTRAINED CLUSTERING WITH APPLICATION TO 

DYNAMIC IMAGE DATABASE CATEGORIZATION AND VISUALIZATION 

Jason Daron Meredith 

August 9, 2010 

The advent of larger storage spaces, affordable digital capturing devices, and an 

ever growing online community dedicated to sharing images has created a great need 

for efficient analysis methods. In fact, analyzing images for the purpose of automatic 

categorization and retrieval is quickly becoming an overwhelming task even for the 

casual user. 

Initially, systems designed for these applications relied on contextual informa

tion associated with images. However, it was realized that this approach does not 

scale to very large data sets and can be subjective. Then researchers proposed meth

ods relying on the content of the images. This approach has also proved to be limited 

due to the semantic gap between the low-level representation of the image and the 

high-level user perception. 

In this dissertation, we introduce a novel clustering technique that is designed 

to combine multiple forms of information in order to overcome the disadvantages 

observed while using a single information domain. Our proposed approach, called 

Adaptive Constrained Clustering (ACC), is a robust, dynamic, and semi-supervised 

IV 



------------------------- - ---------------------------------

algorithm. It is based on minimizing a single objective function incorporating the 

abilities to: (i) use multiple feature subsets while learning clus~er independent feature 

relevance weights; (ii) search for the optimal number of clusters; and (iii) incorporate 

partial supervision in the form of pairwise constraints. The content of the images is 

used to extract the features used in the clustering process. The context information 

is used in constructing a set of appropriate constraints. These constraints are used as 

partial supervision information to guide the clustering process. The ACC algorithm is 

dynamic in the sense that the number of categories are allowed to expand and contract 

depending on the distribution of the data and the available set of constraints. 

We show that the proposed ACC algorithm is able to partition a given data set 

into meaningful clusters using an adaptive, soft constraint satisfaction methodology 

for the purpose of automatically categorizing and summarizing an image database. 

We show that the ACC algorithm has the ability to incorporate various types of 

contextual information. This contextual information includes: spatial information 

provided by geo-referenced images that include GPS coordinates pinpointing their 

location, temporal information provided by each image's time stamp indicating the 

capture time, and textual information provided by a set of keywords describing the 

semantics of the associated images. 

v 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 
ABSTRACT 
LIST OF TABLES 
LIST OF FIGURES 

CHAPTER 

I 

II 

INTRODUCTION 

A Motivations. 

B Contributions 

C Dissertation Overview 

LITERATURE SURVEY 

A Prototype-Based Clustering Algorithms 

1 

2 

3 

K-Means Algorithm 

The Fuzzy C-Means (FCM) Algorithm 

The Gustafson-Kessel (GK) Algorithm 

B Determining the Optimal Number of Clusters 

1 

2 

Validity-Based Approaches 

Objective Function Based Approach. 

C Feature Selection and Weighing 

D Semi-Supervised Clustering .. 

1 The K-Means Algorithm with Pairwise Constraints 

VI 

Page 

111 

IV 

x 

xi 

1 

1 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

15 

17 

19 



----------- -------------

2 Pairwise-Constrained Competitive Agglomeration 

III ADAPTIVE CONSTRAINED CLUSTERING 

A The Constrained Clustering (CC) Algorithm 

B The Adaptive Constrained Clustering (ACC) Algorithm 

C Constraint Selection . . . . 

D Computational Complexity 

E Convergence Properties .. 

IV EXPERIMENTAL EVALUATIONS 

A Introduction 

1 Data Sets 

2 Performance Measures 

B Experimental Results 

C Convergence Properties and Computational Complexity 

V DYNAMIC IMAGE DATABASE CATEGORIZATION AND 

VISUALIZATION USING ADAPTIVE CONSTRAINED CLUS-

TERING 

A 

B 

Motivations . . . . 

Content-Based Image Database Categorization 

22 

26 

26 

34 

38 

39 

39 

41 

41 

41 

42 

44 

47 

54 

54 

55 

1 Feature Extraction . . . . . . . . . . . . 55 

2 Image Database Categorization Using Machine Learning 

Techniques ......................... 57 

3 Image Database Categorization using the ACC algorithm 59 

C Constraint Selection . . . . . . . . . . 

1 Active Selection of Constraints 

Vll 

61 

62 



2 Exploring the Unsatisfied Should-not links to find the op-

timal number of clusters 

D Categorization using the ACC with Constraints derived from 

Spatial Information 

1 

2 

3 

Cost of Violating Spatial Constraints 

Spatial Constraints Construction. . . 

Experimental Results using Ceo-referenced Data 

E Categorization using the ACC with Constraints derived from 

F 

Temporal Information . . . . . . . . 

1 

2 

Cost of Violating Temporal Constraints 

Temporal Constraints Construction . . 

3 Categorization using the ACC with Constraints derived 

from Textual Information ...... 

4 Cost of Violating Textual Constraints 

5 Textual Constraints Construction 

Experimental Evaluation and Comparison 

1 Image Collection ..... 

2 Incorporating Constraints 

3 Objective Evaluation 

4 Subjective Evaluation 

63 

64 

65 

66 

67 

73 

76 

77 

80 

81 

81 

82 

85 

85 

86 

93 

VI CONCLUSIONS AND FUTURE WORK 

REFERENCES 

........ . 103 

108 

Appendices ................................ 116 

A Creation of Synthetic Data Sets . . . . . . . . . . . . . . . . 117 

Vlll 



CURRICULUM VITAE 119 

IX 



LIST OF TABLES 

TABLE 

1 Data sets used in the algorithm comparison. 

2 Contingency table. . . . . . . . . . . . . . . 

3 Feature relevance weights learned during initialization of the ACC al-

Page 

42 

43 

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 

4 The observed running time for each algorithm on sample Data set 1.. 52 

5 The observed running time for each algorithm on sample Data set 2.. 53 

6 Similar images from different geographical locations . . . . . . . . .. 71 

7 Images with similar contextual semantics and differing content infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 

8 The observed running time for each algorithm on sample data set in 

Section F.l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89 

9 The observed running time of an example application of dynamic image 

categorization using the ACC algorithm. 92 

10 Validity scores for subjective evaluations. 97 

x 



LIST OF FIGURES 

FIGURE 

1 An illustrative example of over-agglomeration. (a) A 2-D data set with 

two clusters. (b) The ground truth of the two clusters. (c) Initialization 

of the CA algorithm with a over estimation of clusters Cmax = 9. (d) 

After a few iterations, the number of clusters has reduced to 6, where 

the agglomeration merges two clusters inconsistently with the ground 

truth. (f) Upon convergence, portions of two distinct clusters have 

merged, yielding unfavorable clustering results. The CA algorithm 

cannot increase the number of clusters and recover from this local 

Page 

minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

2 Illustration of the cluster splitting process in the ACC algorithm. (a) 

Partition resulting from the CA algorithm and selection of a should-not 

link constraint. (b) Splitting of the black cluster to satisfy the should 

not link constraint. (c) Final partition where the ACC has recovered 

from the over-agglomeration. 

3 The synthetic data sets used to evaluate and compare the algorithm. 

38 

Points from each cluster are represented by a different color and symbol. 42 

4 Initialization of Data set 1. The shape of each symbol refers to the 

contextual meaning of each point, and the color represents the assigned 

5 

6 

cluster ............................. . 

Intermediate results of the PCCA algorithm on Data Set 1 

Intermediate results of the ACC algorithm on Data Set 1 

Xl 

45 

46 

47 



7 Performance evaluations for Data Set 1 . . . . . . . . . . . . . . . .. 48 

8 Initialization of Data Set 2. The shape of each symbol refers to the 

contextual meaning of each point, and the color represents the assigned 

cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

9 Intermediate results of the PCCA Algorithm on Data Set 2 . 49 

10 Intermediate results of the ACC algorithm on Data Set 2 49 

11 Performance evaluations for Data Set 2 . . . . . . . . . . 50 

12 Evaluation of the objective function over 100 synthetic trials. (a) Re-

sults for the SCADCA algorithm (b) Results for the PCCA algorithm 

(c) Results for the ACC algorithm. . . . . . . . . . . . . . . . . . 51 

13 The number of clusters used per iteration in the ACC algorithm. . 52 

14 Average and standard deviation using the QRand, QJacc, and QFMI per

formance measures over 100 runs with different initialization. The low 

variance of the ACC indicates less sensitivity to different initialziations. 53 

15 Illustrative example of cluster zooming. (a) An overview of the images 

in the data set. (b) The images contained in the cluster represented by 

the flower. (c) Images contained in a subsequent zoom level, continuing 

to navigate based on the selection of flowers. ............. 58 

16 Sample data set demonstrating the need for partial supervision. (a) 

Known truth values for given data set. Marker color indicates cluster 

assignment, marker shape indicates class label. (b) Results of a typical 

unsupervised clustering algorithm. Note the misclassification of points 

in the overlapping region between clusters. 

xu 

59 



17 Demonstration of the use of pairwise constraints. (a) Enlarged view 

of the overlap in clusters from Figure 16(b). (b) Resulting constraints 

constructed from known information in Figure 16(a). (c) Reclustering 

with consideration to the constraints allows the algorithm to correctly 

partition the data set. .......................... 60 

18 Comparison of a map cluttered with images versus a map with clusters 

of images. . .......... . 

19 Calculation of the rho function. 

20 Spatial layout of a subset of images tagged with spatial coordinates 

65 

66 

Each region corresponds to a distinct area across the globe. . . . . .. 68 

21 Layout of the images in Fig. 20 in the feature space. The image borders 

represent the three different geographical regions. . . . . . . . . . .. 69 

22 Application of spatial constraints. (a) An abstract view of the images 

in Fig 20. (b) Results generated by a typical unsupervised clustering 

algorithm. (c) A set of constraints are selected between points that are 

in different regions but should and should not be in the same cluster. 

(d) Partition generated with the consideration of the constraints where 

the number of clusters is expanded to four. . . . . . . . . . . .. 70 

23 Illustrative example of spatial region expansion. (a) Overview of the 

image collection with representative clusters. (b) Reorganized data 

representing the USA region. ( c) City level representation of data 

from selected region. (d) All images from street level region. . . . .. 72 

24 Unsupervised clustering results. (a) Results showing visually similar 

images from two distinct regions. (b) Results showing visually similar 

images from three distinct regions. 

Xlll 

74 



25 Viewing images contained in a cluster of interest. (a) Cluster con

taining images from Louisville. (b) Cluster containing images from 

surrounding Louisville area. . . . . . . . . . . 

26 Viewing Cluster results from the Paris region. 

27 Sample cluster based on visual content ..... 

28 Layout of Fig. 27 based on temporal information 

29 Application of temporal constraints. (a) A set of should link constraints 

between images with like time signatures. (b) A set of should not link 

75 

76 

78 

78 

constraints between images with differing time signatures. ...... 79 

30 Sample clusters generated by the ACC algorithm using the temporal 

constraints in Fig. 29 . . . . . . . . . . . . . . . . . . 

31 Sample data set for textually constrained clustering .. 

32 Sample clustering of images in Fig. 31 clustered using image content. 

(a) Images of sunsets with the sun under the horizon. All images tagged 

with the keyword "sunset". (b) Various images with a prominent or-

ange coloring and associated image tags. (c) Cluster containing red 

images with assigned annotations. (d) Partition containing nighttime 

79 

83 

images of people. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 

33 Application of textual constraints. (a) A set of should link constraints 

between images that share the keyword" sunset". (b) A set of should 

not link constraints between images with no words in common. 84 

34 Sample clustering displaying enhanced semantics from textual con-

straints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

35 Average cluster purity of the partitions generated by the ACC, SCADCA, 

and PCCA algorithms. . . . . . . . . . . . . . . . . . . . . . . 88 

36 Percentage of satisfied constraints from objective experiments. 88 

XIV 



37 Evaluation of the objective function over 100 sample trials. (a) Results 

for the SCADCA algorithm (b) Results for the PCCA algorithm (c) 

Results for the ACC algorithm. . . . . . . . . . 

38 Illustrative example of spatial region expansion. (a) Overview of the 

image collection with representative clusters initially clustered in an off

line fashion. (b) Reorganized data representing the user's preference, 

processed online. (c) The images contained in the area of interest are 

dynamically reclustered with repect to the current region. (d) At the 

street level, the number of images contained the region do not require 

90 

categorization and are displayed in their entirety. ........... 91 

39 Comparison of clusters from the ACC and SCADCA algorithm. These 

results illustrate the benefit of using partial supervision. ....... 93 

40 Comparison of ACC and PCCA clusters illustrating the benefits of 

using relevance feature weights. . . . . . . . . . . . . . . . . . . . .. 93 

41 Results comparing the ACC and the PCCA algorithm, demonstrating 

increased clustering performance. . . . . . . . . . . . . . . . . . . .. 94 

42 Comparing the ACC and the PCCA algorithm, where the increased 

clustering performance can be attributed to increased constraint satis-

faction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 

43 Results from the ACC algorithm indicating the presence of should link 

constraints. .......... . 

44 An example of user subjectivity. 

45 A screen shot of the subjective evaluation test .. 

46 Validity results from subjective evaluation .... 

47 Clusters utilized for subjective evaluation, where the partial supervi-

sion information provides an increase in cluster purity. 

xv 

95 

96 

97 

98 

99 



48 Using constraints, the PCCA and ACC algorithms are able to increase 

purity compared the SCADCA. . . . . . . . . . . . . . . . 100 

49 Sample result set, demonstrating the issue of subjectivity. . 101 

50 Illustrative example of subjective clusters showing forest scenes. 102 

51 Subjective clusters where a strong theme may not be present. 102 

XVI 



CHAPTER I 

INTRODUCTION 

A Motivations 

Moore's law is a predictive trend that describes a long-term trend in computer 

hardware in which the number of transistors that can be placed inexpensively on 

a transistor doubles approximately every two years [1]. Following this trend, ad

vancements in technology have allowed for an amazing ease of capture, storage, and 

sharing options in digital imagery. Societal web sites, such as Flickr [2] and Panoramio 

[3], contain collections of images numbering the millions. While it is apparent that 

examples of expansive and expanding image data sets exist, tasks such as naviga

tion, retrieval, or categorization of these data sets is becoming rapidly overwhelming. 

Therefore, research directions exploring the ability to perform these tasks while au

tomatically processing images searching for trends in similar images is becoming very 

active. 

Image retrieval techniques originated as text-based methods in the 1970s. Typ

ical methods relied on manual annotations associated with each image to transform 

the problem into a standard text retrieval process [4]. Despite this straightforward 

and efficient approach, along with the numerous advancements in text-based retrieval 

techniques [5], numerous issues remain difficult to solve. For example, text-based 

methods rely on complete and accurate annotations for each image using a prede

termined vocabulary [6]. In reference to images, this implies that each image would 

need to be manually annotated which, with respect to a rapidly expanding data set, 
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can very quickly become an expensive, time-consuming task. These methods also 

suffer from the issue of user subjectivity. Inconsistencies in the use of terminology 

and assignments between indexers, variability between terms that describe the same 

subject (synonyms), and describing different subjects (ambiguity) are just a few ex

amples of user subjectivity that can adversely affect the performance of text-based 

image retrieval techniques. 

The combination of rapidly growing, large-scale image collections and the dif

ficulties presented by manually annotated text-based techniques led to a new trend in 

retrieval methods during the 1990s. The new methods relied on using the visual prop

erties of images to perform retrieval [7, 8, 9, 10, 11, 12]. Color, texture, shape, and 

spatial layout are a few examples of the image content features that can be extracted 

and used for the purpose of indexing. Similarity between images is determined by 

using appropriate distance measures in conjunction with sets of these low-level fea

tures. Then, images are retrieved based on the similarity to a given query image. In 

recent years, many Content-Based Image Retrieval (CBIR) systems have been devel

oped [13, 14, 15, 16, 17, 18]. Several of these systems employ a query-by-example 

methodology for retrieval purposes, utilizing various indexing features in either the 

image or the region domain. The major drawback of the CBIR framework is what is 

known as the semantic gap. The semantic gap is defined as the difficulty of inferring 

high-level semantic meaning from the extracted low-level features of an image [19]. 

The semantic gap has lead to a severe limitation in the advancement of CBIR systems 

in real applications. 

Research directions in recent years have focused on methods for bridging the se

mantic gap. These methods use various forms of relevance feedback [20, 21, 22, 23, 24] 

and the inclusion of textual keywords that can be extracted in an unsupervised or 

semi-supervised manner [25, 26, 27, 28]. The combination of visual features with 

2 



--------------

textual descriptors proved to be effective in overcoming the drawbacks of each inde

pendent system. For example, in [29] textual keywords are used to reduce the search 

space for content-based methods. Unfortunately this method still suffers from the pri

mary drawbacks of text-based image retrieval, cost and coverage. Therefore, methods 

that combine textual keywords and image content may only provide a partial solution 

to the semantic gap problem. 

Approaches that combine image content with non-visual descriptors can exist 

without the use of textual keywords [30]. It can be theorized that one of the primary 

contributors to the issue of semantic gap is the fact that the image capture and image 

analysis processes are isolated in both time and space. This is in spite of the ability of 

image capturing devices to provide several clues to both of these pieces of contextual 

information. For instance, using a combination of temporal and spatial context as 

side information could provide semantically meaningful information aiding in image 

analysis [31]. Current image capturing devices have the ability to efficiently store 

and provide a number of contextual metadata relevant to the point of capture. This 

method can provide image analysis techniques with the ability to use information 

that was previously lost between the point of capture and the moment of analysis. 

As an example, consider the use of CPS coordinates that are embedded in the image, 

to create geo-referencing of where each image was taken. 

As the trend of increased online socialization and the trend characterized by 

Moore's Law create rapidly growing image collections and the resources to store them, 

there will be an ever increasing need for image retrieval methods and the need for 

other image analysis techniques for media management. 

Using statistical learning methods, image database categorization methods at

tempt to group images into semantically meaningful categories using their low-level 

features. These categorizations could be used to index an image database and provide 

3 



means to navigate through it. 

B Contributions 

In this dissertation, we propose a robust approach to automatically categorize 

and summarize an image database, using low level visual features and high-level con

textual information. With regards to human to human interaction, the recognition 

of objects within images can be difficult without context. Thus, the combination of 

contextual and visual information is vital when trying to create a semantically mean

ingful understanding. Overcoming the semantic gap problem in image summarization 

and categorization methods is consequently more likely to be successful when context, 

derived from the images, is used along with the content of the images. 

Our approach is based on a new dynamic, semi-supervised clustering algo

rithm. The algorithm is designed to overcome several issues that affect the perfor

mance of traditional clustering algorithms. We formulate a single objective function 

that combines unsupervised learning, semi-supervised learning, competitive learning, 

and feature discrimination. The resulting algorithm was used to categorize a large 

collection of images. Low-level image content features, from the MPEG-7 standard 

[32], were used to describe the images and define the feature space. High-level con

textual information was used, as semi-supervised information, to guide the clustering. 

The semi-supervised information was formulated as a set of constraints that suggest 

which instances should or should not reside in the same cluster. For example, spatial 

information could be used to discover clusters of similar images that are close to each 

other geographically. Similarly, temporal information could assist the clustering by 

respecting the dates and times images were taken and the length of time between 

them. Textual information, on the other hand, could be used to guide the algorithm 

towards finding clusters that share common keywords and thus, are semantically more 
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meaningful. 

C Dissertation Overview 

The remainder of the dissertation is organized as follows: Chapter II pro

vides a literature review of related work relevant to our proposed method. Chapter 

III presents our new approach to clustering and feature discrimination using par

tial semi-supervision to dynamically and semantically combine context and content 

information. In Chapter IV, we provide experimental evaluations of our approach 

compared to existing methods. Chapter V provides an overview of image database 

categorization using our approach demonstrating various methods of constraint cre

ation and validation of our experimental results. Finally, Chapter VI outlines our 

conclusions and potential future work that could be researched in order to expand 

the functionality of the proposed algorithm. 
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CHAPTER II 

LITERATURE SURVEY 

Clustering is defined as the partitioning of data into groups that share some 

common traits. Traits, or features, are considered to be common based on some form 

of distance or similarity measure. In this chapter, we provide an overview of several 

clustering methodologies and algorithms relevant to our proposed approach. 

Numerous clustering approaches exist, most of which can be divided into three 

categories; hierarchical, density-based, and partitional clustering. Hierarchical clus

tering methods [33, 34, 35] partition data by obtaining a nested sequence based on 

a graphical representation known as a dendrogram. Methods based on the density

based approach [36, 37, 15,38, 39] use local properties of the data objects for grouping 

purposes. Partitional, also known as prototype-based, methods minimize an objective 

function and create a single partition [40, 41, 42,' 25, 26]. Prototype-based cluster

ing methods provide several advantages when compared to the other methods. In 

this approach, points are allowed to dynamically shift from one cluster to another. 

They also provide the ability to incorporate knowledge obtained about cluster shapes 

and sizes in conjunction with appropriate prototypes and distance measures in their 

objective functions. 

The subsequent sections of this chapter are arranged as follows: Section A re

views a number of prototype-based clustering methods. Methods dedicated to search

ing for the optimal number of clusters are covered in Section B. An overview of feature 

selection approaches is given in Section C. Finally, Section D presents an introduc-
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tion to semi-supervised clustering, which is a search-based approach to partitioning 

the data where user-provided constraints or labels are used to guide the clustering 

process. 

A Prototype-Based Clustering Algorithms 

Prototype-based clustering methods attempt to find an optimal partition of 

a data set by minimizing an objective function. The assignment criterion can be 

descri bed as either hard (crisp) or soft (fuzzy) depending on whether each point 

belongs to one cluster exclusively or to multiple clusters with varying degrees. In 

general, fuzzy algorithms perform better than crisp because of their reduced tendency 

to get trapped in local minima, and their ability to provide a better description of 

the data. 

Let X={Xj E RPjj=1, ... , N} be a set of N feature vectors in a p-dimensional 

feature space. Let B=(J31' . .. ,J3J represent a C-tuple of prototypes each of which 

characterizes one of the C clusters. Each J3i consists of a set of parameters, such as 

a center and a covariance matrix. Let Uij represent the membership of Xj in cluster 

J3i. For the crisp case, the C x N binary C-partition, U=[Uij], satisfies: 

Uij E {O, 1}, Vi,j 

o < 2:;':1 Uij < N Vi 

2:~lUij=1 Vj 

For the fuzzy case, U satisfies [43]: 

Uij E [0,1]' Vi,j 

o < 2:;':1 Uij < N Vi 

2:~lUij=1 Vj 
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1 K-Means Algorithm 

In [41], the author describes the K-Means algorithm, one of the earliest and 

simplest unsupervised algorithms for solving the well known clustering problem, par-

titioning N feature vectors into C clusters. The process is based on iteratively min-

imizing an objective function known as the vector quantization error, or distortion. 

In particular, it minimizes 

C N 

J(B, U; X) = L L(uij)d(Xj, (3i). (3) 
i=l j=l 

subject to the constraints in (1). One setback to this method is that the minimization 

of (3) has no closed form solution. Therefore, a local minimization of J could be 

achieved by alternating optimization. The first step of the algorithm fixes the cluster 

parameters (3i, or the cluster centers, and assigns points to the nearest cluster based 

on a given distance d(xj, (3i). Typically, the Euclidean distance 

(4) 

is used in the k-means algorithm. The next step fixes the memberships, Uij, and J is 

optimized with respect to the clusters' centroids. This yields an update equation for 

the cluster centers: 

Ci = N 

LUij 
j=l 

The resulting k-means algorithm is outlined below: 

K-Means Algorithm 

Fix the number of clusters C; 
Initialize the cluster centroids; 
Repeat 

Assign each point Xi to the nearest cluster 
Update the centroids Cj using (5); 

U ntil( centers stabilize) 
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2 The Fuzzy C-Means (FCM) Algorithm 

The FCM algorithm is a modification of the K-Means algorithm that changes 

the assignment paradigm from crisp to fuzzy [40]. The algorithm minimizes: 

C N 

J(B, U; X) = L L(Uij)md(xj, (Ji), (6) 
i=l j=l 

subject to the constraints in (2). In (6), m E (1,00) is a weighting exponent (called 

the fuzzifier) and d(xj, (Ji) is the distance from feature point Xj to prototype {Ji. 

Minimization of (6) with respect to U, subject to the constraints in (2), yields [40] 

1 if I j = 0 

(7) 
Uij = 0 

Minimization of (6) with respect to the prototype parameters (J is dependent 

on the distance measure. In the initial formulation, the Euclidean distance given by 

(4) was used. This distance allows the FCM to find spherical clusters. In this case 

the prototypes, {J, are the clusters' centers. The update equation of the centroids is 

obtained by fixing the membership values and minimizing (6) with respect to Ci. This 

minimization yields 

j=l 
(8) Ci = N 

L(Uij)m 
j=l 

The FCM algorithm is summarized below: 
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Fuzzy C-Means Algorithm 

Fix the number of clusters C; 
Fix m, mE (1,00); 
Initialize the cluster centroids; 
Repeat 

Compute d(Xj,{3i) using (4); 
Update the partition matrix U(k) using (7); 
Update the centers using (8); 

U ntil( centers stabilize) 

3 The Gustafson-Kessel (GK) Algorithm 

All prototype-based clustering algorithms require the use of some form of sim-

ilarity measure, typically calculated using a distance measure. The K-Means and 

FCM algorithms utilize the Euclidean distance in (4) which provides the means for 

obtaining spherical shaped clusters. However, in many applications, clusters, even 

within the same data set, can have different geometric shapes. In [44], Gustafson 

and Kessel proposed modifying the FCM algorithm to identify clusters with various 

shapes. Instead of the Euclidean distance, the authors use an A-Norm distance given 

by: 

d(x· (3.) =11 X· - c· IIA2 = (x· - c·)A·(x· - c·) J' t J t i J t t J t, (9) 

subject to 

det(Ai) = Pi (constant) Vi. (10) 

Fixing the determinant and varying A allows the algorithm to search for a cluster 

shape that fits the data while preserving the volume of the cluster. Each cluster i, 

is represented by an independent matrix Ai. Thus, the GK algorithm is able to find 

ellipsoidal clusters of different sizes and orientations. 

The objective function for the GK algorithm is the same as the FCM (6), 

and minimization yields the same equations for updating the centers (8) and the 

memberships (7). For optimizing the objective function with respect to (A), the 
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authors show that for each matrix Ai, Ai is a local minimum of J if 

A* = [p·IC·I]1/2C:-1 for 1 < i < C t 1,2 1. --, 

where 
,,",N (u .. )m(x. _ c.)(x. _ C·)T C. = L...J=l tJ J t J t 

t L:f=l (Uij)m 
(11) 

is the fuzzy covariance matrix. Using this matrix, and Pi = 1, the distance in equation 

(9) reduces to 

d(x· (3.) = IC·11/n(x· - C·)TC:-1(X· - c·) J' t t J J t J t· 

The GK algorithm is summarized below: 

G K Algorithm 

Fix the number of clusters C; 
Fix m, m E (1, (0); 
Initialize the cluster centroids; 
Repeat 

Compute d(xj, (3i) using (12); 
Update the partition matrix U(k) using (7); 
Update the centers using (8); 
Update the covariance matrix using (11); 

U ntil( centers stabilize) 

B Determining the Optimal Number of Clusters 

(12) 

One of the primary impediments of most clustering algorithms is the necessity 

for the number of clusters C to be specified and set prior to beginning the clustering 

process. In reality, the selection of this parameter is not only critical to the algorithm's 

success, but information leading to a reliable value may not be available. The high 

dimensionality data [45] and the sparsity of the search space [46] makes this problem 

more acute. 

Several approaches have been proposed to find the optimal number of clusters, 

C, [47, 43, 48, 49, 50, 51, 52, 42, 53, 54, 55]. In general, these methods can be 

categorized into validity-based approaches, and objective function based approaches. 
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1 Validity-Based Approaches 

An intuitive method for determining the optimal number of clusters in a given 

data set is to use cluster validity measures [47,43]. In general, these measures are an 

iterative attempt to maximize the densities of the clusters. In [49], a predetermined 

upper limit for the number of clusters is defined, Cmax , then the data is clustered while 

varying the number of clusters from 2 to Cmax . Two values are computed based on 

the cluster layout and are used to assess the validity of the clustering results. The first 

one is the intra-cluster distance and can be used as an indication of the compactness 

of the clusters. It is defined as 

(13) 

In (13), N is the size of the data set, C is the current number of clusters, and Ci is 

the centroid of cluster i. The second measure is the inter-cluster distance and can be 

used as an indication of the separability of the clusters. It is defined as 

Dinter = min(llci - CjIl2), i = 1,2, ... ,C - 1 
(14) 

j = i + 1, ... , C 

The inter- and intra-cluster measures are then combined to form an overall 

validity measurement defined as: 

D't 
Z'd't ~n ra va z z Y= --. 

Dinter 
(15) 

Using this validity measure, the value of C that minimizes (15) can be selected as the 

optimal number of clusters. 

In [48], the authors propose the average partition density and the hypervolume 

to evaluate the compactness of the clusters. Particularly, the hypervolume, V, is 

defined as 
c 

V = L[det Cd~ (16) 
i=l 
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where C j is the fuzzy covariance matrix of cluster i (as defined in (11)) with m = 1. 

The average paritional density, D pA , is defined by: 

(17) 

In (17) Si is the sum of central members given by: 

(18) 

where 

(19) 

In other words, Si accounts for core objects with a Mahlanobis distance less than 

one. This validity measure was modified in [55, 56] in order to measure the validity 

of spherical, elliptic, and quadratic shell clusters. 

2 Objective Function Based Approach 

The Competitive Agglomeration (CA) [42] algorithm provides an efficient clus-

tering method incorporating both partitional and hierarchical clustering to automat-

ically determine the best C by minimizing: 

C N C N 2 

J(B, U, X) = L L(Uij)2d(xj, ,8i) - 0: L [L Uij] , (20) 
i=l j=l i=l j=l 

subject to the constraints in (2). In (20), d(xj, ,8i) represents the distance from 

feature vector Xj to prototype ,8i. The number of clusters, C, is dynamically updated. 

Optimization of J with respect to U yields [42]: 

U = u FCM + u BIAS 
st st st, (21) 

where 

(22) 
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and 

(23) 

In (23) 

(24) 

is the fuzzy cardinality of cluster s, and 

(25) 

The constant 0: term in (20) is used to balance the two terms of the objective func-

tion. Therefore, it can be seen as a weighting term measuring the importance of the 

regularization term with respect to the sum of intra-cluster distances. In [42], the 

authors recommend estimating 0: in every iteration k using 

where 'f]o is the initial value, and T the time constant. 

The CA algorithm is summarized below: 

Competitive Agglomeration Algorithm 

Fix the maximum number of clusters C = Cmax ; 

Initialize iteration counter k = 0 and the fuzzy C partition U(O); 

Compute initial cardinalities Ni for 1 ::; i ::; C using (24); 
Repeat 

Compute d(xj, {3i) for 1 ::; i ::; C and 1 ::; j ::; N; 
Update o:(k) using (26); 
Update the partition matrix U(k) using (21); 
Compute the cardinality Ni for 1 ::; i ::; C using (24); 
If (Ni < El) discard cluster {3i; 
Update the number of clusters C; 
Update the prototype parameters; 
k = k + 1; 

U ntil(prototype parameters stabilize) 
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C Feature Selection and Weighing 

Another hindrance in creating a good learning algorithm is the selection of fea-

ture subsets that best represent the overall data. In fact, the use of irrelevant features 

can severely degrade the performance of the clustering algorithm. Using supervised 

learning approaches, several methods have been proposed to perform feature selec-

tion and weighing. Feature selection methods determine which features are relevant 

and discard the rest, where feature weighing methods assign continuous weights to 

all features based on their relevance. These methods are developed using a variety of 

schema, such as genetic algorithms [57, 58], supervised fuzzy clustering [59], feature 

correlation [60], feature similarity [61], cross-validation [62], feature space reduction 

[63, 64, 65, 66], and other novel methods [67, 68, 69, 70, 71, 72, 73]. 

Although the area of feature selection and weighing has a wide field of study in 

supervised clustering, the domain of unsupervised clustering has not shared the same 

interest level and only few methods have been proposed [65, 66, 69]. In the follow

ing, we outline the Simultaneous Clustering and Attribute Discrimination (SCAD) 

algorithm [74, 75, 76] since it is highly relevant to the proposed approach. 

In [74, 75], the authors proposed an algorithm that performs Simultaneous 

Clustering and Attribute Discrimination (SCAD). It minimizes 
C N n 

J(B, U, V; X) = L L (Uij)m L (Vik)qd~jk (27) 
i=l j=l k=l 

subject to the membership constraint in (2), and 
n 

Vik E [0,1] Vi, k; and LVik = 1, Vi. (28) 
k=l 

In [75], q E (1,00) is referred to as the discrimination exponent. 

Minimization of J with respect to V yields 

1 
Vik = ---------;-: __ "7"" t (i5

ik
/i5

it
) l/(q-l) , 

t=l 

(29) 
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where Dik = L~l (Uij )md;jk is the measure of dispersion of the ith cluster along the 

kth dimension, and L~=l Dit is the total dispersion of the ith cluster. In other words, 

the more compact the ith cluster is along the kth dimension (smaller D ik ), the higher 

the relevance weight, Vik will be for the kth feature. 

Minimization of J with respect to U subject to the constraints in (2) yields 

where 

1 

n 

dfj = L Vikd;jk' 

k=l 

Minimization of J with respect to the centers C yields: 

o 
N 

L (Uij)m Xjk 

j=l 

if Vik = 0, 

if Vik > O. 

The SCAD algorithm is summarized below: 

Simultaneous Clustering and 
Attribute Discrimination Algorithm 

Fix the number of clusters C; 
Fix m, m E (1, (0); 
Fix the discrimination exponent q, q E (1, 00 ) ; 

Initialize the centers and fuzzy partition matrix U; 
Initialize all the relevance weights to 1/ n; 
Repeat 

Compute d;jk for 1 :::; i :::; C, 1 :::; j :::; N, and 1 :::; k :::; n; 
Update the relevance weights matrix V by using equation (29); 
Compute Jtj by using equation (31); 
Update the partition matrix U by using equation (30); 
Update the centers by using equation (32); 

U ntil( centers stabilize) 
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The SCAD algorithm is designed to perform clustering and feature weighting 

simultaneously while searching for optimal cluster parameters and relevance weights. 

In the case of high dimensional data, learning weights for each feature could lead to 

over-fitting. In [77J, a coarse approach to feature weighting (SCADc) was proposed 

to avoid this problem. In SCADc, the features are divided into logical subsets and 

a relevance weight is learned for each subset as opposed to learning a feature weight 

for each feature. The authors in [77J also introduce the SCADCA algorithm, which 

combines the benefits of feature weighting from the SCADc algorithm, with the search 

for an unknown number of clusters from the CA algorithm [42J. 

D Semi-Supervised Clustering 

Unsupervised methods are used for organization and classification purposes 

due to the lack of labels for the provided data. In most applications, clustering can 

be a challenging task. These algorithms tend to get trapped in local minima due to 

complex objective functions. Moreover, unsupervised clustering methods form clus

ters based solely on the similarity between objects provided by a given similarity 

measure. Therefore, these methods rely heavily on the choice of similarity measure 

and may not provide semantically meaningful clusters. Alternatively, the use of su

pervised methods may not be an option because labeling all the data could be a very 

expensive or even an impossible task. For instance, in large data sets the overall 

number of classes may not even be known. 

Recent research into an area known as semi-supervised clustering has been 

proposed in an attempt to improve the performance of unsupervised learning [78, 27, 

25,26, 79J. Semi-supervised methods are formulated using information garnished from 

side information associated with the data in order to guide or adjust the clustering 

process. Typically, the information is presented in the form of labels [80, 81, 78], 
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constraints [82, 83, 27], or hints [84]. In real world applications, the true labels of the 

data may not be known. Therefore, it may be more practical to specify which pairs 

of points should or should not belong to the same cluster. Thus, it is more practical 

to incorporate the partial supervision in the form of constraints as opposed to class 

labels. Although semi-supervised methods have been proven to outperform their 

unsupervised counterparts, the extensiveness of the research into semi-supervised 

methods is not as vast [85, 86, 26]. 

The majority of semi-supervised clustering methods can be dichotomized as 

similarity-adapting [83,87,88,89,90] or search-based [28,82, 25, 78, 27, 26]. Since our 

approach uses a search-based method of semi-supervision, only search-based methods 

will be outlined in this literature survey. 

Search-based semi-supervised clustering methods adapt existing clustering al

gorithms, using constraints or labels, to bias the search for a semantically more mean

ingful partition, and to guide the algorithm to reach the global optimum. There are 

various methods in which this information can be incorporated. Some methods use 

constraints to perform transitive closure and initialize the clustering process [78]. 

Other methods incorporate the constraints into the optimization process. In the 

latter approach, some methods require that all constraints be satisfied during the 

clustering process [28], while some other methods use modifications to the objective 

function, penalizing the process when constraints are left unsatisfied [82]. 

One method of incorporating the background knowledge is to use pairwise 

constraints [25, 83, 91, 26]. Generally, these constraints are defined as either must

link or cannot-link [82]. When two points are required to be in the same cluster 

they form a must-link constraint. In contrast, if the two points are intended to be in 

different clusters they form a cannot-link constraint. These constraints are formulated 

in order to guide the clustering process to find both naturally occurring patterns with 
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a user-defined overtone. The constraint satisfaction criteria can be defined as either 

being strict or relaxed. If the satisfaction criterion is defined as strict the constraints 

are to be unconditionally satisfied [28, 25], where a relaxed criterion implies that the 

constraints mayor may not be satisfied [92]. 

The following sections describe some clustering algorithms that incorporate 

pairwise constraints, including those that use must and cannot link constraints, and 

implement strict and relaxed satisfaction criterion. 

1 The K-Means Algorithm with Pairwise Constraints 

In [25] and [91] the authors adapted the K-Means algorithm [41] to incorporate 

pairwise constraints. In [25], Wagstaff et al. purposed an algorithm that uses a strict 

satisfaction criteria with must- and cannot-link constraints. Davidson et al. in [91] 

implemented must- and cannot-link constraints along with minimal separation and 

cluster density constraints in conjunction with a relaxed satisfaction methodology. 

Another adaptation of the K-Means algorithm was proposed in [82]. In this 

approach, a constrained k-means algorithm (COP-KMeans) was proposed by modify

ing the cluster assignment process, while leaving the optimization process unaltered. 

During the cluster assignment step of COP-KMeans, each point Xj is checked against 

the set of constraints in order to ensure that there are no violations. The algorithm 

attempts to assign each point Xj to the nearest cluster i. If a violation exists, then 

the algorithm parses each remaining cluster to find the closest cluster in which no 

violation occurs. 

The COP-KMEANS algorithm is summarized below: 
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COP-KMEANS Algorithm 

Fix the number of clusters C; 
Randomly initialize the centroids; 
Repeat 

Assign each point Sj to the nearest cluster using 
the Euclidean distance and 
VIOLATE-CONSTRAINT = false; 

Update the centroids Ci using (5); 
Until(centers stabilize) 

Davidson et al. [91] implemented another modification to the k-means algo-

rithm by adapting the center and error updating functions, while introducing two 

other forms of constraints. The authors introduce 6- and E-constraints which act 

upon groups of instances. The 6-constraints, or minimum separation constraints, 

require the distance between constraints to be at least 6, or for any two points Xi 

and Xj in different clusters the distance d(Xi' Xj) > 6. The E-constraints require that 

any two points Xi and X j contained in the same cluster have a distance d( Xi, X j) ::; E 

ensuring that the formulated clusters are dense. The 6- and E-constraints can also 

be written as a conjunction and disjunction of must-link constraints respectively. 

Therefore, all four types of constraints in this method can be broken down into the 

traditional must- and cannot-link constraints. 

Let Cj be the centroid of the lh cluster, Qj be the set of points that are closest 

to the lh centroid, M is a collection of must-link constraints, and C is a collection 

of cannot-link constraints. The constrained k-means algorithm minimizes: 

(33) 
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where 

T1 - (C- - S_)2 J, - J l' 

Tj,2 = [(Cj - Cgl(I»)2-,~(gl(l),g(l))]ml, 

Tj,3 = [(Cj - Ch(gl(l»)2~(g(l),g'(l))r-ml. 

(34) 

In (34), g(i) and g'(i) return the cluster index of the 1st and 2nd instances of the 

ith constraint. The subscript index, h(i) returns the next index of the cluster whose 

centroid is closest to the ith cluster centroid. The function ~ is defined such as 

~(x, y) = 1 if x = y and 0 otherwise, while -,~ is the negation of the ~ function. 

The superscript, ml, indicates that the current pair of objects is a must-link (ml = 1) 

or a cannot-link (ml = 0). In (33), Tj ,l is the original K-means error function, and 

Tj ,2 is the cost of violating a must-link constraint, while Tj ,3 is the cost of violating a 

cannot-link constraint. 

Minimizing the objective function in (33), it can be shown [91] that the new 

centroid update function is: 

(35) 

where 

s s+r 
Yj = L Si + L Cgl(l) + L Ch(gl(l» 

Si€Qj l=l,g(l)=j,~(g(I),g' (I) )=0 l=s+ 1,g(I)=j,~(g(I),g' (I) )=1 

and 
s s+r 

Zj = IQjl + L (1- ~(g(l),g'(l))) + L ~(g(l), g'(l)) 
g(I)=j,l=l g(I)=j,l=s+l 

Intuitively, the centroid update function moves the cluster centroid of a violated 

must-link constraint closer to the cluster containing the other point of the pair so 

that one of the points will shift to the correct cluster. Similarly the update rule for a 

cannot-link violation moves the centroid containing both constrained instances to the 

nearest cluster centroid so that one of the instances may be assigned to it, satisfying 

the constraint. All constraints in this system were generated randomly. 
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The Constrained K-means algorithm is summarized below 

Constrained K-Means Algorithm 

Fix the number of clusters C; 
Randomly initialize the centroids; 
Repeat 

Assign each point Si to the nearest cluster using 
the Euclidean distance; 

Compute CVQE using (33); 
Update the centroids Cj using (35); 

U ntil( centers stabilize) 

2 Pairwise-Constrained Competitive Agglomeration 

The authors in [26] proposed a semi-supervised clustering algorithm that uses 

Pairwise-Constraints and Competitive Agglomeration (PCCA). The PCCA algorithm 

combines features from the CA algorithm [42] with features from previous work on 

semi-supervised clustering [28, 82, 78]. Using the same notation as in the CA, the 

PCCA algorithm minimizes the following objective function: 

C N 

J(B, U, X) = L L( Uik)2d(Xi' ,Bk) 
k=l i=l 

C C C 

+r( L L L UikUjl + L LUikUjk) 
(xi,xj)cM k=l l=l,lfk (Xi,Xj)cC k=l 

(36) 

C N 2 

-a L [LUik] 
k=l i=l 

subject to the constraints in (2). In (36), M is the set of available must-link con-

straints, i.e. (Xi,Xj) E M implies that Xi and Xj must be assigned to the same 

cluster, and C the set of cannot-link constraints, i.e. (Xi, Xj) E C implies that Xi and 

Xj cannot be assigned to the same cluster. 

The first term in (36) is the sum of squared distances to the prototypes weighted 

by the membership and is from the FCM objective function [40]. This term is used to 

seek compact clusters. The second term is the costs of violating the pairwise must-

and cannot-link constraints. The penalty for two points in different clusters (for 
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must-link constraints) or in a same cluster (for cannot-link constraints) is weighted 

by their membership values. The third term is the sum of squares of the cardinality of 

the clusters (from the CA objective function) and controls the competition between 

clusters. The second term in (36) is weighted by '"Y, a constant factor that controls 

the importance of the supervision. In, [79], the authors recommend the estimation of 

'"Y using 

N 2:f=l 2:~1 u7kd(Xi' 13k) 
'"Y = M ",C ",N 2 ' 

L-k=l L-k=l u ik 

where M is the number of pairwise constraints. 

(37) 

The value of a in (36) controls the competition between clusters. In [26] the 

authors recommend that the value of a be updated in every iteration using 

C C C (38) 

+ '"Y( L L L UikUjl + L L UikUjk)] ' 

(x;,xj)€M k=l l=l,l¥k (x;,Xj)€c k=l 

where "70 is the initial value, and T is the time constant. When all terms are combined 

and an appropriate a has been selected, the final partition of the data will minimize 

the sum of the intra-cluster distances, while creating the smallest number of clusters 

that satisfies the given constraints as much as possible. 

Minimizing J with respect to U, subject to the constraints in (2) yields [26] 

U = uFCM + uConstraints + U Bias 
rs rs rs rs (39) 

where 
1 

(40) 

(41) 

and 

(42) 
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In (41), CVrs and C r are defined as 

c 

L L Uj/ + L Ujs, (43) 
(Xr,xj)cC 

and 

(44) 

In (42), N r is defined as 
2:C Nk 

N - k=l d(Xr ,/3k) (45) 
r - "'C 1 

L...-k=l d(X r ,/3k) 

The first term in equation (39), U;~M, is the same as the FCM membership 

equation and considers only the relative distances between data items and prototypes. 

The second term, u~sonstraints, takes into account the available supervision. Member-

ships are depreciated or reinforced depending on the satisfaction of the pairwise con-

straints. The third term, u~;as, leads to a reduction of the cardinality of spurious 

clusters, which are discarded when their cardinality drops below a threshold. 

The PCCA algorithm was formulated using the GK distance. Thus, each 

prototype consists of a center and a covariance matrix. Since the second and third 

terms in (36) do not depend explicitly on the prototype parameters, it can be easily 

shown that these parameters are updated as in the GK algorithm. That is the centers 

are updated using (8) and the covariance matrix is updated using (11). 

The PCCA algorithm is summarized below: 
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The Pairwise-Constrained Competitive Agglomeration 

Fix the number of clusters C; 
Randomly initialize prototypes Uj, jE{l, ... ,C}; 
Initialize memberships Ui{ equal membership of every 

data item to every cluster; 
Compute initial cardinalities N j using (24); 
Repeat 

Update a and "( using (38) and (37); 
Update the memberships Uij using (39); 
Update the cardinalities N j , jE{l, ... ,C} , using (24); 
For jE{l, ... ,C}, if Nj < threshold then discard cluster j; 
Update the number of clusters C; 
Update the centers and covariance matrix using 

(8) and (11) respectively. 
U ntil(prototypes stabilize) 

We should note here that if the number of clusters is fixed, and binary mem-

berships are used, the PCCA algorithm reduces to the PCKmeans algorithm given in 

[78J. 
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CHAPTER III 

ADAPTIVE CONSTRAINED CLUSTERING 

This chapter presents our proposed approach to clustering calledF Adaptive 

Constrained Clustering (ACC). This algorithm combines the benefits of the cluster re

duction techniques of the CA algorithm [42] (refer to Section §ILB.2), with the ability 

to learn cluster-dependent feature relevance weights from the SCAD algorithm [74, 75] 

(§ILC), and the incorporation of partial supervision from the PCCA algorithm [26] 

(refer to §II.D.2). The proposed algorithm uses a single objective function formulated 

to jointly optimize all of the above criteria. We derive the necessary conditions to 

optimize the joint objective function and describe the different steps involved in the 

algorithm. We show that, the ACC algorithm can be used to adaptively cluster a 

given data set using partial supervision information to guide the clustering process, 

learn cluster-dependent feature relevance weights, and find the optimal number of 

clusters. 

A The Constrained Clustering (CC) Algorithm 

Let X = {Xj E RPlj = 1, ... , N} be a set of N feature vectors in an p

dimensional feature space. Let B = (/31, ... , /3c) represent a C-tuple of prototypes 

each of which characterizes one of the C clusters. Each /3i consists of a set of parame

ters. Let Uij represent the grade of membership of feature point Xj in cluster /3i. Our 
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approach is fuzzy and thus, Uij, satisfies the following membership constraint: 

Uij E [0,1], Vi,j 

a < ~~1 Uij < N Vi (46) 

~;:1 Uij = 1 Vj 

As in SCADc [77J, we assume that the p features are partitioned into K logical 

subsets: FS1 , FS2 , ... ,FSK , and that each subset, FSs, includes ks features. This 

partitioning is application dependent. For example, in imaging applications, these 

subsets could be formed by separating color features into one subset, texture features 

into a second subset, and another subset for structure features. Let d ijs be the 

partial distance between feature Xj and cluster i using the 8
th feature subset. The 

distances used for each subset are independent, and it is not necessary that these 

distances be the same. In the previous example, it is possible that similarity for the 

color feature subset be characterized using the Euclidean distance, while the texture 

features and the structure features could be represented by the Mahalanobis and 

Lp norm distances respectively. The only requirement is that the different distance 

measures yield values within the same dynamic range. Then, the total distance, D ij , 

between Xj and cluster i is computed using a simple weighted average operator to 

aggregate the partial degrees of similarity and their weights. That is, we let 

K 

Dij = L Visdijs. (47) 
s=1 

In (47), Vis is the relevance weight offeature subset FSs , with respect to cluster i and 

satisfies the following constraints: 

Vik E [0, IJ Vi, k; 
n 

and L Vik = 1, Vi. 
k=1 

(48) 

In contrast to the definitions in [25, 26, 91J related to must and cannot link con-

straints, the constraints used in our approach are soft and are defined as should and 

should-not link constraints. The original constraint definitions (e.g. in [25, 79]) imply 

27 



-----------------------

that the satisfaction criteria is hard, that is, the pairs of instances contained in must 

and cannot link constraints need to be satisfied unconditionally regardless of the clus-

ters' distributions. The proposed CC algorithm does not employ a hard satisfaction 

criteria. Therefore, the use ofthe must- and cannot-link can be semantically mislead-

ing. Since the use of constraints are merely suggestions based on previous knowledge 

on how the clusters should be formed, the algorithm then uses these constraints to 

guide the clustering process but does not guarantee their satisfaction. 

Let S be the set of available should link constraints, i.e. (Xi, Xj) E S implies 

that Xi and Xj should be assigned to the same cluster. Similarly, let N the set of 

should not-link constraints, i.e. (Xi, Xj) EN implies that Xi and Xj should be assigned 

to different clusters. 

The Constrained Clustering (CC) algorithm minimizes the following objective func-

tion: 

C N K 

J(B, U, V; X) = L L uV L v;sdijs 
i=1 j=1 s=1 

C C C 

+ I ( L L L K,jkUfiUki + L L pjkufiuk;) (49) 
(Xj,Xk)€S i=1 1=1,lfi (xj,xk)£N i=1 

C N 2 

- Q L [LUij] . 
i=1 j=1 

subject to the constraints in (46), and (48). The first term in (49) is the objective 

function of the SCAD algorithm [75], and is used to search for compact clusters 

with their feature relevance weights. The second term is composed of the cost of 

violating the pairwise should link and should-not link constraints. The penalty terms 

are weighted by the membership values of the points that violate the constraints. 

In other words, the penalty term is greater when the points are part of the core of 

the cluster (high membership), than if the points were on the border of the cluster 

(low membership). Unlike previous work on semi-supervised clustering, our approach 
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does not treat each constraint equally important. To that effect, /'\,jk, is an application 

dependent penalty weight for violating a should link constraint and Pjk is the penalty 

weight for violating a should-not link constraint between Xi and Xj. 

The third term in (49) is the sum of the squared cardinalities. This is a regu-

larization term that is used to introduce competition among the clusters and promote 

sparsity. It allows the algorithm to partition the data into the optimal number of clus-

ters. In (49), ry is a constant weighing the importance of the supervision compared to 

the sum of intra-cluster distances. Similarly, a is a constant that controls the agglom-

eration rate. With the proper selection of these constraints and the combination of 

the three terms, the CC algorithm will seek the optimal number of clusters, their pa-

rameters and the feature relevance weights while minimizing the sum of intra-cluster 

distances and the number of violated constraints. 

To optimize of J with respect to the membership U, we apply the Lagrange 

multiplier technique and obtain 

C N K 

J(V, A) = L L u0 L v;sdijs 
i=1 j=1 s=1 

C C C 

+ ry ( L L L /'\,jkUj:Ukz + L L pjkuj:uki) 
(Xj,Xk)€S i=1 1=1,lfi (Xj,xk)£N'i=1 

C N 2 

- a L [LUij] 
(50) 

i=1 j=1 

N C 

- LAj(L Uji -1). 
j=1 i=1 

In (50), A = [AI, ... ,Ac]t is a vector of Lagrange multipliers corresponding to the C 

constraints in (46). The necessary conditions for updating the memberships, Uij, can 
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be obtained by fixing the parameters B and V, and solving !:j = O. Doing so, yields 

K 

::. = mu7j-1 L v;jdij8 
~J 8=1 

C 

+I'( L L /'i;jk mu7j-
1uki+ L pjkmu7j-1u~) (51) 

(Xj ,Xk)€S 1=1,lii (Xj ,Xk)EN" 

N 

- 20: L Uir - Aj = 0 
r=1 

Under the assumption that the membership values do not change significantly between 

where 

is the fuzzy cardinality of cluster i. 

Minimization of J with respect to the Lagrange multiplier produces 

f)J C 

f)A' = L Uzj - 1 = 0 
J z=1 

Using (52) and (54), and solving for Aj returns, 

where 

k C 

Hij = m( L V0 dij8 + 1'( L L /'i;jkUki + L PjkU~)), 
8=1 (Xj,Xk)€S 1=1,lii (Xj,Xk)EN" 

(52) 

(53) 

(54) 

(55) 

Substituting Aj from (55) in equation (52), it can be shown that the update equation 

for the membership of point Xj in cluster i becomes: 

Uij = (Hij!m) ( 1 _1 

~C H1-m 
L.,.,z=1 z~ 

C 

L (2:~ ) l!m 1 1) 
z=1 Z 1 + (2

n
'N

k
) 1-m 

~C H1-m L< 

L.,.,z=1 z~ 
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Optimization of (49) with respect to V would yield an equation for updating 

the relevance weights. Since the rows of V are independent, this optimization problem 

can be reduced to the following C simpler and independent problems: 

N K 

Ji((!Ji, Vi) = L urj L v;sdijs 

j=1 s=1 

c 

+ "( ( L L KjkUfiulJ + L pjkUfiuT;i ) 

(Xj,Xk)fS l=l,lo;ii (Xj,Xk)EN" (57) 
N 2 K 

- ex [ L Uij] - ¢i ( L Vis - 1) 
j=1 s=1 

for i = 1,· .. ,C, 

In (57), Vi is the ith row of V, and ¢i is a Lagrange multiplier used to incorporate 

the constraints in (48). By setting the gradient of Ji with respect to Vi and ¢i to 

zero, we obtain 

(58) 

(59) 

Solving (58) and (59) for the relevance weights Vis, we obtain 

(60) 

Simplifying (60), Vis reduces to 

1 
Vis = --:::--------

~ (Di' / Di.) Ij(q-I} ' 

(61) 

where Dis = l:f=1 urjdijs is the measure of dispersion for the ith cluster along the 8th 

dimension, and l:~=1 Dik is the cumulative dispersion of the ith cluster. This relation 
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implies that the more compact the ith cluster is along the 8 th dimension (smaller Dis), 

the higher the relevance weight, Vis will be for the 8
th feature. 

In (61), the discrimination exponent q E (1,00) determines how much discrim-

ination occurs between the relevance weights of different features subsets. For large 

values of q, there is little or no discrimination. For small values, there is greater 

discrimination. 

Minimization of J with respect to the prototype parameters depends on the 

choice of d ijs . Since each partial distance is treated independently from the others 

(i.e. disjoint feature subsets), the objective function in (49) can be decomposed into 

K independent problems: 

C N K 

Js = L L u0 L v'lsdijs 

i=l j=l s=l 

C C C 

+ 'Y( L L L ~jkUfiUki + L LPjkUfiuki) (62) 
(Xj,Xk)€N i=l 1=1,l7'oi (Xj,Xk)€N i=l 

C N 2 

- a L [L Uij] ,for 8 = 1, ... ,K. 
i=l j=l 

Each Js would be optimized with respect to a different set of prototype parameters. 

For instance, if d ijs is chosen as the Euclidean distance, the update equation for the 

centers, Cis, of subset 8 would be the same as the FCM [40]. That is, the center for 

feature subset, 8, would be updated using 

j=l 
Cis = .:....--:-N---- (63) 

L(Uij)m 
j=l 

where Xjs includes only the 8
th feature components of data sample x. Similarly, if 

d ijs , is the weighted Mahalanobis distance, minimization of Js , would yield update 

equations for the centers and covariance matrices as in the GK algorithm [48]. That 

is, the centers would be updated using (63), and the covariance matrix for feature 
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subset s would be updated using 

LS':l(Uij)m(XjS - Cis) (Xjs - Cis? 
Cis = N 

Lj=l (Uij)m 
(64) 

The constant "/ in (49) is selected to allow balance between the sum of intra-

cluster distances and the number of constraints. That is, in each iteration we update 

"/ using 

N L~=l L~l (Uik)mdijs 
"/ = M ",C ",N m ' 

L...tk=l L...tk=l Uik 

(65) 

where M is the number of pairwise constraints. Similarly, the agglomeration constant, 

0:, is selected to allow balance between the sum of intra-cluster distances and the 

regularization term. That is, in each iteration k, we update 0: using 

The CC algorithm is summarized below: 

The Constrained Clustering Algorithm 
Fix the maximum number of clusters C = Cmax ; 

Fix m, m E (1,00); 
Fix the discrimination exponent q, q E (1, 00); 
Initialize iteration counter k = 0; 
Initialize the centers and the fuzzy C partition U(O); 

Initialize all the relevance weights to 1/ K; 
Compute initial cardinalities Ni for 1 ::; i ::; C using (53); 
Repeat 

Compute d ijs for 1 ::; i ::; C, 
1 ::; j ::; N, and 1 ::; s ::; K; 

Update o:(k) and,,/ using (66) and (37); 
Update the relevance weights matrix V using (61); 
Compute D;j using (47); 
Update the partition matrix U(i) using (56); 
Compute the cardinality Ni for 1 ::; i ::; C using (53); 
If (Ni < Ed discard cluster f3i; 
Update the number of clusters C; 
Update the prototype parameters; 
k = k + 1; 

U ntil( centers and prototype parameters stabilize) 
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B The Adaptive Constrained Clustering (ACC) Algorithm 

The ACC algorithm is an adaptive modification to the Constrained Cluster

ing algorithm outlined in Section A. The adaptive properties of the algorithm are 

defined by both the search for the optimal number of clusters and by considering 

the constraint selection/satisfaction method. In particular, the ACC algorithm uti

lizes a method of competitive agglomeration to merge similar clusters and the partial 

supervision information to split clusters. In the CC algorithm, clustering begins by 

overestimating the number of clusters. Then the clusters begin competing for points 

and clusters are pruned as they become empty. Unfortunately, the process can be 

hindered by many factors such as, the structure of the data, the initialization of the 

clusters, and the value of the agglomeration constant. These factors can cause a sud

den, nonrecoverable drop in the number of clusters and an optimal solution may not 

be possible. 

In Figure 1, we provide an illustrative example of this potential drawback. A 

scatter plot of the 2-dimensional data used in the example is given in Figure 1(a). 

This data set consists of two clusters, circled in Figure 1(b). The initialization of 

the CA algorithm, Figure 1(c), overestimates the number of clusters and uses c = 9. 

In this Figure, each point's color indicates to which cluster it belongs. Figure 1( d) 

displays the results of the CA after 25 iterations, where the number of clusters has 

reduced to 6 and the agglomeration process has merged the small, circular cluster 

with a portion of the larger cluster. Figure (1£) shows the final results of the CA 

clustering. Due to the merging of the two clusters in previous steps, the algorithm 

cannot recover from merging the incorrect clusters. This is because the CA cannot 

increase the number of clusters. 

The proposed ACC algorithm attempts to alleviate this problem using the 

available partial supervision information. In particular, if during the iteration process, 

34 



(c) (d) 

(f) 

Figure 1. An illustrative example of over-agglomeration. (a) A 2-D data set with 
two clusters. (b) The ground truth of the two clusters. (c) Initialization of the CA 
algorithm with a over estimation of clusters emax = 9. (d) After a few iterations, the 
number of clusters has reduced to 6, where the agglomeration merges two clusters 
inconsistently with the ground truth. (f) Upon convergence, portions of two distinct 
clusters have merged, yielding unfavorable clustering results. The CA algorithm 
cannot increase the number of clusters and recover from this local minima. 
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there exists a set of unsatisfied should not-link constraints, we increase the number 

of clusters to allow the satisfaction of the imposed constraints. This grants the ACC 

algorithm an adaptive feature where the number of clusters is allowed not only to 

contract but also to expand. More specifically, during clustering, the ACC algorithm 

inspects the current cluster distributions against the current set of should not-link 

constraints. When an unsatisfied constraint is discovered, the algorithm splits the 

pair of points creating a new cluster. The furthest point from the center of the 

old cluster is used to create a new cluster. The distances of all points assigned to 

the split clusters are recalculated using the two cluster centers and the two clusters 

are populated with points that are closest to their center. This method of cluster 

expansion not only assists in helping recover from over-agglomeration and finding the 

optimal number of clusters, but also in satisfying should not-link constraints. 

In particular, the ACC algorithm uses should-not link constraints to split the 

clusters and guide the ACC algorithm to find the optimal number of clusters resulting 

in a dynamic algorithm where the number of clusters could shrink (using competitive 

agglomeration) or expand (using the splitting of clusters with unsatisfied should-not 

link constraints). The resulting algorithm, called Adaptive Constrained Clustering 

(ACC), is summarized below. 
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The Adaptive Constrained Clustering Algorithm 
Fix the maximum number of clusters C = Cmax ; 

Fix m, mE (1,00); 
Fix the discrimination exponent q, q E (1, 00 ); 
Initialize iteration counter k = 0; 
Initialize the centers and the fuzzy C partition U(O); 
Initialize all the relevance weights to 1/ K; 
Compute initial cardinalities Ni for 1 :::; i :::; C using (53); 
Repeat 

Repeat 
Compute dijs for 1 :::; i :::; C, 

1 :::; j :::; N, and 1 :::; s :::; K; 
Update o:(k) and'Y using (66) and (37); 
Update the relevance weights matrix V using (61); 
Compute Drj using (47); 
Update the partition matrix U(i) using (56); 
Compute the cardinality Ni for 1 :::; i :::; C using (53); 
If (Ni < E 1) discard cluster f3i; 
Update the number of clusters C; 
Update the prototype parameters; 
k = k + 1; 

U ntil( centers and prototype parameters stabilize) 
Repeat 

If a should-not link constraint is violated; 
Create two new centers from points violating constraint; 
Assign points surrounding the new centers to the newly 

formed clusters; 
Until(no constraints are violated) 

Until(no new constraints are created) 

The splitting process of the ACC algorithm is illustrated in Figure 2. In Figure 

2(a), we display the results ofthe CA algorithm from the previous example (shown in 

Figure (1)). The red line links the two sam pIe points that were selected for a should

not link constraint. Figure 2(b) displays the results from the split of the cluster 

containing the violated constraint. The results after resuming the CA with 3 clusters 

are displayed in Figure 2(c). As can be seen, the ACC algorithm has converged to 

the correct partition. 
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(p) '-----------------' '----------------' 
(a) (b) 

(c) 

Figure 2. Illustration of the cluster splitting process in the ACC algorithm. (a) Par
tition resulting from the CA algorithm and selection of a should-not link constraint. 
(b) Splitting of the black cluster to satisfy the should not link constraint. (c) Final 
partition where the ACC has recovered from the over-agglomeration. 

C Constraint Selection 

The CC algorithm is a data partitioning method that can incorporate pairwise 

constraints to guide the optimization process. These constraints are derived from 

prior knowledge about the given data set and can be extracted from multiple sources. 

For instance, an interactive environment with users could use various methods of 

relevance feedback to create constraints between objects, Similarly, information could 

be retrieved from associated contextual information or metadata, or even from just a 

few labeled samples. 
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In the Chapter V, we show that for the database categorization application, 

contextual information from geographical, temporal, and semantic textual informa

tion can be used to adaptively create constraints. 

D Computational Complexity 

The ACC algorithm uses a single objective function designed to overcome some 

of the limitations observed in prototype-based clustering. One drawback to providing 

additional functionality is the additional computational complexity of the resulting 

algorithm. During the clustering process, each iteration of the ACC consists of several 

steps resulting in an updated partition of the given data set. The computational 

complexity of the ACC algorithm is on the order of O(NCS + NCM + NC), where 

N is the number of data points, C is .the total number of clusters, M is the total 

number of constraints and S is the number of feature subsets. The computation of 

the distances in (47), takes place in NCS time. Calculating the balancing constraints 

(66) and (65), and the agglomeration process are all performed in O(NC) time. 

Updating the memberships is on the order of O(NCM), which takes into account the 

M constraints utilized by the system. Therefore, the total computational complexity 

of the ACC over K iterations can be estimated as O(KNC(S + M + 1)). 

E Convergence Properties 

The ACC algorithm minimizes the objective function defined in (49) subject 

to the constraints in (46) by means of alternating optimization. In other words, in 

each iteration the algorithm first learns a set of memberships U, under the assump

tion that the cluster centers V are fixed. Then the algorithm updates each cluster 

center under the assumption that the memberships are fixed [93]. Methods which 

utilizes the alternating optimization are known as gradient descent algorithms [94]. 
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These algorithms are first-order optimization algorithms designed to seek the local 

minimum of a given function. Therefore, algorithms which seek to minimize an ob

jective function using alternating optimization are guaranteed to converge to at least 

a local minima, or saddle point [95, 96]. These algorithms are set to terminate when 

the alternating parameters stabilize. That is, the process starts with a initial guess 

for V or U and continues until successive iterations of the parameters differ by a 

minimal amount (i.e. IIUk+1 - Ukll < E where k is the iteration number). Typically, 

the rate of convergence is unknown and in practice we terminate the algorithm after 

100 iterations to limit execution time. 
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CHAPTER IV 

EXPERIMENTAL EVALUATIONS 

A Introduction 

In this chapter we illustrate the performance of the ACC using several synthetic 

data sets. The ACC algorithm is compared with the SCADCA algorithm [77J, and the 

PCCA algorithm [26J. These algorithms are outlined in Chapter II, sections C and D.2 

respectively. The remainder of this section provides an overview of the data sets used 

in these experiments and defines the performance measures used for evaluation. Then, 

Section C, compares the computational complexity of the algorithms and addresses 

the issue of initialization with regards to the resulting performance. In Section B, 

we use the various performance measures to compare the partitioning performance of 

the algorithms, taking into account the addition of constraints. 

1 Data Sets 

The different algorithms are compared using a collection of synthesized data 

sets (see Appendix A). Using synthetic data allows for an easier method of tracking 

the changes to the data during the clustering process. Several data sets were generated 

in order to test the clustering process and analyze the results of the ACC. These data 

sets are summarized in Table 1 and shown in Figure 3. Each point's features are 

represented simply as their Cartesian points in the two dimensional space. For the 

purpose of constraint selection, the data is labeled so that the class for each data 

point is known. These labels are only used during the constraint selection process. 
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TABLE 1 

Data sets used in the algorithm comparison. 

Data set No. of Points No. of Clusters 
1 200 2 
2 200 3 

o 

o 

+ 
+ 

o 

(a) Data set 1 (b) Data set 2 

o 
o 

Figure 3. The synthetic data sets used to evaluate and compare the algorithm. Points 
from each cluster are represented by a different color and symbol. 

2 Performance Measures 

The ACC algorithm and the other algorithms used for comparison, generate a 

C x N fuzzy partition matrix U = [Ui j], i = 1, .. . , C ; j = 1, ... , N , where Uij E [0 , 1] is 

the fuzzy membership degree of the /h data point in the ith cluster. For the purposes 

of testing and constraint creation, we assume that the generated data is labeled. That 

is , the ground truth for each data set is known and can be represented by a partition 

matrix U (T ) = [u~T)], where Uij E {O, 1} are crisp memberships. 

In [97] , many measures that compare two partitions are given. Three of these 

measures will be used to compare the clustering efficiency of the ACC algorithm 

against the PCCA algorithm, and the SCADCA algorithm [77] . The CA algorithm 

[42] was excluded from these comparisons because the PCCA algorithm reduces to 
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the CA when no constraints are used. 

The comparison of two partition matrices, U(I) and U(2), begins by computing 

their coincidence matrices W(I) and W(2) where 

c 
W = [7);jk], 1 :::; j, k :::; N, and 7);jk = L UijUik. 

i=1 

Then, a 2 x 2 contingency table is computed as in Table 2 where 

N j-I 

NSS(W(I), W(2») = L L 7);;~)7);;i), 
j=2 k=1 

N j-I 

L L 7);;~)(l-7);;i»), 
j=2 k=1 

N j-I 

L L (l-7);W)7);;i), 
j=2 k=1 

N j-I 

NDD(W(I), W(2») = L L (1 - 7);;~»)(1 - 7);;i»)· 
j=2 k=1 

In the above, the indices Sand D stand for" same cluster" and "different clusters" 

respectively. 

TABLE 2 

Contingency table. 

l/!;~) = I l/!i~) = 0 l: 
l/!~~) = I Nss NSD Ns. 

~W=o NDS NDD ND. 

l: Ns ND N. 

Using the contingency table, the Rand statistic (Rand), the Jaccard coefficient 

(Jacc), and the Folkes-Mallows index (FMI) to compare each generated partition U(d) 

to the ground truth partition U(T). These indices are defined as: 

Q (W(d) W(T») = Nss + NDD 
Rand, N..' 

Q (W(d) W(T») = Nss 
Jacc, N + N + N ' SS SD DS 
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Q (W(cl) WeT)) = Nss 
FM!, V ' (Nss + NsD ) (Nss + NDs ) 

All of the above measures provide larger values when the two partitions are more 

similar. 

B Experimental Results 

For the remainder of this dissertation, we assume that all necessary and rele-

vant features used during computations have been precomputed and are available in 

their entirety. All experiments were then computed using a 3.0GHz Pentium Xeon 

processor with 3.0GB of memory. In the following experiments, the maximum num-

ber of clusters was set to Cmax = 20, the fuzzifier was set to m = 1.5, and the 

discriminant exponent was set to q = 2.0. The supervision constant, ,,(, is calculated 

using (65). For the agglomeration constant, ex in (66), 'TIo = 2.0 and T = 20. For 

the purposes of constraint creation, the ACC algorithm compares the current cluster 

distribution, every 25 iterations or one epoch, to the labels provided with the data. 

During the comparison, if a candidate should or should-not link constraint is found 

it is then added to the current list of constraints. For the following experiments, up 

to 5 new constraints were incorporated at each interval during the clustering process 

with precedence given towards the creation of should-not link constraints. 

The synthetic data sets are displayed in Figure .3. The colors of each symbol 

indicate to which cluster they belong. Each point is represented as a symbol, these 

symbols represent different contextual descriptors for each point. That is, clusters 

can be formed using two methods. First by a density based notion to clusters, and 

second by defining the cluster using contextual descriptors. 

In Figure 4, we illustrate the initial partitions of Data Set 1. Figure 4(a) shows 

the ground truth of the data set, with all the points labeled with a '+' belonging to 

the blue cluster and the points labeled with a '0' belonging to the green. The results of 
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(a) Data set 1 (b) CA results (c) SCADCA results 

Figure 4. Initialization of Data set 1. The shape of each symbol refers to the contex
tual meaning of each point , and the color represents the assigned cluster. 

the CA algorithm which is used to initialize the PCCA algorithm are given in Figure 

4(b), while Figure 4(c) presents the results of the SCADCA algorithm which is used 

to initialize the ACC algorithm. The main difference between the initializations is 

evident by observing the formation of the clusters in each data set . In Figure 4(b), 

there exist numerous , small, circular clusters which is primarily due to the PCCA 

algorithm's inability to take into account the structure of the data set. On the other 

hand, the SCADCA algorithm is able to determine the optimal number of clusters , 

using the learned feature relevance weights of each cluster (see Table 3). 

TABLE 3 

Feature relevance weights learned during initialization of the ACC algorithm. 

Cluster Horizontal Weight Vertical Weight 
1 (blue) 0.7239 0.2761 

2 (green) 0.4183 0.5817 

Figures 5(a-c) and 6(a-c) illustrate the effects of iteratively incorporating con-

straints into the PCCA and ACC algorithms respectively. After five epochs, the 

PCCA algorithm is able to reduce the number of clusters from six to four . Unfor-

tun at ely, at this point the agglomeration stalls in the PCCA through the remaining 

epochs (Figure 5(b-c)) because the formulated clusters have become well defined with 
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respect to the defined distance measure. 

The intermediate results of the ACC algorithm are displayed in Figure 6. Here, 

the effects of the cluster splitting paradigm is illustrated in Figure 6(a) , where the 

vertical cluster (green) has been split into two clusters based on the given constraint 

set. In this case, the splitting allows the ACC algorithm to avoid becoming trapped in 

a local minima. In Figure 6, the ACC algorithm is able to again reduce the partition 

to the optimal number of clusters, but in doing so misclassifies a number of points 

which leads to the creation of additional constraints. Finally, Figure 6( c) shows the 

resulting partition after 15 epochs. At this point the ACC algorithm has created 

three clusters in order to remove the the misclassified points , '+', from the vertical 

(blue) cluster. 

It is important to note that as the constraints are gradually added to both the 

PCCA and the ACC algorithms, the performance may decrease between epochs. In 

the ACC algorithm, this is primarily due to instances in which a cluster may be split 

and not quickly agglomerated between epochs. The comparison of accuracy results 

during the clustering process is illustrated in Figures 7(a-c). Note that using the Q rand 

measure, the PCCA algorithm produces a more accurate partition initially, but the 

performance values over all epochs supports the assumptiorr that the agglomeration 

process had stalled. As the ACC algorithm converged, the performance, based on the 

(a) after 5 epochs 
with 25 constraints 
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o 

(b) after 10 epochs 
with 50 constraints 

(c) after 15 epochs 
with 75 constraints 

Figure 5. Intermediate results of the PCCA algorithm on Data Set 1 
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( a) after 5 epochs 
with 25 constraints 

(b) after 10 epochs 
with 50 constraints 

o 

( c) after 15 epochs 
with 75 constraints 

Figure 6. Intermediate results of the ACC algorithm on Data Set 1 

ground truth, rose from the initial clustering and in all cases the ACC algorithm was 

able to overtake the PCCA algorithm and provide a more accurate partition. 

Data set 2 illustrates the ability of the ACC algorithm to search for elliptical 

and spherical clusters simultaneously. After initialization (Figure 8(b)) , the PCCA 

algorithm was able to only shift points between clusters, successfully merging one 

cluster , only to shift points to another cluster to maintain the total of five (Figures 

9(a-c)). The ACC algorithm was initialized to three clusters (Figure 8(c)) , and during 

the first epoch interval, agglomerated to two. The ACC algorithm then continued 

in Figures 10(a-c) , shifting points to a new cluster over the last two epochs shown. 

These findings are evident from the performance evaluations (Figure 11). In the 

early epochs, the agglomeration's dominance was gradually decreased by adding the 

constraints. 

C Convergence Properties and Computational Complexity 

Initialization can play an important role in the performance of an iterative 

clustering algorithm. The process of initialization varies with respect to the cluster 

prototypes, distance measures, and the application of the algorithm. In Figures 12(a

c), we demonstrate the effects of initialization on the the ACC, SCADCA, and PCCA 

algorithms. In these experiments, each algorithm was run 100 times on the points 
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Figure 7. Performance evaluations for Data Set 1 

(a) Data set 2 (b) CA results (c) SCADCA results 

Figure 8. Initialization of Data Set 2. The shape of each symbol refers to the con
textual meaning of each point, and the color represents the assigned cluster. 
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( a) after 5 epochs 
with 25 constraints 

(b) after 10 epochs 
with 50 constraints 

( c) after 15 epochs 
with 75 constraints 

Figure 9. Intermediate results of the PCCA Algorithm on Data Set 2 

(a) after 5 epochs 
with 25 constraints 

(b) after 10 epochs 
with 50 constraints 
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Figure 10. Intermediate results of the ACC algorithm on Data Set 2 

in Data set 1 using different random points each run to initialize the clusters. In 

terms of constraint creation, the number of constraints created at each epoch was 

increased to 50. The results of the SCADCA algorithm are illustrated in Figure 

12(a) , which presents the average value and the standard variation of the objective 

function calculated over all passes of the algorithm. It is observed that on average, 

the SCADCA algorithm needed 55 iterations before convergence. In Figure 12(b) , the 

PCCA algorithm suffers from a large amount of variance early in the clustering process 

which is attributed to the early agglomeration of clusters. The average number of 

iterations before convergence in the PCCA was calculated as 65 iterations. Finally, 

the ACC algorithm is illustrated in Figure 12(c). The ACC algorithm sees significant 

variations on the objective function in early iterations this again can be attributed 

to the agglomeration of clusters. Unlike the PCCA algorithm, on average the ACC 
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Figure 11. Performance evaluations for Data Set 2 

algorithm sees a sharp decline early in the clustering process, due to the increase 

in the number of clusters using the splitting paradigm (outlined in Chapter III.§B). 

Figure 13 shows the number of clusters observed over 10 experiments with the ACC 

algorithm. These results illustrate the ACC algorithm's insensitivity to initialization, 

and despite different initializations with varying number of clusters, our approach is 

able to converge to the optimal number of clusters. 

The computational complexity of the ACC algorithm can be estimated as 

O(NCS + NCM + NC) , where N is the number of data points , C is the total 

number of clusters, M is the total number of constraints and S is the number of 

. feature subsets (refer to Chapter III.§D) . Using Data set 1, the average observed 
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Figure 12. Evaluation of the objective function over 100 synthetic trials. (a) Results 
for the SCADCA algorithm (b) Results for the PCCA algorithm (c) Results for the 
ACC algorithm 

running time for each algorithm is given in Table 4 and Table 5 provides the average 

running time for Data set 2. All three algorithms share some common traits, they all 

seek the optimal number of clusters using agglomeration. Where the SCADCA and 

the ACC share the ability to use feature subsets and assign relevance weights to each 

subset , while the PCCA and ACC algorithms both use partial supervision during the 

clustering process. Therefore, we would assume that the computational times of the 

algorithms would be on the order of the SCADCA, then the PCCA, and the ACC. In 
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Figure 13. The number of clusters used per iteration in the ACC algorithm. 

observation, the running time of the ACC algorithm is lower than that of the PCCA. 

The main factor that contributes to the ACC algorithm's improved computational 

performance over the PCCA can be attributed to fewer number of iterations 

TABLE 4 

The observed running time for each algorithm on sample Data set 1. 

Algorithm Run Time 
ACC 5.06s 

SCADCA 1.21s 
PCCA 9.17s 

In Section B, we demonstrated the ACC's ability to provide a more optimal 

partition from a single initialization. In Figure 14, we show the ACC algorithm's 

robustness towards initialization using the average performance measures described 

in Section A.2. As it can be seen, the ACC algorithm demonstrates superior levels of 
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TABLE 5 

The observed running time for each algorithm on sample Data set 2. 

Algorithm Run Time 
ACC 8.55s 

SCADCA 1.14s 
PCCA l1.05s 
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Figure 14. Average and standard deviation using the QRand , QJacc , and QFMI perfor
mance measures over 100 runs with different initialization. The low variance of the 
ACC indicates less sensitivity to different initialziations. 

partition validity for all performance measures , while maintaining a low variance. This 

means that the ACC algorithm converges consistently to the same optimal partition. 

On the other hand, The PCCA and SCADCA methods show varying levels of validity, 

with an accompanying increased level of variation in the results. This indicates more 

sensitivity to initialization. 
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CHAPTER V 

DYNAMIC IMAGE DATABASE CATEGORIZATION 

AND VISUALIZATION USING ADAPTIVE 

CONSTRAINED CLUSTERING 

A Motivations 

The ability to capture, store, and view images has quickly become an everyday 

task in recent years. The quantity of images available to a user, either by personal 

image capture, or through secondary acquisition (i.e. Web communities) increases day 

by day. These communities, such as Flickr [2J or Panoramio [3J, help demonstrate the 

scale of digital imagery available, and points toward the social and practical impact 

that viewing and interacting with images provides. 

Image management researchers have taken many different paths to attempt to 

find meaningful, efficient methods to process images collections. Grouping, visualiz

ing, and navigating image collections is a challenging task when the sizes range in the 

few thousands, and the scope of the task is immense when the collections number in 

the tens- or hundreds of thousands. Early approaches, utilized preexisting semantic 

keywords associated with each image and were found to have many difficulties, includ

ing tedious manual annotations and semantic ambiguity. These issues led to research 

in the area of content-based image retrieval, where visual descriptors were extracted 

to provide the means for image comparison. An issue known as the semantic gap 

[19J has caused substantial limitations to CBIR research. Recently, research directed 
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towards the combination of content and context retrieval has emerged [30, 31]. The 

hopes of these combinations is that the associated context will help to bridge the 

semantic gap and allow for more meaningful content retrieval. 

The remainder of this chapter is organized as follows. First, content-based 

database categorization is described in Section B, and includes the feature extraction 

methods and clustering for categorization purposes. Next, Section C presents var

ious methods of constraint creation using different types of contextual information. 

Finally, the experimental results are given in Section F, which consists of algorithm 

evaluations based on a sample data set using images that contain textual annotations. 

B Content-Based Image Database Categorization 

1 Feature Extraction 

Regardless of the type of contextual information used for creating constraints, 

the content of the images must also be represented in a concise and efficient fashion. 

For the remainder of this thesis, each image is characterized by low-level visual feature 

subsets representing its content. The features used are MPEG-7 features [32] which 

are some ofthe most commonly used features in content-based image retrieval [18,98]. 

Color Structure Descriptor (CSD): This descriptor represents an im

age using both its color distribution, based on color histograms, and 

the local spatial structure of the color by using a small structur

ing window. It maintains a count per instance of a particular color if 

found within the structuring element, as the element scans the image 

[32]. 

The CSD extraction is a three step process: 

1. A 256-bin color histogram is accumulated (i.e. extracted) from 

an image that is mapped to the HMMD color space. 

55 



2. If the number of colors is less than 256, N < 256, bins are then 

unified to obtain a N-bin histogram. 

3. The values of each bin are nonlinearly quantized in accordance 

with the statistics of color occurence in typical consumer im

agery. 

Scalable Color Descriptor (SCD): The SeD is derived from a uni

formly quantized, 256 bin color histogram taken from the HSV color 

space. The compiled histogram is then encoded using a Haar transform

based encoding scheme. The Haar transform is applied to four-bit 

integer values across the bins. 

Natural image histograms tend to exhibit high levels of redundancy 

in adjacent bins, explained by the slight variation of colors caused 

by illumination and shadowing effects. Therefore, summing adjacent 

bins in pairs equates to producing a histogram with half the num

ber of bins as the original. The binary representation of the Haar 

transform is scalable in terms of bin numbers and bit representation 

accuracy over a broad range of data rates. Typically for 256 bins, the 

highest 32 frequency components are needed for the experiments. 

Homogenous Texture Descriptor (HTD): This feature uses Gabor 

descriptors proposed by Manjunath et al. [10] to represent the tex

ture. Each image is filtered by 30 Gabor filters at 5 different scales 

and 6 orientations. The texture feature is represented by the average 

and standard deviation of each filtered image. It is believed that this 

representation can model the early visual processing of the human 

visual cortex [32]. 

Edge Histogram Descriptor (EHD): The design of this descriptor al-
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lows for the representation of the spatial distribution, frequency, and 

directionality of the edges within each image. A simple edge detec

tor is first used to identify edges and group them into five categories: 

vertical, horizontal, 45° diagonal, 135° diagonal, and the isotropic 

or non-edge. The local, global, and semi-local edge histograms are 

generated and concatenated to form a 150-dimensional feature vector 

[32]. 

2 Image Database Categorization Using Machine Learning Techniques 

The goal of content-based image database categorization is to apply statistical 

learning methods to their low-level features, grouping the images into semantically 

meaningful categories. These categorization techniques could be used to summa

rize the data to provide adequate means to navigate the data set by providing an 

overview of the image collection. Database categorization could be achieved by using 

a supervised or unsupervised learning method. In the case where users are willing to 

provide labels for all images in a collection, supervised learning would be the method 

of choice. Practically, this approach is only viable for well-specified image collections. 

More specifically, a limited ontology may not be sufficient to categorize a large collec

tion of generic photos. Therefore, in the case of large image collections, unsupervised 

learning or clustering, which does not require labeled data, requires little or no user 

intervention, and can group the collection into an optimum number of concepts or 

clusters, is the method of choice. 

Figure 15(a-d) provides an example of how clustering can be beneficial in or

ganizing and categorizing image collections. In Figure 15(a), a collection of images is 

summarized by 9 groups. Each image in Figure 15(a) represents a cluster of similar 

images. That is, each image is a semantic representative of a cluster that may contain 
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Figure 15. Illustrative example of cluster zooming. (a) An overview of the images in 
the data set. (b) The images contained in the cluster represented by the flower. (c) 
Images contained in a subsequent zoom level, continuing to navigate based on the 
selection of flowers. 

many images. The 9 representative images provide a good overview of content. The 

user may then select a cluster of interest (e.g. flower) and an expanded view of the 

selected cluster becomes viewable. Dependent on the size of the cluster or clusters, 

this zooming process can be comprised of many different levels. If the resulting sub-

set of images is still too large to view in its entirety, the process can re-cluster the 

current data to provide the user with a summarization of finer resolution, until the 

application is able to accommodate the current subset in its entirety. 
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Figure 16. Sample data set demonstrating the need for partial superVISIOn. (a) 
Known truth values for given data set. Marker color indicates cluster assignment, 
marker shape indicates class label. (b) Results of a typical unsupervised clustering 
algorithm. Note the misclassification of points in the overlapping region between 
clusters. 

3 Image Database Categorization using the ACC algorithm 

In Chapter III, we outlined the ACC algorithm which offers functionality and 

methods to overcome the main disadvantages of existing clustering algorithms. In 

Figure 16, we provide an illustrative example where obtaining meaningful results 

requires the use of partial supervision. Figure 16(a) shows the ground truth for the 

sample data set, in this example we know all points labeled with a '+' and '0' belong to 

two separate clusters, while the color of each point indicates their cluster assignment 

(i.e. all blue points belong to cluster 1, and all red points belong to cluster 2). The 

results of a typical unsupervised clustering algorithm are given in Figure 16(b). In 

this example, the algorithm is able to create a partition with two clusters which is 

optimal. However, the unsupervised algorithm is unable to correctly classify some 

of the points in the overlapping area. In this case, it is known that these points are 

misclassified, which is inferred from the ground truth of the data set. 

The ACC algorithm accounts for the necessity of limited partial supervision by 

incorporating pairwise constraints into the clustering process. These constraints are 
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Figure 17. Demonstration of the use of pairwise constraints. (a) Enlarged view 
of the overlap in clusters from Figure 16(b). (b) Resulting constraints constructed 
from known information in Figure 16(a). (c) Reclustering with consideration to the 
constraints allows the algorithm to correctly partition the data set. 

constructed using some form of prior knowledge, in our example we assume that we 

know that some of the '+'s belong to cluster 1 (blue), and some of the 'o's to cluster 

2 (red). Figure 17(a) provides an enlarged view of the misclassification of points due 

to overlap. In Figure 17 (b), constraints are constructed based on the known cluster 

assignments (see Figure 16(a)). Figure 17(c) displays the clustering results when the 

ACC was used with the constraints in Figure 17(b). As it can be seen, the use of 5 

constraints has corrected the 16 misclassified samples. 

The use of pairwise constraints implies a form of semi-supervision in the clus-
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tering process. The use of class labels in the previous example is only one form of 

supervision information that can be applied in the form of constraints. In reality, 

any methodology that allows comparison between points can be used to construct 

constraints. In the following section, we present various methods of using contextual 

information to formulate pairwise constraints in the ACC algorithm. 

C Constraint Selection 

Constrained clustering is a recent area of research that has seen a steady 

amount of exploration [26, 27, 91, 99, 100]. Methods for applying constraints for 

image database categorization are usually application dependent and can be divided 

into three primary categories. 

1. Obstacle objects as constraints: An obstacle can be defined as a physical 

object that obstructs the reachability among data objects. In a geographical 

setting these obstacles can be rivers, lakes, mountains, bridges, highways, etc. 

in an urban setting. Typically, the effects of these obstacles can be adverted by 

redefining the distance functions used among objects [38, 101, 102, 103]. 

2. Feature-based constraints: Methods using cluster-level constraints typically 

impose a significant number of constraints, using the same information available 

in the feature vectors, during clustering. Primarily, these constraints do not 

provide additional information and are implemented as a method to directly 

influence the inter- and intra- cluster distances. For instance, in [91, 104]' the 

authors introduce constraints on the minimum and maximum separation of 

points within clusters, while in [105], the authors impose balancing constraints 

in attempts to avoid small or empty clusters. 

3. Side-information-based constraints: These constraints are formulated be-
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tween pairs of individual data objects using side information. In most cases, 

(e.g. [26, 82, 90, 91]), each pair of points defined by a constraint are implied 

to belong to either the same cluster or different clusters. Typically, these con

straints are selected using metadata or some form of background knowledge. 

In Chapter III, we proposed the ACC semi-supervised clustering algorithm. This 

approach uses side-information-based constraints. Particularly, these constraints pro

vide suggestions on how pairs of points should or should not be grouped while not 

necessarily forcing their satisfaction. 

In the remainder of this chapter we will present methods for creating con

straints using various methods that can take advantage of available side information. 

In all cases, our algorithm's primary role is to cluster based on visual content, using 

the features described in Section 1, and the information used for creating constraints 

comes from a contextual nature. 

1 Active Selection of Constraints 

Typically, an algorithm that uses partial supervision in the form of pair-wise 

constraints should include a strategy for selecting the constraints. In most cases, it 

is assumed that a various amount of information is known a priori [25, 91, 26]. In 

many cases, the information is provided in the form of class labels and constraints are 

selected at random. This method requires a minimal amount of system interaction. 

Other methods do not rely on random constraint selection [26,83]. In these cases, the 

constraints are actively created using available information and some sort of external 

interaction from either the system or the user. 

Coinciding with the decision of random versus active constraint selection, the 

overall number of constraints created is another important selection criteria. Typi

cally, in the cases where a random selection method is used a fixed number of con-
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straints are generated and introduced to the system in their entirety. For an active 

selection schema the constraints are typically created intermittently. This method 

allows for the algorithm to take an active learning approach to the clustering process. 

The proposed ACC algorithm uses an active constraint selection strategy. 

First, the algorithm initializes the clustering process by making passes on the data 

without using constraints. This performs unsupervised clustering which attempts to 

discover underlying patterns in the data. Second, the algorithm begins the semi

supervised portion of the clustering process by defining a maximum number of con

straints, Conmax , to create at each interval or epoch. 

2 Exploring the Unsatisfied Should-not links to find the optimal number 

of clusters 

The inclusion of partial supervision in the development of the ACC algorithm 

was intended to assist in the search for the optimal partition. Constructing pairwise 

constraints for use as suggestions towards cluster formation during the convergence 

process is one feature of the proposed ACC algorithm. Another feature is the use of 

pairwise constraints to assist with the search for the optimal number of clusters. 

During the intermediate steps of the algorithm, a test is performed to check 

the satisfaction of the constraints. For example, if a should-not link constraint is 

violated, the system attempts to satisfy the constraint by splitting the cluster that 

contains the violation into two clusters. In particular, when a constraint .is violated, 

each point defined by the constraint is used to create a new cluster, and the cluster 

count is incremented by one. Then, images are assigned to the new clusters based on 

their minimum distance. 

Since the ACC uses methods from the CA [42], the number of clusters can 

be reduced, using competitive agglomeration. The constrained portion of the ACC 
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algorithm on the other hand uses the constraints to iteratively split and increase 

the number of the clusters. Once the cluster is split there is no guarantee that the 

agglomeration will not merge the clusters again, so the splitting function continually 

checks for satisfaction on each clustering iteration. Below is a summarization of the 

cluster splitting function: 

Unsatisfied Should-not-link Cluster Splitting 
For each (Xj, Xk) in the should-not-link constraint set, N; 

IF cluster(xj) = cluster(xk) = i; 

End 

Calculate t = argmax(d(xj, Ci), d(Xk' Ci)) using (47); 
Create new cluster, GI, and let its center, cI,be Xt 

End 

Reassign all points in cluster Gi to clusters Gi and GI based on minimum 
distance; 

D Categorization using the ACC with Constraints derived from Spatial 

Information 

In recent years, the amount of information that is captured when a picture is 

taken has increased substantially. One area of interest is the inclusion of geographical 

location information in the form of latitude and longitude coordinates from the GPS 

standard [106, 107]. These images are referred to as geo-referenced images. Using 

this information it is possible to superimpose images on a map precisely where they 

were taken. Users are then able to visualize their photos highlighting their travels, or 

allow others to view images from places they plan to visit. The issue now becomes 

how to navigate through a large number of these images efficiently. In other words, 

how to avoid visualizing a map that is not completely inundated with overlapping 

images. Figure 18(a) shows an example of a map overwhelmed by images while (b) 

illustrates the same data set clustered so that the images can be navigated and viewed 

efficiently. 
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Figure 18. Comparison of a map cluttered with images versus a map with clusters of 
images. 

1 Cost of Violating Spatial Constraints 

In the proposed ACC algorithm, a cost, Pjk , is associated with each constraint. 

This cost is a weight that defines how strongly each selected should-not link constraint 

should be satisfied and is proportional to the spatial distance, Os (see Figure(19)) . 

That is , during the constraint selection, the value of Os is dynamically selected to 

reflect the current resolution of the region being viewed. In other words, as the 

current region expands and retracts, the value of Os fluctuates proportionately. For 

our application, pjk is computed using 

(67) 

For the case of should link constraints, the cost /'l,jk is calculated as 1 - Pjk. These 

calculated costs return a normalized value retaining the notions of distant and nearby 

using the spatial contextual information. 

65 



",------,-------,-----y---,-------,-------, 

10 

.s 

·.~--~---~,~·~e~s-~-.~~~~_-.--~~--~~-~~ 

Figure 19. Calculation of the rho function. 

2 Spatial Constraints Construction 

Creating side-information-based spatial constraints can be as simple as using 

the spatial distance between pairs of images. If each image in a data set is tagged 

with spatial coordinates then the spatial distance between any two images (Xi , Xj) 

can be computed using 

where ()E = 3959 which is the earth's radius in miles, and latxi = (latitude of 

the pair of images (Xi, Xj) should be included in the set of should-not link constraints. 

We should note that with spatial information, we cannot create should link constraints 

based on spatial distances only considering _ the dependence on the visual content of 

the images. In other words, two images that are spatially close should not necessarily 

be assigned to the same cluster. Thus, we require that the images be similar (e.g. 

66 



assigned to the same cluster in an initial clustering step) and are spatially close in 

order to use them to create a should link constraint. 

Figure 20 illustrates a subset of images in the spatial domain, where the images 

come from three distinct regions. Figure 21 shows the same subset of images in the 

feature domain, where the color of the outline represents the image's respective region. 

We should note here that several images that are captured in different regions could 

be visually similar. Figure 22(a) shows the spatial layout of the images and Figure 

22(b) represents the results of a typical clustering algorithm, where the colors and 

shape represent the two distinct clusters. As it can be seen, without including spatial 

constraints, we obtain two clusters of images and each cluster includes images from 

different regions. This clustering may not be useful for image navigation purposes. 

In Figure 22( c) we show few should link constraints given by dashed lines between 

images that are similar and spatially close, and should-not link constraints are solid 

lines between images of distinct spatial locations. Figure 22( d) displays the clustering 

results of the ACC that take the constraints into consideration. As it can be seen, the 

clusters found without constraints (displayed in Figure 22(a)) are now split into four 

clusters, in order to satisfy the constraints without affecting image content similarity. 

3 Experimental Results using Geo-referenced Data 

This section presents an application of the ACC algorithm involving an interac

tive and dynamic categorization of geo-referenced images. Our approach is illustrated 

using an example application with a collection of geo-referenced images. The image 

database is complied from several distinct regions worldwide, and includes a collection 

of 2,023 geo-referenced images. Each of the photos have been automatically tagged 

with the capture (latitude and longitude) point by the digital camera. Photos were 

complied from multiple distinct geographic locations: Kentucky, Mississippi, Atlantic 
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Region 3 -----
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Figure 20. Spatial layout of a subset of images tagged with spatial coordinates Each 
region corresponds to a distinct area across the globe. 

City (USA), Paris (France), and Scotland (UK). 

One of the main issues that the ACC attempts to alleviate by incorporat-

ing spatial constraints is the clustering of images whose content is similar, yet are 

separated by great distances. An example of this issue is shown in Table 6. 

Each image is characterized by the features described in Section 1. For each 

feature subset, F 55, the Euclidean distance is used as the distance function. 

(68) 

Considering each subset has a different number of dimensions and dynamic regions , 

each partial distance is scaled using 

(69) 
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Feature 2 

Figure 21. Layout of the images in Fig. 20 in the feature space. The image borders 
represent the three different geographical regions. 

Where dS is an estimate of the average intra-cluster distances of F ss , and is pre-

computed using the FCM [40] for a small number of iterations using each feature set 

separately, and then using 

d
- - L:~l L:f=l uiJdtjs 

S - C N m 
L:t=l L:j=l ui j 

The parameters of the ACC algorithm were set as follows. The maximum 

number of clusters is set to emax = 50, the fuzzifier set at m = 1.5, and the discrim-

ination exponent is set to q = 2.0. The constraint importance factor , is calculated 

using (37). For the agglomeration constant, a in (66) , rJo = 2.0 and T = 20. The 

spatial distance threshold , Os , during these tests is dynamic and is set to one fourth 

the largest possible spatial distance of the current view in the application. 

Initially, the collection is clustered off-line into 20 clusters. A display of these 
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Figure 22. Application of spatial constraints. (a) An abstract view of the images in 
Fig 20. (b) Results generated by a typical unsupervised clustering algorithm. (c) A 
set of constraints are selected between points that are in different regions but should 
and should not be in the same cluster. (d) Partition generated with the consideration 
of the constraints where the number of clusters is expanded to four . 

clusters is shown in Figure 23(a) where each point indicates the location of one clus-

ter representative. In this view, Os is set to approximately 1500 miles. Therefore, no 

constraints are created between images within the US region (i.e. Kentucky, Missis

sippi, etc.) and likewise for the images in the European region, all constraints in this 

case are Thans-Atlantic. At this zoom level, the images are represented as markers in 

order to keep the map from being too cluttered. Next , Figure 23(b) shows the view 

after the user zoomed into the USA region represented by the box in Figure 23(a) 

which contains approximately 300 photos initially clustered into 4 clusters. Following 

70 



TABLE 6 

Similar images from different geographical locations 

Region 

Cluster 1 Region 1 

Cluster 1 Region 2 

Cluster 2 Region 3 

Cluster 2 Region 4 

this action, the ACC algorithm is used to recluster the 300 images included in the 

selected region with stricter spatial constraints, i.e. smaller Os. The re-clustering pro

cess results in 12 new representative clusters. These representatives are now shown as 

images. In this zoomed view, constraints between the three US regions are present , 

where in the global view these images were not considered distant from one another. 

Continuing to zoom on interesting areas, shown by the square in Figure 23(b), 

the new region contains about 70 images. Again, icons from the resulting re-categorization 

are shown in Figure 23(c). Zooming in one more time shows 12 small clusters, on 

the city level of the map, and spatial constraints are now created based on different 

regions of the city (Figure 23(d)) . Finally, as the user zooms further , the enlarged 

region does not contain enough images to allow for re-clustering and all images are 

then shown for that region (Figure 25). 
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Figure 23. Illustrative example of spatial region expansion. (a) Overview of the image 
collection with representative clusters. (b) Reorganized data representing the USA 
region. (c) City level representation of data from selected region. (d) All images from 
street level region. 
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The images shown in Figure 25 are from clusters in the Louisville region and 

its surrounding area. In Figure 24, clusters resulting from unsupervised methods 

are displayed, where images from distinct regions are grouped into the same cluster. 

The results from the ACC algorithm show that previously combined regions have 

been extracted and images are now grouped not only based on their content features 

(Figures 25 and 26), but also using spatial context features creating hybrid results 

with visually similar images sharing similar regions. 

E Categorization using the ACC with Constraints derived from Temporal 

Information 

One of the strongest cues tied to memory is the aspect of time. Users intuitively 

associate" events" with the notion of time and content. This leads to organization of 

photos according to events for browsing, retrieval, and sharing tasks. Family vacations 

and functions are examples of events that are strongly tied to the notions of date and 

time. Unfortunately, events are still difficult to define in a consistent or quantitative 

fashion [108J. For example, simply trying to categorize multiple trips to the beach 

using low-level features is not a trivial task. This is because images could contain 

many different subjects such as the ocean, beach, or people and photos of the same 

scene could vary considerably depending on time of day or year [109J. 

With the wide availably of inexpensive "point-and-shoot" digital cameras which 

do not require the single use film rolls and photo development, the quantity of im

ages being captured by the average user is rapidly growing. Although the use of film 

rolls is an aging technology, the typical user still retains a mental notion of photos 

taken in succession as being" from the same roll." Therefore the inclusion of temporal 

information to derive constraints could be useful in creating multiple clusters with 

visual similarities over varying time spans. This partitioning could simplify the tasks 
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(a) 

(b) 

Figure 24. Unsupervised clustering results. (a) Results showing visually similar 
images from two distinct regions. (b) Results showing visually similar images from 
three distinct regions. 
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(b) 

Figure 25. Viewing images contained in a cluster of interest. (a) Cluster containing 
images from Louisville. (b) Cluster containing images from surrounding Louisville 
area. 
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Figure 26. Viewing Cluster results from the Paris region. 

of browsing and retrieving images in large image data sets. 

1 Cost of Violating Temporal Constraints 

Similar to the violation costs associated with spatial constraints (described in 

Section D.l) , the cost of violating temporal constraints pjk and K,jk are proportional 

to the temporal distance Btirne . These costs should reflect the notions of distant and 
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nearby using the temporal contextual information. In particular, we define Pjk as 

(70) 

and in the case of should link constraints, the cost "'jk is calculated as 1 - Pjk. 

2 Temporal Constraints Construction 

In constructing constraints using temporal information, it is necessary to quan-

tify each date and time for comparative evaluation. In our approach, the difference 

between two images' temporal information, (Xitime , XjtimJ is calculated as the total 

in minutes. Given a threshold ()time, if Dtime(Xi, Xj) > ()time the pair (Xi, Xj) should be 

included in the set of should not link constraints, and if Dtime(Xi, Xj) ~ ()time where Xi 

and Xj belong to the same cluster then (Xi, Xj) should be included in the set of should 

link constraints. 

Assume that we have a collection of images, where each image is tagged with 

the date and time it was captured. Figure 27 illustrates a sample cluster based solely 

on the visual content of the images. In Figure 28, the contents of the cluster in Figure 

27 are shown with respect to the temporal layout. Four distinct time spans are given, 

for example time span 1 are images taken during a trip to a nature reserve in 2002, 

time span 2 is from a family outing in 2004, time span 3 contains images from 

a vacation in 2005, and images in time span 4 are from a safari trip in 2008. An 

example of should and should not link constraints are given in Figure 29( a) and (b) 

respectively. Images in Figure 29(a) are selected as should link constraints due to 

their visual similarity and temporal proximity. Conversely, images in Figure 29(b) 

are chosen as should not link constraints because they are from different time spans. 

Figure 30 reveals the clustering results using both the image content and the selected 
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Figure 27. Sample cluster based on visual content. 

Time Span 1: 

Time Span 2: 

Time Span 3: 

Time Span 4: 

Figure 28. Layout of Fig. 27 based on temporal information 

constraints where the previous cluster in Figure 27 is now split into various clusters 

of visual similarity while respecting the temporal layout of the data set. 
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(a) (b) 

Figure 29, Application of temporal constraints, (a) A set of should link constraints 
between images with like time signatures, (b) A set of should not link constraints 
between images with differing time signatures, 
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Figure 30. Sample clusters generated by the ACC algorithm using the temporal 
constraints in Fig. 29 
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3 Categorization using the ACC with Constraints derived from Textual 

Information 

With the emergence of social networking sites which allow users to share pic-

tures [2, 3] the number of images that contain some form of annotation is expanding. 

Although these annotations might not be extensive enough to allow for predefin-

ing categories used in supervised clustering, the inclusion of partial annotations is a 

natural constraint selection method for semi-supervised clustering [99, 100]. 

Using text as a feature in image classification [4, 110] requires feature extrac-

tion to use for comparison purposes. Suppose we have a set of images, I, with an 

associated set of textual keywords T. Comparisons made using all keywords may 

provide ambiguous results due to the frequency of certain keywords. The term fre-

quency, inverse document frequency (TF-IDF) measure [111] is an accepted method 

for finding a set of meaningful keywords from a set of documents. Let ti be a word 

used to annotate image i. The term frequency (TF) is defined as 

n· . 
tf . . - t,) 

t,) -

Lk nk,j 
(71) 

where ni,j is the number of occurrences of the term ti in image i and Lk nk,j is the 

sum of the occurrences of all terms in all images. The inverse document frequency 

(IDF) of term i is a measure of the importance of this term. The IDF is defined as 

. logllDl1 
'ldfi = II{d: ti E d}11 (72) 

where IIDII is the total number of images and II{d: ti E d}11 is the number of images 

that contain the term t i . Then, the TFIDF value for the term ti in image i is defined 

as 

T F I DEi,j = tfi,j x idfi· (73) 

A high TFIDF weight implies a high frequency term in a given image and a low image 

frequency ofthe term in the image collection. Using the TFIDF values, it is possible to 
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find the top k meaningful keywords in T denoted as Tk. Then using Tk, k-dimensional 

feature vectors are created for each image i where KWi = [kWl ... kWkJ and 

{ 

kWi = 1, ti E Tk 

kWi = ° otherwise. 
(74) 

4 Cost of Violating Textual Constraints 

The cost of violating should link constraints, /'i,jk' with respect to textual infor-

mation can be calculated using the keywords associated with each image. Let KWi = 

[kWl ... kWkJ be a set of keywords associated with image i and KWj = [kWl ... kWkJ 

be a set of keywords associated with image j. Then, we define /'i,jk as 

IIKi U Kjll-IIKi n Kjll 
/'i,ij = IIKi U Kjll . (75) 

In other words, the cost of violating a should link constraint is the ratio of the differ-

ence in the sizes of the union and intersection of the two keyword sets, and the size 

of the union. For should not link violations, pjk is set to one, because all should not 

link constraints share no words. 

5 Textual Constraints Construction 

The similarity between two images (Xi, Xj), each with a respective set of key

words KWi , KWj is defined as 

(76) 

or the ratio of words shared by the images Xi and Xj to the total number of words 

between these images. In (76), Stext(Xi, Xj) E [0, 1J represents the percentage of words 

shared by the image pair. In the case of should not link constraints, if the pair (Xi, Xj) 

have no words in common, or Stext(Xi,Xj) = 0, then (Xi,Xj) should belong to the 
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set of should not link constraints. On the other hand, if Stext(Xi, Xj) 2:: ()text, where 

()text E [0,1] is a threshold, then (Xi, Xj) belongs to the set of should-link constraints. 

The following illustrative example demonstrates how creating textual con

straints can lead to clustering results with improved cluster semantics. Figure 31 

contains a subset of images with varying levels of visual similarity. Overall, the im

ages are taken either late in the evening or at night. Therefore, they all are dark 

images with a strong central object. This leads to clustering results that rely more 

on color content than texture content. Figures 32(a)-(d) illustrate the clusters based 

solely on visual content. The first cluster in Figure 32(a) contains sunsets without 

a strong presence of a setting sun where Figure 32 (b) and (c) consist of sunsets and 

night images where the sun is visible with prominence in the colors orange and red 

respectively. The last cluster, Figure 32(d), shows images of people taken at night. 

Next, should link constraints are constructed from image pairs if they share 

at least one word. Should not link constraints are constructed between images that 

share no words. Figure 33(a) displays the identified should link pairs, and Figure 

33(b) displays the identified should not link pairs. Figure 34 displays a sample cluster 

with the consideration of the chosen constraints. As expected, clusters generated 

with constraints group all the images of sunsets even though some images show more 

dominance in red or orange, and the sun is visible in a number of images but not 

in others. This simple example illustrates how textual constraints can provide the 

ability to add another level of semantics to the clustering results. 

F Experimental Evaluation and Comparison 

The evaluation of clustering results is a difficult process. Humans, through 

experiences and knowledge gained over their lives, can easily place similar images 

into groups based on the content of the images. Having a computer create similar 
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Figure 31. Sample data set for textually constrained clustering. 

"red" "nowers" "sllllset" "red" "sllllset" "sWlset" "red" "singer" "night" "concert" "people" 

(c) (d) 

Figure 32. Sample clustering of images in Fig. 31 clustered using image content. (a) 
Images of sunsets with the sun under the horizon. All images tagged with the keyword 
"sunset". (b) Various images with a prominent orange coloring and associated image 
tags. (c) Cluster containing red images with assigned annotations. (d) Partition 
containing nighttime images of people. 
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(a) (b) 

Figure 33. Application of textual constraints. (a) A set of should link constraints be-
tween images that share the keyword" sunset". (b) A set of should not link constraints 
between images with no words in common. 

Figure 34. Sample clustering displaying enhanced semantics from textual constraints. 

groups based on the content of the images, on the other hand, is a challenging task. 

The results are presented using two methods of validation. Both methods 

are comparative and show the performance of the ACC algorithm with respect to 

the performance of the SCADCA algorithm (see Chapter II.§C) , and the PCCA 

algorithm (see Chapter II.§D.2). In Section 3, the results are evaluated objectively 

using known associations to obtain a validity score. Section 4 utilizes the human 
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element to validate the results of the ACC algorithm through subjective evaluation. 

1 Image Collection 

The evaluation techniques described in this section both utilize a sample data 

set consisting of 450 images. The features of each image are represented using the 

CSD feature subset with 128 color dimensions and the EHD feature subset (refer 

to Section 1 of this chapter). Each image is also annotated with a set of keywords 

varying in size from one to five semantically relevant words. Images were selected 

as part of this data set such that a few generalized themes were present, but the 

images within each theme vary by representation of their low-level features. The 

ACC algorithm attempts to alleviate the combination and separation of images with 

similar contextual information but differing content information. An example subset 

of images from this data set, demonstrating this issue, is presented in Table 7. 

For all experiments, the parameters of the ACC algorithm were set as follows. 

The fuzzifier is set to m = 1.25, and the discrimination exponent is set to q = 2.0. The 

constraint importance factor, is calculated using (65). For the agglomeration con

stant, a in (66), 'flo = 3.0 and T = 80. The distance calculations for these experiments 

are calculated using equations (68) and (69). 

2 Incorporating Constraints 

The constraints used in these experiments are gathered from image annota

tions associated with each image. The process of choosing textual based constraints 

is outlined in Section C.3 of this chapter. In our experiments the constraints are 

pre-computed on the basis that if a pair of images (Xi, Xj) share keywords they are 

included in the set of should link constraints ,(Xi, Xj) E S. Conversely if they share 

no keywords then then belong to the set of should not link constraints, (Xi,Xj) E N. 
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TABLE 7 

Images with similar contextual semantics and differing content information 

Images 

Keywords 
"sunset" "orange" 

"red" 

Images 

Keywords 
"beach" "ocean" 

"ocean" "mountain" 

Images 

Keywords 

Images 

Keywords 
"grass" "tree" "rock" 

For our experimental data set II S 11= 75000 and II N 11= 5067. These constraints 

are provided to the ACC as complete sets due to ensure that both the ACC and the 

PCCA algorithms utilize the same set of constraints. 

3 Objective Evaluation 

For this experiment set , the ACC algorithm was tested against the SCADCA 

and the PCCA algorithms with the results validated objectively. It is assumed that 

for the given data set, the ground truth , GT, is known. Then, the validity of a given 

cluster Ci, P(Ci), is defined as the purity of the cluster, that is, the ratio of points 

that share the same ground truth value, to the size of that cluster. The purity of the 

resulting partition is the sum of each cluster 's purity. In other words, we define the 

86 



purity of cluster Ci containing n points as 

(77) 

where 

otherwise. 

The overall validity of the returned partition containing C clusters is computed using 

(78) 

where a ~ p ~ 1. 

In our experiments, the value of Cmax was set to 100, and the ACC algorithm 

discovered 28 clusters. The validity values obtained from each clustering algorithm is 

given in Figure 35. Figure 36 compares the number of satisfied constraints from the 

ACC and PCCA algorithms. As it can be seen, in both cases many of the should not 

link constraints were satisfied. We should mention here that the constraints used in 

both algorithms are soft constraints, meaning that the satisfaction of constraints is not 

forced, and unsatisfied constraints may be present. There is a noticeable difference in 

the satisfaction of should link constraints between the two algorithms. The definition 

of should link constraints implies that satisfaction requires all points to reside in the 

same cluster, but does not consider multiple clusters of like images. Therefore, one 

large cluster may contain many images that should be linked together and satisfy 

many constraints, but the overall validity of that cluster and the results may suffer. 

Therefore, even though the PCCA algorithm was able to satisfy more constraints 

than the ACC algorithm, the ACC algorithm provides a more valid partition. 

Using the sample data set in Section F.I, Figure 37(a) illustrates the average 

objective function values and the variation per iteration computed using the SCADCA 
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Figure 35. Average cluster purity of the partitions generated by the ACC, SCADCA, 
and PCCA algorithms. 
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Figure 36. Percentage of satisfied constraints from objective experiments. 
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algorithm. As it can be seen, the SCADCA converged on average in 75 iterations and 

displays a small amount of variation in both the objective function and the standard 

deviation. This is primarily due to the SCADCA algorithm's early agglomeration 

properties in which the number of clusters does not drastically change throughout the 

clustering process. Next, Figure 37(b) shows the resulting objective function using 

the PCCA algorithm. As described in Chapter III.§E, if the algorithm in question 

has not converged after 100 iterations the algorithm is set to terminate. The PCCA 

fluctuations observed in the objective function again validate the assumption that 

the PCCA algorithm tends to become trapped in local minima. Figure 37(c) is the 

average values for the ACC algorithm. During iterations 40 - 60, the ACC algorithm 

suffers from effects of a local minima but unlike the PCCA, it is able to recover 

from these fluctuations and converge on average in 82 iterations. These convergence 

properties are reflected in the average run times given in Table 9. 

TABLE 8 

The observed running time for each algorithm on sample data set in Section F.1. 

Algorithm Run Time 
ACC 2981.11s 

SCADCA 455.20s 
PCCA 4363.54s 

The results in Table 9 indicate a substantial increase in the run time of the 

ACC algorithm with respect to the increase of the complexity parameters (see Chapter 

III.§D). In a dynamic environment, it is important to balance the time complexity and 

performance of the given algorithm. In Figure 38, we presented an example of dynamic 

image database categorization under spatial constraints using the ACC algorithm. 

The dataset in question contains approximately 10,000 images and using the ACC 

algorithm, with the active constraint selection paradigm, is estimated to perform the 
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Figure 37. Evaluation of the objective function over 100 sample trials. (a) Results 
for the SCADCA algorithm (b) Results for the PCCA algorithm (c) Results for the 
ACC algorithm 

initial clustering in approximately 6 hours. Therefore, in a dynamic application the 

initial clustering of the dataset is performed off-line. The user is first presented with 

the results of the initial clustering in Figure 38(a) , and selects a region of interest. 

Contained in the selected region are approximately 1000 images, and are reclustered 

in under three minutes. The results of this reorganization is then presented to the user 

in Figure 38(b) , and the user then selected another region of interest. The number of 

images in this region is now on the order of a few hundred and the ACC algorithm is 

able to reorganize this subset in approximately one minute. After selecting the final 
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area of interest, the new image subset does not require reorganization by the ACC 

algorithm due to the contained number of images and the subset is displayed in its 

entirety. A summary of the sizes and times associated with the off-line and online 

steps of the ACC algorithm in a dynamic application are provided in Table ?? 

(d) (c) 

Figure 38. Illustrative example of spatial region expansion. (a) Overview of the 
image collection with representative clusters initially clustered in an off-line fashion . 
(b) Reorganized data representing the user 's preference, processed online. (c) The 
images contained in the area of interest are dynamically reclustered with repect to 
the current region. (d) At the street level, the number of images contained the region 
do not require categorization and are displayed in their entirety. 
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TABLE 9 

The observed running time of an example application of dynamic image categorization 
using the ACC algorithm. 

Processing Method Data Size Run Time 
Off-line 10000 340.2 min. 
Online 987 2.78 min. 
Online 241 0.93 min. 

The following figures provide illustrative examples of clusters from the various 

partitions created during the objective evaluations. In Figure 39, we compare clusters 

from the ACC and SCADCA algorithm. With respect to the SCADCA results, we 

note the presence of green landscapes within the beach scenes. In this case, the use of 

partial supervision prevents the ACC algorithm from grouping these points. Figures 

40 and Figure 41 compare results from the ACC and the PCCA algorithms. The 

point of interest is the variation in the quality of the results. In Figure 40 the result 

of the ACC algorithm are only marginally better than those of the PCCA algorithm. 

On the other hand, the comparison in Figure 41 illustrates a drastic improvement 

in the purity of the sample cluster. This trend continues in subsequent examples 

(Figure 42) with the purity of the clusters returned by the ACC algorithm displaying 

noticeably better clusters than the comparative algorithms. In most cases, the effects 

of the partial supervision had been evident in the case of should-not link constraints. 

In Figure 43, the results indicate the presence of should link constraints, where images 

contained in two clusters from the SCADCA partition (Figure 43(a-b)) are combined 

in the ACC partition. 
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(a) ACC (b) SCADCA 

Figure 39. Comparison of clusters from the ACC and SCADCA algorithm. These 
results illustrate the benefit of using partial supervision. 

(a) ACC (b) PCCA 

Figure 40. Comparison of ACC and PCCA clusters illustrating the benefits of using 
relevance feature weights. 

4 Subjective Evaluation 

From the inception of image clustering, the goal has been to create concise, 

meaningful clusters that assist users with retrieving and navigating large image col-

lections. A persistent issue has been coined the semantic gap. This issue is present 

both in the creation of algorithms and their validation. In regards to validation, the 

performance of any given algorithm is subjective not only to the purpose, procedure, 

and design but also to those that view the results of the algorithm. 
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(a) ACC (b) PCCA 

Figure 41. Results comparing the ACC and the PCCA algorithm, demonstrating 
increased clustering performance. 

(a) ACC (b) PCCA 

Figure 42. Comparing the ACC and the PCCA algorithm, where the increased clus
tering performance can be attributed to increased constraint satisfaction. 

Figure 44 provides an illustrative example that arises when one considers the 

subjectivity between users under validation. One user might see these results and find 

three small circular clusters, while another users sees only two clusters. Although, 

a third user might again find two clusters their interpretation of the results is again 

different than the other two users. In Section 3, we objectively validated our results 

with respect to the semantic gap, in this section a subjective evaluation is presented 

in order to validate both issues of semantics and subjectivity. 
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(c) ACC 

Figure 43. Results from the ACC algorithm indicating the presence of should link 
constraints. 

For this set of experiments Cmax was set to 50, and the results of the algorithms 

return a total of nine clusters, C = 9. Again, the ACC algorithm is validated against 

the SCADCA and PCCA algorithms as well as a random partition of the data set. 

Figure 45 shows a screen shot of the test given for subjective evaluation. With four 

different clustering methods and nine clusters, each user is presented with 36 result 

sets displayed at random. The user is then asked to provide their subjective opinions 

and select only the images that are relevant to the given cluster. 

The results of this test return a set of values for each cluster that represent the 

cluster 's validity respective to each user , Ps , where Ps(Ci )U is the subjective validity 

of cluster Ci for user u, and represents the number of relevant images defined by 
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Figure 44. An example of user subjectivity. 

the user in Ci. The subjective validity of a certain algorithm is then defined as the 

ratio of relevant images in Ci to the total number of images in that cluster , ni for all 

participating user 's U: 

pS = _1_~~ps(cdU 
C·U~~ n· 

u=l i=l t 

(79) 

where C is the total number of clusters. Figure 46 illustrates the results of the 

subjective evaluations. Out of a possible score of one, 0 ::; pS ::; 1, the numeric 

values from the evaluations are given in Table 10. A total of 32 people participated 

in the subjective evaluation. 

In Figure 47, we show examples ofresults from the ACC, PCCA and SCADCA 
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Figure 45. A screen shot of the subjective evaluation test. 

TABLE 10 

Validity scores for subjective evaluations. 

Algorithm ps 

ACC 0.91 
PCCA 0.77 

SCADCA 0.74 
Random 0.35 

algorithms as they would be presented to users for subjective evaluation. In this ex-

ample, the ACC algorithm was able to use the partial supervision information to 

increase the purity of the results , and Figure 48 also illustrates an increase in perfor-

mance of the ACC algorithm by utilizing the constraints. The issue of subjectivity is 

accurately displayed in Figure 49 and Figure 50. One user might find the inclusion 

of sunsets in Figure 49(b) with varying colors relevant, while others might show fa-
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Figure 46. Validity results from subjective evaluation. 

voritism towards the more uniform color spectrum in Figure 49(a) , furthermore one 

user might also validate the results of 49 ( c) because all images appear to have been 

taken in the evening. Similar results are shown in Figure 50, where at a quick glance 

only shows a marginal increase of the ACC partition over the PCCA. In Figure 51 , 

the PCCA algorithm does not provide a viable cluster for comparison, demonstrating 

the benefit of the relevance feature weighting in the ACC and SCADCA. 
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(a) ACC (b) PCCA 

(c) SCADCA 

Figure 47. Clusters utilized for subjective evaluation, where the partial supervision 
information provides an increase in cluster purity. 
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(c) SCADCA 

Figure 48. Using constraints, the PCCA and ACC algorithms are able to increase 
purity compared the SCADCA. 
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(c) SCADCA 

Figure 49. Sample result set, demonstrating the issue of subjectivity. 
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(c) SCADCA 

Figure 50. Illustrative example of subjective clusters showing forest scenes 

(a) ACC (b) SCADCA 

Figure 51. Subjective clusters where a strong theme may not be present. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we presented a novel clustering algorithm designed to 

overcome some of the conventional drawbacks suffered by partitional clustering algo

rithms. Our approach, called Adaptive Constrained Clustering, is a robust, dynamic, 

and semi-supervised algorithm. It is based on minimizing a single objective function 

incorporating the abilities to: (i) use multiple feature subsets while learning cluster 

independent feature relevance weights; (ii) search for the optimal number of clusters; 

and (iii) incorporate partial supervision in the form of pairwise constraints. The 

ACC's robustness is partially due to its generality. The algorithm allows for the use 

of different distance measures across any number of feature subsets which allows dis

covery of clusters with various shapes. To find the optimal number of clusters the 

ACC uses a process of competitive agglomeration. This approach does not rely on 

a validity measure in the search for a optimal number of clusters. It starts with a 

large number of small clusters and converges to the optimal number. Initializing the 

clustering process with a large number of clusters reduces the sensitivity of the ACC 

to the effects of initialization and local minima. 

The partial supervision information, typically garnished from contextual infor

mation, provides the ACC with multiple levels of functionality during the clustering 

process. First, it assists in the discovery of a more semantically meaningful parti

tion. By using contextual information in the creation of constraints, their inclusion 

provides a higher level of learning. The created clusters may have slightly differing 
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visual features, but a higher level of semantic similarity. Furthermore, the supervision 

information aids in recovering from over-agglomeration. Thus, by using a combina

tion of unsatisfied constraints and competitive agglomeration, the ACC dynamically 

expands and shrinks the number of clusters at each iteration. 

The proposed ACC algorithm was applied to the problem of automatically 

categorizing and summarizing an image database using low level visual features and 

high level semantic information. We showed that the ACC algorithm can incorporate 

partial supervision from various forms of side information, particularly from spatial, 

temporal, and textual metadata. Our objective and subjective experiments showed 

that using a soft constraint satisfaction methodology the ACC is able to partition a 

given data set into meaningful clusters. We also showed that our approach outper

forms existing methods. 

The proposed ACC algorithm uses multiple features from machine learning to 

perform the task of data partitioning. As the functionality of the algorithm expands 

so does the computational complexity. The ACC time complexity depends on the 

number of clusters C, the number of subsets S, the number of data samples N, and 

the total number of constraints M. In theory, as any of these parameters increase so 

does the computational time of the algorithm. However, in practice, as the number 

of constraints, M, increases the ACC requires fewer iterations to converge. Similarly, 

starting with a large number of clusters helps in better initial convergence of the 

feature space, and reducing the number of iterations. 

The performance of the ACC algorithm is compared against two preexisting 

algorithms, the SCADCA and the PCCA algorithm. First, we showed a comparison 

of the computational complexity and convergence properties of the algorithms using 

synthetic data sets. Despite the ACC algorithm's increased computational complex

ity, our approach's average runtime is half that of the PCCA algorithm due to a 
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reduction in the number of iterations for convergence. Although the SCADCA can 

complete the clustering process in a substantially lower runtime, the validity results of 

the ACC algorithm show a 50% accuracy increase on average. Next, we demonstrated 

the effects of creating and utilizing constraints in the ACC and PCCA algorithms. 

The adaptive approach of the ACC algorithm was shown to outperform the PCCA in 

terms of partition accuracy over fewer iterations. Next, these three algorithms were 

compared using visual features gathered from an image data set. The results of the 

algorithms are first validated objectively, we showed that the ACC algorithm gener

ats a 40% more accurate partition. Finally, we used subjective testing to incorporate 

a human element in the evaluation process. In these results, the ACC marginally 

outperforms the SCADCA and the PCCA algorithms. 

The main limitation of the ACC is the lack of scalability. Currently, the pro

posed approach requires all data to be clustered to be available in memory. This 

may not be possible for very large data collections. Research into the area of scalable 

clustering [112, 113, 114] has focused on what was defined as the Merge/Purge prob

lem [115]. Using any prototype-based algorithm, these methods buffer subsets of the 

database for clustering purposes. As the algorithm converges, points closest to each 

cluster center are purged from the buffer and refilled using new points. Subsequent 

passes continue to purge samples, merging the purged results into cluster subsets. 

These methods cannot be easily adapted for use within the ACC algorithm. 

The action of purging points from the clustering process involves a loss of information 

and can have a detrimental effect if the purged information includes constraints. The 

most overhead involved with using merge/purge in the ACC is tracking the change 

in clusters. One of the features in the ACC is its ability to search for the optimal 

number of clusters. For the algorithms using the merge/purge method, once an 

image is purged it remains a part of its assigned cluster until the algorithm's final 
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convergence. If this method was used in an algorithm without a set number of clusters, 

multiple passes to the database would need to be made after any change in the number 

of clusters to update those points that were previously purged. Thus, more research 

is needed to develop a scalable version of the ACC algorithm. One simple approach 

might involve using other scalable algorithms to reduce the data set [116, 117], then 

use the ACC to create constraints and obtain more accurate partition. 

An algorithm's robustness can be defined as its ability to handle noise and 

outliers, reducing the error caused by their presence during the clustering process. 

Currently, the ACC algorithm uses the competitive agglomeration process to handle 

robustness in terms of noise in a data set. In theory, using a large number of initial 

clusters provides the clustering process with ample locations to assign noisy data 

points. However, practices using this technique may have a negative effect on the 

computational complexity of the algorithm as the number of clusters, C, may become 

too large due to a lack of knowledge regarding the distribution of noise. The authors 

in [118, 119] proposed a method for Noise Clustering (NC) aimed at detecting noise 

points and assigning them to a C + 1 th noise cluster. Incorporating the functionality 

of a NC algorithm could provide the ACC with additional robustness without the 

additional complexity of a large increase in the optimal number of clusters. Therefore, 

additional research may be necessary to develop a more robust version of the ACC 

algorithm. 

An active area of research that provides promising approaches to narrowing the 

semantic gap is known as Relevance Feedback. These approaches [21, 22, 24], allow 

users to interact with the system by providing feedback regarding the (ir ) relevance 

of the current retrieval results. Research into systems that use feedback information 

in conjunction to the functionalities of the ACC algorithm could be advantageous to 

Relevance Feedback systems. For example, the image database would be categorized 
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initially without the use of constraints. Then, using a Query by Example (QbE) 

approach, where the user provides an example image representing the intent of their 

search, the system could then use feedback from the user to create constraints. This 

combined approach would be advantageous in solving issues that are detrimental to 

each approach independently. First, the use of relevance feedback would narrow the 

semantic gap, where the user's intentions can influence the categorization process. For 

instance, a system could use relevance feedback to learn feature relevance weights and 

dynamically adapt the similarity measure reflecting the user's preferences. The main 

drawback of most relevance feedback approaches is their inability to retain knowledge 

from one feedback session or from one user. In other words, these systems have no 

long-term learning capability, where acquired information is not stored and cannot 

be reused to improve system performance in subsequent sessions or by other users. 

Incorporating feedback information in the form of constraints between image pairs is 

not necessarily dependent on the use of a query image. This allows for cooperation 

between users where partial supervision information from different sessions could be 

accumulated, saved, and used to continuously refine the neighborhood of the feature 

space during the search process. 
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APPENDIX A 

Creation of Synthetic Data Sets 

The contents of this appendix present the Matlab function for creating the 

synthetic datasets. 

function [Clusters Truth] = 
CreateSyntheticDataSet (ClusterSizes, Centers, Sig) 

%Create random Guassian distribution for each cluster 
syn = cell(length(ClusterSizes),l); 
for i = l:length(syn) 

syni.xy = randn(ClusterSizes(i),2); 
end 
%Modulate each cluster using defined centers and 
% sigma values 
Clusters = []; for i = l:length(syn) 

end 

temp = ones(size(syn{i}.xy))*diag(Centers(i,:)'); 
syni.xy = syni.xy*Sigi + temp; 
Clusters = [Clusters;syn{i}.xy]; 

%N ormalized each point between 0 and 1 
minXY = min(Clusters); maxXY = max(Clusters); 
for i=l:size(Clusters,l) 

Cl usters (i,:) = ( Clusters (i,: )-minXY) . / (maxXY -minXY); 
end 
%Create truth values for generated clusters 
Truth = []; for i = l:length(syn) 

Truth = [Truth,ones(l,ClusterSizes(i) )*i]; 
end 
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Parameters for Data Set 1 
%Data Set 1 
%Initialiaze cluster sizes 
ClusterSizes = [100 100J; 
%Initialiaze cluster centers 
Centers = [[49 51J; ... 

[5551JJ; 
%Initialize cluster distributions 
Sig = diag([4,0.5]); ... 

diag([0.5,4]); 

Parameters for Data Set 2 
%Data Set 2 
%Initialiaze cluster sizes 
ClusterSizes = [100 25 75J; 
%Initialiaze cluster centers 
Centers = [[49 51J; ... 

[47 53J; ... 
[51 40]]; 

%Initialize cluster distributions 
Sig = diag([4,1]); .. . 

diag([l,l]); .. . 
diag([1,4]); 
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