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ABSTRACT 

UNSUPERVISED AND SEMI-SUPERVISED CLUSTERING WITH LEARNABLE 

CLUSTER DEPENDENT KERNELS 

Ouiem Bchir 

April 13, 2011 

Despite the large number of existing clustering methods, clustering remains 

a challenging task especially when the structure of the data does not correspond 

to easily separable categories, and when clusters vary in size, density and shape. 

Existing kernel based approaches allow to adapt a specific similarity measure in order 

to make the problem easier. Although good results were obtained using the Gaussian 

kernel function, its performance depends on the selection of the scaling parameter. 

Moreover, since one global parameter is used for the entire data set, it may not be 

possible to find one optimal scaling parameter when there are large variations between 

the distributions of the different clusters in the feature space. 

One way to learn optimal scaling parameters is through an exhaustive search 

of one optimal scaling parameter for each cluster. However, this approach is not 

practical since it is computationally expensive especially when the data includes a 

large number of clusters and when the dynamic range of possible values of the scaling 

parameters is large. Moreover, it is not trivial to evaluate the resulting partition in 

order to select the optimal parameters. 

To overcome this limitation, we introduce two new fuzzy relational clustering 

techniques that learn cluster dependent Gaussian kernels. 
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The first algorithm called clustering and Local 8cale Learning algorithm (L8L) 

minimizes one objective function for both the optimal partition and for cluster de­

pendent scaling parameters that reflect the intra-cluster characteristics of the data. 

The second algorithm, called Fuzzy clustering with Learnable Cluster depen­

dent Kernels (FLeCK) learns the scaling parameters by optimizing both the intra­

cluster and the inter-cluster dissimilarities. Consequently, the learned scale parame­

ters reflect the relative density, size, and position of each cluster with respect to the 

other clusters. 

We also introduce semi-supervised versions of L8L and FLeCK. These algo­

rithms generate a fuzzy partition of the data and learn the optimal kernel resolution 

of each cluster simultaneously. We show that the incorporation of a small set of con­

straints can guide the clustering process to better learn the scaling parameters and 

the fuzzy memberships in order to obtain a better partition of the data. In particular, 

we show that the partial supervision is even more useful on real high dimensional data 

sets where the algorithms are more susceptible to local minima. 

All of the proposed algorithms are optimized iteratively by dynamically up­

dating the partition and the scaling parameter in each iteration. This makes these 

algorithms simple and fast. Moreover, our algorithms are formulated to work on rela­

tional data. This makes them applicable to data where objects cannot be represented 

by vectors or when clusters of similar objects cannot be represented efficiently by a 

single prototype. 

Our extensive experiments show that FLeCK and 88-FLeCK outperform ex­

isting algorithms. In particular, we show that when data include clusters with various 

inter-cluster and intra-cluster distances, learning cluster dependent kernel is crucial 

in obtaining a good partition. 
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CHAPTER I 

INTRODUCTION 

Clustering consists of partitioning a dataset into subsets, so that data in each 

subset share some common aspects. In other words, according to a defined distance 

measure, objects in the same cluster should be as similar as possible and objects in 

different clusters should be as dissimilar as possible. Clustering has been used in 

many applications related to understanding and exploring the structure of the data. 

In particular, fuzzy clustering techniques have been shown to be suitable to describe 

real situations with overlapping boundaries [37]. 

Typically, the set of objects to be clustered could be described in two ways: 

object based representation, and relational based representation. While for object 

data representation, each object is represented by a feature vector, for the relational 

representation only information of how two objects are related is available. Relational 

data representation is more general in the sense that it can be applied when only the 

degree of dissimilarity between objects is available or when groups of similar objects 

cannot be represented efficiently by a single prototype. 

Despite the large number of existing clustering methods, clustering remains a 

challenging task when the structure of the data does not correspond to easily separable 

categories, and when clusters vary in size, density and shape. kernel based approaches 

[52, 35, 38] can adapt a specific distance measure in order to make the problem easier. 

Gaussian kernel is the most common distance function. Although good results were 

obtained using this kernel, it relies on the selection of a scale parameter. This selection 

is commonly done manually. Moreover, as it is a global parameter over the entire 

data, it may not be appropriate when the distributions of the different clusters in the 

feature space exhibit large variations. Thus, in the absence of a priori knowledge, 
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the choice of a scaling parameter that can adapt to different clusters and discriminate 

between them is difficult. In such situations, the geometry of the data should be 

explored to learn local dissimilarity measures by finding intrinsic properties, such as 

local dimensionality, and local parametrization. 

Clustering is a difficult combinatorial problem. Moreover, as a task, clustering 

is subjective. In fact, the dataset to be clustered may need to be grouped differently 

depending on the application. However, unsupervised clustering algorithms do not 

take into account this subjectivity, unless it can be expressed explicitly in the distance 

measure by selecting and weighting appropriate features or by choosing and adapting 

a specific dissimilarity measure. As a result, quite often, the resulting categories do 

not reflect the user's expectations. Consequently, semi-supervised clustering which 

allows incorporating prior knowledge in the unsupervised clustering task has recently 

become a topic of interest. In this approach, a small amount of class labels or pairwise 

constraints are used to guide the unsupervised clustering process [47, 22, 43]. These 

pairwise constraints, called side information, specify whether two data items should 

be assigned to the same cluster or not. The most common approach of incorporating 

partial supervision information in clustering is the use of search based methods that 

drive the clustering algorithm towards a better categorization of the data [70, 69]. 

Even though semi-supervised algorithms have proved to outperform the un­

supervised ones, the semi-supervision information can have a limited effect. For in­

stance, some algorithms learn only cluster centers [62] and the supervision information 

is not used to learn a mapping of the data. Thus, either most of the semi-supervision 

information will be ignored (if the cost of violating the constraints is low) or this 

information will adversely affect the structure of the clusters (if the cost of violating 

the constraints is very high). Other semi-supervised clustering algorithms learn the 

centers and the covariance matrices of the clusters [24]. Even though the supervision 

information can be more useful in this case, it still cannot allow learning a non linear 

mapping of the data. 
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A Major contributions 

The major contributions of this dissertation consists of the design, implemen­

tation, and analysis of four clustering algorithms that address the issues raised in the 

previous section. These algorithms partition the data, learn the scaling parameters 

for each cluster, and assign a fuzzy membership to each object in each cluster. The 

fuzzy memberships allow the algorithms to deal with overlapping clusters, and pro­

vide a richer description of the data by distinguishing between the points at the core 

and at boundary of the cluster. The learned scaling parameters help in identifying 

clusters of different size, shape and densities and, can be used in subsequent steps to 

provide better cluster assignment. 

1 The clustering and Local Scale Learning algorithm 

We introduce a new fuzzy relational clustering technique with Local Scaling parameter 

Learning (LSL). This approach learns the underlying cluster dependent dissimilarity 

measure while finding compact clusters in the given data. The learned measure is 

a Gaussian dissimilarity function defined with respect to each cluster that allows to 

control the scaling of the clusters and thus, improve the final partition. LSL minimizes 

one objective function for both the optimal partition and for the cluster dependent 

scaling parameter. This optimization is done iteratively by dynamically updating 

the partition and the local measure in each iteration. This make the kernel learning 

task takes advantages of the unlabeled data and reciprocally, the categorization task 

takes advantages of the local learned kernel. Moreover, as we assume that the data 

is available in a relational form, the proposed approach is applicable even when only 

the degree to which pairs of objects in the data are related is available. It is also more 

practical when similar objects cannot be represented efficiently by a single prototype. 

2 Fuzzy clustering approach with Learnable Cluster dependent kernels 

The Fuzzy clustering with Learnable Cluster dependent kernels (FLeCK) is 

another algorithm that we have developed that learns Gaussian kernel function with 
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cluster dependent scaling parameters while seeking compact clusters. Unlike the LSL 

which uses only the intra-cluster distances to learn the scaling parameters, FLeCK 

learns the scaling parameters that minimize the intra-cluster distances and maximize 

the inter-cluster distances simultaneously. The scaling parameter, ai, with respect to 

each cluster i is designed to distinguish and separate the objects of cluster i from the 

rest of the data. It reflects the relative density, size, and position of this cluster with 

respect to the other clusters. 

To the best of our knowledge, LSL and FLeCK are the first algorithms that 

learn the Gaussian scaling parameter in an unsupervised way. This is a major contri­

bution to Gaussian based clustering approaches such as kernel and spectral clustering 

methods that suffer from their sensitivity to this parameter. 

3 The Semi-Supervised clustering and Local Scale Learning algorithm 

The Semi-Supervised clustering and Local Scale Learning algorithm is an ex­

tension of the LS1. In order to guide LSL to a better partitioning of the data and 

avoid local minima, especially for high dimensional real world data, we incorporate 

prior knowledge in the unsupervised clustering task in the form of a small set of 

constraints on which instances should or should not reside in the same cluster. 

4 The Semi-Supervised Fuzzy clustering approach with Learnable Clus­

ter dependent kernels 

The Semi-Supervised Fuzzy clustering approach with Learnable Cluster de­

pendent kernels (SS-FLeCK) is an extension of the FLeCK algorithm. It uses side­

information in the form of a small set of constraints on which instances should or 

should not reside in the same cluster. This is achieved by combining constraint-based 

methods that guide the clustering algorithm towards a better grouping of the data 

and local distance measure learning methods that adapt the underlying dissimilarity 

measure used by the clustering algorithm. 

The four proposed algorithms are compared to existing algorithms using syn­

thetic and real datasets. We provide detailed analysis of the results and justify their 
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better performance. 

B Dissertation overview 

The organization of the rest of the dissertation is as follows. In chapter 2, we 

outline some important background material on machine learning techniques relevant 

to this thesis. In chapter 3, we present our new unsupervised relational cluster­

ing approaches LSL and FLeCK. In chapter 4, we present the new semi-supervised 

relational clustering approaches SS-LSL and SS-FLeCK. In chapter 5, we describe 

the experiments conducted to validate the proposed algorithms. The performance of 

our approach is compared to several state-of-the-art clustering methods. Chapter 6 

contains the conclusions and potential future work. 
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CHAPTER II 

LITERATURE SURVEY 

In this chapter, we outline some important background material on machine 

learning techniques relevant to this thesis. We first introduce fuzzy clustering. Then, 

we review spectral and kernel based clustering approaches. We also cover the semi­

supervised clustering paradigm as well as some background on kernel and distance 

measure learning techniques. 

A Fuzzy clustering 

Clustering is an essential and very frequently performed task in pattern recog­

nition and data mining. It can aid in a variety of tasks related to understanding 

and exploring the structure of large and high dimensional data. The goal of cluster 

analysis is to find natural groupings in a set of objects such that objects in the same 

cluster are as similar as possible and objects in different clusters are as dissimilar as 

possible. 

A substantial amount of research has focused on the C-means objective function 

and algorithm [91], especially since it is prone to local minima in its most basic form. 

Recent research on C-means includes methods for initialization [73], adding local 

search to the algorithm [51], and generalizing the use of squared Euclidean distance 

to general Bregman divergences [30]. 

In most applications, categories are rarely well separated and boundaries are 

overlapping. Describing these real world situations by crisp sets does not allow the 

user to quantitatively distinguish between objects which are strongly associated with 

a particular category from those that have only a marginal association with multiple 

ones, particularly, along the overlapping boundaries. Fuzzy clustering methods are 
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good at dealing with these situations [12]. In fact, data elements can belong to more 

than one cluster with fuzzy membership degrees. These memberships indicate the 

strength of the association between that data element and a particular cluster. 

Fuzzy clustering is widely used in the machine learning field. Areas of appli­

cation of fuzzy cluster analysis include data analysis [17, 11], information retrieval 

[26, 7], image segmentation [3], and robotics [40]. One of the most widely used fuzzy 

clustering algorithm is the Fuzzy C-Means (FCM) Algorithm [86]. 

1 The Fuzzy C-Means algorithm 

The FCM algorithm [86] attempts to partition a set of feature vectors X = 

{Xl, ... ,XN} into C fuzzy clusters A = {al,''''ac}. It assigns a membership de­

gree Uij E (0,1), to each sample Xj in each cluster i that indicates the degree 

to which Xj belongs to cluster i. We define Xj a p- dimensional column vector 

Xj = [Xjl, Xj2, Xj3, ... , Xjpt Similarly, we define ~ as a p- dimensional column vector 

aj = [ajl, aj2, aj3, ... , ajplt 

The FCM [86] aims to minimize the following objective function: 

C N 

J= LLu;jllxj-aiI12 (1) 
i=l j=l 

subject to 

C 

L Uij = 1, for 1::; j ::; N (2) 
i=l 

In (1), mE (1, 00) is the fuzzifier that controls the fuzziness of the partition. 

Minimizing the objective function in (1) subject to the constraint in (2), is a 

non-trivial constrained nonlinear optimization problem with continuous parameters ai 

and Uij with no analytical solution. As a result, an alternating optimization scheme, 

i.e. alternatively optimizing one set of parameters while the other set of parameters 

are considered as fixed, is a common approach to optimize (1). It can be shown [86] 

that the update equations for ai and Uij are 
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and 

",N m 
L.Jj=l UijXj 

~ = ----''--:-;----''­
",N m 
L.Jj=l uij 

The steps of the FCM are outlined in algorithm 1. 

Algorithm 1 The Fuzzy C-Means algorithm 
Fix mE (1,00); 

Fix the number of clusters C; 

Initialize the cluster centers ai; 

Repeat 

Update the fuzzy memberships Uij using (3); 

Update the cluster centers ~ using (4); 

U ntH no change in Uij. 

2 The Gustafson-Kessel clustering algorithm 

(3) 

(4) 

The FCM can work well only for spherical shaped clusters since the distances 

from data points to the centers of the clusters are based on the Euclidean distance. To 

overcome the above limitation, the Gustafson-Kessel algorithm (GK) [881 extended 

the Euclidean distance of the standard FCM by employing an adaptive norm. Conse­

quently, the GK can detect clusters of different geometrical shape. The GK algorithm 

minimizes 

C N 

J = L L u;jd (Xj, ai)2 (5) 
i=l j=l 

In (5), the distance d (Xj,~) is defined as 
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(6) 

where Ti is a local norm-inducing matrix that can be adapted to the local topological 

structure of each cluster i. 

In addition to the condition on the partition matrix U in (2), the following 

additional constraint on the norm matrices Ti is imposed 

det (Ti) = Pi (7) 

The minimization of the GK objective functional is achieved by using the alternating 

optimization method, and results in the following update equations, 

(8) 

( 
1 ) m~l 

d(xj ,a;) 2 

(9) 

(10) 

where 

2:7=1 U0(Xj - a;)(Xj - ai)t 
~i = N' (11) 

2: j =l u0 
In (10), p is the dimensionality of the feature vector Xj. The steps of the GK algorithm 

are outlined in algorithm 2. 

The FeM algorithm has been generalized further to find clusters of different 

shapes [87]. For instance, in [87], Bezdek et al. proposed the Fuzzy c-Varieties 

(FeV) algorithm to detect structures of data when all clusters are r-dimensional 

linear varieties, where r is less than the dimension of the data object. This is achieved 

by replacing the Euclidean distance in the FeM objective function in (1) by the sum 

of the Euclidean distance and the scaled Euclidean distance mapped to the r principle 

scatter directions (r longest axes) of the data objects. 
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All the clustering approaches described so far are prototype based approaches 

that represent similar objects efficiently by a single prototype (e.g. center or center 

and covariance matrix). Moreover, they require an explicit expression of the feature 

vector of each sample. 

Algorithm 2 The Gustafson-Kessel algorithm 
Fix m E (1, 00 ); Fix Pi E (1, 00) 

Fix the number of clusters C; 

Initialize the Fuzzy memberships Uij; 

Repeat 

Update the cluster centers ai using (8); 

Update the local norm-inducing matrices Ti using (11) and (10); 

Update the distance using (6) 

Update the fuzzy memberships Uij using (9) 

U ntH no change in Uij. 

B Relational clustering algorithms 

For relational data, only information that represents the degrees to which pairs 

of objects in the data are related is available. In this case, object-based algorithms, 

such as FCM and GK, can not be used to partition relational data. A different 

approach, called relational clustering, has been developed for this data. Relational 

clustering is more general in the sense that it is applicable to situations in which 

the objects to be clustered cannot be represented by numerical features. It is also 

more practical for situations where the distance measure does not have a closed form 

solution, or when groups of similar objects cannot be represented efficiently by a 

single prototype (e.g. center). 

Although clustering of object data has been an active field of research, cluster­

ing of relational data has received much less attention. This is despite the fact that 
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several applications would benefit tremendously from relational clustering algorithms. 

For instance, in several applications, the most effective distance measures do not have 

a closed form expression. Thus, these measures could not be used in object-based 

algorithms. Examples of these measures include the earth mover distance (EMD) 

[72], and the integrated region matching distance (IRM) [63]. Similarly, in web data 

mining and web user profiling, effective distance measures take into account the URL 

path traversed [66], and these similarities could not be integrated into object based 

clustering methods. 

There are several relational clustering algorithms in the literature. The well­

known relational algorithm is the Sequential Agglomerative Hierarchical Non - over­

lapping (SHAN) algorithm [89]. When the clusters are overlapping as is the case for 

most real-world applications, fuzzy clustering methods are more appropriate. Ex­

amples of fuzzy relational clustering methods include Ruspini algorithm [90] and the 

Relational Fuzzy C-Means Algorithm (RFCM) [85]. In [85], Hathaway and al. refor­

mulated the Fuzzy C-Means (FCM) [86] objective function to adapt it to relational 

data by eliminating the prototypes from the FCM objective function. They also pro­

posed the Non Euclidean Relational Fuzzy (NERF) C-Means algorithm [80]. NERF 

CMeans modifies the RFCM in order to deal with non-Euclidean relational distances. 

The authors in [71] extended RFCM to the Relational Fuzzy C-Maximal Density es­

timator (RFC-MDE) algorithm. RFC-MDE is robust and learn a local density with 

respect to each cluster. 

A more detailed description of the RFCM and NERF is provided in the fol­

lowing subsection. 

1 The Relational Fuzzy C-Means (RFCM) Algorithm 

The Fuzzy C-Means (FCM) [86] objective function, defined in (1), has been 

reformulated by eliminating the prototypes from its objective function in order to 

adapt it to relational data [85]. The resulting relational FCM (RFCM) algorithm 

minimizes 
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C ,\,N ,\,N m m 
J _ '"' L..Jj=1 L..Jk=1 uijUikrjk 

- ~ 2,\,N m ' 
i=1 L..Jk=1 u ik 

(12) 

subject to the membership constraint in (2). 

Unlike the object based FCM objective function which involves dissimilarity 

of the objects to a cluster center, the objective function in (12) includes only the dis­

similarities rjk(13) between pairs of objects. These dissimilarities could be provided, 

or they could be computed from the object data using 

(13) 

The minimization of the FCM and RFCM objective functions are equivalent. In 

[85], the update equations were derived based on the fact that the squared Euclidean 

distance between feature vector Xk and the centroid of the ith cluster i can be written 

in terms of the relation matrix R as 

d2 - (R) vfRvi 
ik - Vi k ---

2 
(14) 

where (RVih is the kth entry of the the vector column RVi. In (14), Vi is the 

membership vector defined by 

(15) 

Equation (14), which is not based on the cluster centroid explicitly, allows 

the computation of the distance between data points and cluster prototypes in each 

iteration. It uses only the relational data and the set of initial fuzzy memberships. The 

fuzzy memberships are updated as in the standard FCM using the implicit distance 

values dTk that have been computed using (14). That is, 

1 
(16) 
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The RFCM objective function in (12) is then optimized by alternating between 

the update equations in (14) and (16), until the membership values do not change 

significantly between consecutive iterations. 

Although the RFCM was formulated to cluster relational data, it is expected to 

perform in an equivalent way to the FCM only if the relation matrix R is Euclidean, 

i.e. provided that (13) is satisfied. If this is not the case, the distances computed 

using (14) may be negative causing the algorithm to fail. To overcome this restriction, 

Hathaway and Bezdek proposed the Non Euclidean Relational Fuzzy (NERF) C­

Means algorithm [801. NERF modifies the RFCM by adding a step that uses the 

tJ-spread transform to convert a non-Euclidean matrix R into an Euclidean matrix 

R{3 using 

R{3 = R + tJ (M - I) . (17) 

In (17), tJ denotes a suitably chosen scalar, IE JRNXN is the identity matrix, and M is 

an N x N matrix whose entries are all equal to one. In [80], the authors suggested that 

the distances d;k should be checked in every iteration for negativity, which indicates a 

non-Euclidean relation matrix. In that case, the tJ-spread transform should be applied 

with a suitable value of tJ to make d;k positive. A lower bound for the necessary shift, 

t::"tJ, that is needed to make the distances positives was derived in [801 to be 

(18) 

where ek denotes the kth column of the identity matrix. The steps of the NERF 

C-Means are outlined in algorithm 3. 

The relational clustering algorithm described above clusters the data in its 

original feature space. However, in many real applications, categories may be defined 

better in a transformed feature space. 

13 



Algorithm 3 The Non Euclidean Relational Fuzzy (NERF) C-Means algorithm 

Fix number of clusters C and m E [100); 

Initialize (3 = 0; 

Initialize the fuzzy partition matrix U; 

REPEAT 

Compute R,6 using (17); 

Compute the membership vectors Vi using (15); 

Compute the distances using (14); 

IF d;k < 0 for any i, k 

Compute t::.(3 using (18); 

d;k = d;k + (t::.(3/2) * Ilvi - ekll; 
(3 = (3+ t::.(3; 

END IF 

Update the fuzzy membership using (16); 

UNTIL (fuzzy membership do not change) 

C Kernel based clustering 

These approaches allow a non linear mapping of the input data. They map 

the data into a new space in such a way that computing a linear partitioning in this 

feature space results in a nonlinear partitioning in the input space. 

1 Background 

The power of kernel learning approaches rely on their ability to produce non­

linear separating hypersurfaces between clusters by performing a mapping ¢ from 

the input space X to a high dimensional feature space F. One of the most relevant 
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aspects in kernel applications is that it is possible to compute Euclidean distances in 

F without knowing it explicitly. This can be done using the so called distance kernel 

trick [75]: 

(ell (Xi) - ell (Xj))t . (ell (Xi) - ell (Xj)) 

(ell (xd ell (Xi)) + (ell (xS ell (Xj)) - 2 (ell (Xi)t ell (Xj)) 

K (Xi,Xi) + K (Xj,Xj) - 2K (Xi,Xj) (19) 

In (19), K (Xi, Xj) = ell (Xi) t ell (Xj) is the Mercer kernel [92]. It is a symmetric function 

K : X x X ~ ~ and satisfies 

N N 

L I:>iCjK (Xi, Xj) 2: 0 'in 2: 2, (20) 
i=1 j=1 

where Cr E ~ 'ir = 1, ... ,n. Examples of Mercer kernels include [78] 

• Linear 

(21) 

• Polynomial of degree p 

K(p) (x x·) = (1 + xt. x)P 
Zl J t J , pEN (22) 

• Gaussian 

(23) 

2 The kernel K-Means algorithm 

In general, the mapping ¢ from the input space X to a high dimensional feature 

space F is not known. Thus, it is not possible to compute the center of each cluster 

i, ~<f>, in the feature space F in a direct way using 

(24) 
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In (24), 1ft is the set of points Xh belonging to cluster i. Let "Y be the indicator matrix 

in which "Yih is equal to one if Xh belongs to cluster i and zero otherwise. Alternatively, 

the distances in the feature space could be computed using 

= K jj - 2 L "YihKjh + L L "Yir"YisKrs (25) 
h r s 

The kernel K-Means algorithm [51 is summarized in algorithm 4 

3 The Metric kernel Fuzzy C-Means algorithm 

The Metric kernel Fuzzy C-Means [451 minimizes the following objective func-

tion: 

C N 

J<p = L L (Uij)m 11<1> (Xj) - <1> (Cli) 112 (26) 
i=l j=l 

subject to the constraint in (2). In (26), <1> (Cli) is the center of cluster i in the feature 

space, and ¢ is the mapping from the input space X to the feature space F. 

Algorithm 4 The kernel K-Means algorithm 
Fix the number of clusters C; 

Initialize the cluster centers in the feature space F 

Repeat 

For each cluster, compute distances between the data points and the clusters 

centers using (25) 

Update the indicator matrix "Y by assigning data points to the nearest cluster 

according to the computed distances. 

U ntH no change in "Y 
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Minimization of the function in (26) has been proposed only in the case of a Gaussian 

kernel. The reason is that in this case the derivative with respect to the ai can use 

the kernel trick: 

(27) 

It can be shown [45] that the update equation for the memberships is 

U~l = c (1 -K (Xj) a;)) 1/(m-1) 

ZJ L 1 - K (x ah) ) 
h=l J) 

(28) 

and for the codevectors is 

2:f=l (Uij)m K (Xj) ai) XJ 
Vi = N m 2:j =l (Uij) K (Xj) ai) 

(29) 

The Metric kernel Fuzzy C-Means algorithm is outlined in algorithm 5. 

4 The Feature Space kernel Fuzzy C-Means algorithm 

The Feature Space kernel Fuzzy C-Means algorithm [57] derives the fuzzy C­

means in the feature space by minimizing 

C N 2 

J¢ = L L (Uij)m (<I> (Xj) - at) 
i=l j=l 

(30) 

subject to the membership constraint in (2). It is possible to rewrite the norm in (30) 

explicitly by using: 

where 

2:f=l (Uij)m <I> (Xj) 

2:~=1 (Uih)m 

N 

bi L (Uij)m <I> (Xj) 
j=l 
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This trick allows the derivation of a closed form expression for the membership up­

dating equation 

(33) 

The Feature Space kernel Fuzzy C-Means algorithm is outlined in algorithm 6. 

5 The kernelized Non-Euclidean Relational Fuzzy c-Means Algorithm 

The kernelized Non-Euclidean Relational Fuzzy C-Means (kNERF) Algorithm 

[251 is a kernelized version of the non-Euclidean relational fuzzy C-means algorithm. 

This relational algorithm complements existing (object data) kernelization of the 

fuzzy C-means and, has a duality relationship with the kNERF algorithm introduced 

in [451. In fact, most efforts to kernalize the C-means algorithms were formulated 

to work directly on object data. One of the most interesting aspects of the kNERF 

algorithm is that it is a kernelized version that works directly on relational data and 

does not require explicit feature representation. 

Algorithm 5 The Metric kernel Fuzzy C-Means algorithm 
Fix mE (1,00); 

Fix the number of clusters C; 

Initialize the cluster centers ~; 

Repeat 

Update the fuzzy memberships Uij using (28); 

Update the cluster centers ~ using (29); 

U ntH no change in Uij' 
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Algorithm 6 The Feature Space kernel Fuzzy C-Means algorithm 
Fix mE (1, (0); 

Fix the number of clusters C; 

Initialize the cluster centers eli; 

Repeat 

Update the fuzzy memberships Uij using (31); 

Update the cluster centers eli using (33); 

U ntH no change in Uij' 

The Gaussian kernelized relational matrix R is formed directly from the orig­

inal relational data matrix R = [rjkJ using 

~ ( r2k) R = 1 - exp - ;2 (34) 

and the non-Euclidean relational fuzzy (NERF) c-means algorithm [80] is adapted to 

perform clustering analysis on this kernelized matrix R. 
Despite the existence of a large number of kernel clustering algorithms [5] (e.g., 

kernel K-means, kernel FCM, kernel SOM, and kernel Neural Gas), the choice of a 

good kernel function and the adaptation of its parameters to the data remains a 

challenging task. For instance, in kNERF [25], a relational Gaussian kernel is used 

with one global scaling parameter for the entire data. The selection of the scaling 

parameter is discussed in [25] but there has been no attempt to devise methods to 

automatically select it. Moreover, a global scaling parameter may not be appropriate 

when clusters are of widely differing shapes, sizes, and densities. 

Another approach to data clustering is based on spectral analysis. This ap­

proach called spectral clustering, solves a similar problem as kernel methods. How­

ever, it is based on a different approach that uses information contained in the eigen­

vectors of a data affinity matrix to detect structure. 
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D Spectral based clustering 

Spectral analysis has proven effective on many tasks, including information 

retrieval [82], image segmentation [65], word class detection [49] and data clustering 

[55]. It has been proven that spectral clustering can be seen as a graph cut problem 

where an appropriate objective function has to be optimized [18]. The core of its 

theory is the eigenvalue decomposition of the Laplacian matrix due to the relationship 

between the smallest eigenvalues of the Laplacian and the graph cut [59]. 

Spectral clustering is a straight forward algorithm. In the first step, a similar­

ity graph and its corresponding weighted adjacency matrix are constructed. The fully 

connected graph is very often used in connection with the Gaussian similarity func­

tion. The second step of the algorithm consists of computing the Laplacian. Then the 

smallest eigenvectors are computed and concatenated in order to constitute the new 

space feature matrix. The rows of this matrix are then clustered with the C-Means 

algorithm [91]. 

The three most well-known spectral clustering algorithms include the unnor­

malized cut [81], the Ncut [68], and the random walk [61]. These algorithms look 

rather similar, apart from the fact that they use three different graph Laplacians. In 

all three algorithms, the principle is to change the space of the data into a new repre­

sentation. The graph Laplacian proprieties make this change of representation useful 

so that clusters can be easily detected in the new representation. These approaches 

are summarized in algorithm 7. 

Spectral clustering can be derived as an approximation to graph partitioning 

problem. The two most common objective functions which encode the graph parti­

tioning cut are Ratio cut, Ratiocut 

(35) 
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Algorithm 7 The Spectral Clustering algorithm 

Input the feature matrix X, the number of clusters C 

1. Construct a similarity graph and the weighted adjacency matrix R ij . The fully 

connected graph is very often used in connection with the Gaussian similarity 

function 

{

e_IIXi:;iI12 iii #- j 

Rij = 

o subject to xdeature vector i 

2. Compute the degree matrix D 

3. Compute the Laplacian using one of the following equations 

• Unnormalized graph Laplacian 

L=D-R 

• Symmetric normalized graph Laplacian 

• Random walk normalized graph Laplacian 

(36) 

(37) 

(38) 

(39) 

(40) 

4. Compute the first C eigenvectors Vl,V2, ... ,Ve. Let V be the matrix containing the 

5. For i=l...n, let Yi be the vector corresponding to the ith row of v. Cluster the 

points (Yi)i=l, .. ,n with the K-mean algorithm into clusters Gl , G2 , .. , Ge . 

Output Cluster AI, ... , Ae with Ai = {j/lj E Gi} 
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and the Normalized cut, N c:ut 

(41) 

In (35) and (41), IAil is the number of elements in Ai, vol(Ai) is the sum of the 

similarities in Ai, and cut (Ak' Ak) = LiEAk,jEAk Rij . Relaxing Ncut leads to a 

normalized spectral clustering while relaxing Ratiocut leads to unnormalized spectral 

clustering [181. Normalized spectral clustering implements both clustering objectives 

( minimizing inter cluster similarities and maximizing intra cluster similarities) while 

unnormalized clustering implements only one objective (maximizing the intra cluster 

similarities ). The within cluster distance, Li,jEA R ij , can be rewritten as: 

(42) 
i,jEA iEA,jEAUA iEA,jEA 

= vol (A) - c:ut (A, A) (43) 

Thus, the within cluster similarity is maximized if cut (A, A) is small and if 

vol(A) is large. This is part of the objective function of the normalized cut. However, 

for the case of Ratiocut, the objective function is to maximize IAI and IAI instead of 

vol(A) and vol(A). 

Spectral clustering could also be seen as a random walk technique. In fact, the 

transition probability of jumping from vertex Vi to vertex V; in one step is equal to 

~. Moreover, the transition matrix of the random walk is expressed as P = D-1R. 

Thus, L rw and P are related: 

Lrw = I-P. ( 44) 

Ncut is also connected to the random walk, since Ncut(A, B) = P(Xl E B I Xo E A) 

[181· 

Spectral clustering can also be viewed as a kernel K-Means algorithm. In 

[33], the authors show that there is an equivalence between kernel K-Means and the 

22 



spectral clustering. For instance, in the case of the normalized cut, the correspondence 

with the objective function of C-Means restricts the kernel to be 

K = o:D-1 + D-1 AD-I, (45) 

where 0: is a positive coefficient that guarantees the positive definiteness of K. 

Another clustering approach, called diffusion clustering is highly related to 

spectral clustering. In fact, the random walk Laplacian, D-1 L, can be interpreted as 

a stochastic matrix representing random walk on the graph [61]. Then, the diffusion 

map, which is a mapping between the original space and the first k eigenvectors, can 

be defined as 'II (x) = (Al7f!i, A27f!i, ... , Ac7f!2;) , where 7f!f are the right eigenvectors of 

the graph Laplacian and Ai are the corresponding eigenvalues. 

Some reference papers have compared the performance of different spectral 

algorithms [61]. The results suggest that some algorithms are more stable, have 

desirable properties, and have superior clustering results. In particular, reference 

paper [18] states that random walk is equivalent to diffusion clustering. Moreover, in 

[18], the authors show that normalized spectral clustering (Ncut) is better than the 

unnormalized one (Ratiocut) and that random walk is better than symmetric spectral 

clustering because Lsym may lead to undesired artifacts on the eigenvectors [18]. 

Spectral algorithms can be very effective for clustering. However, as in kernel 

clustering, the choice of the Gaussian parameter a is crucial for this approach. In 

fact, spectral clustering is quite sensitive to the changes in the similarity graph and 

to the choice of its parameters. Other limitations of spectral clustering include their 

sensitivity in the presence of background noise and multiscaled data. For the latter 

case, it was recommended to replace the uniform a with a location dependent scale 

a (Xj) [42]. In particular, in [42], the authors proposed to calculate a local scaling 

parameter aj for each data point Xj and defined the similarity between a pair of points 

Xj and Xk as 

(46) 
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The local scale aj is defined in [42] as the distance between point Xj and its pth 

neighbor. Nevertheless, this approach is still dependent on the selection of the neigh­

borhood parameter P which is fixed empirically for each dataset. Moreover, if Xj is a 

noise point, adapting aj to this point will distort this fact. 

Clustering is a difficult optimization task. The problem is more challenging 

for large and high dimensional data. One possible solution to alleviate this problem 

is to use partial supervision to guide the search process and narrow the space of 

possible solutions. Recently, semi-supervised clustering has emerged as a new research 

direction in machine learning to improve the performance of unsupervised learning 

using some supervision information. 

E Semi-supervised clustering 

In addition to the pairwise distance information used by unsupervised rela­

tional clustering, in many cases partial information is available in the form of cluster 

labels for few data samples or of pairs of samples that should or should not be assigned 

to the same cluster. The available knowledge is too far from being representative of 

a target classification of the items, so that supervised learning is not an option. This 

limited form of supervision can be used to guide the clustering process. The result­

ing approach is called semi-supervised clustering. Previous studies have empirically 

demonstrated the values of partial supervision in diverse domains, such as clustering 

[47], video surveillance [22], and text classification [43]. 

The most common way of incorporating supervision information in the unsu­

pervised clustering process is by using constrained search based methods. In these 

methods, the clustering algorithm is modified to integrate a set of constraints. These 

constraints can guide the search for a more effective grouping of the data and avoid 

local minima. These modifications could be done by providing the algorithm with a 

better initialization, e.g., by performing a transitive closure [48]. They could also be 

done by integrating a penalty or a reward term in the cost function of the algorithm 

[70]. Another way of incorporating the constraints in search based approaches is by 

satisfying the constraints in the assignment step of the clustering process [69]. 
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1 The Semi-supervised kernel C-means algorithm 

In [27], a relational semi-supervised kernel clustering algorithm (SS-kernel­

CMeans) was proposed. It minimizes the following objective function 

c 
J LL 2:~=1 2:~=1 Kjk 

217ri I 

In (47), Ml is a set of must link constraints such that (Xj, Xk) E Ml implies that 

objects Xj and Xk must be assigned to the same cluster. Similarly, C1 a set of cannot 

link constraints such that (Xj, Xk) E C1 implies that objects Xj and Xk cannot be 

assigned to the same cluster. 

In (47),7ri is the set of points belonging to cluster i, l7ril its corresponding cardinality, 

and Nand C are the number of points and the number of clusters respectively, and 

Kjk is the relational Gaussian kernel function. Let W be the constraint matrix such 

that 

(48) 

o otherwise 

Let Zi be an indicator vector for cluster i. This vector is of length Nand 

Zi(j) = 0 if Xj is not in cluster i, and 1 otherwise. The objective in (47) can be 

written as follow 

c 
J LL (49) 

By setting K = Kjk + 2Wjk , the authors in [271 showed that the SS-kernel-CMeans 

objective function in (49) is equivalent to the kernel k-means one. The steps of the 

Semi-supervised kernel C-means are outlined in algorithm 8 
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Algorithm 8 The Semi-supervised kernel C-means algorithm 

Input: 

K: input similarity matrix, 

W: constraint penalty matrix, 

C: number of clusters 

Output: 

{1Ti}: final partitioning of the points 

Repeat 

Until 

Form the matrix K = K + 2W. 

For each cluster, compute distances between the data points and the clusters 

centers using (25) 

Update the indicator matrix Zi by assigning data points to the nearest cluster 

according to the computed distances. 

no change in Zi 

The Semi-supervised kernel C-means has several drawbacks. First, since it is 

crisp version, it is sensitive to initialization and cannot deal with overlapping bound­

aries. Second, no method has been suggested to automate the selection of the scaling 

parameter and this parameter has to be set manually. Moreover, it is not clear how 

to generate the constraints weights W jk . 

2 The Semi-Supervised Spectral clustering algorithm 

While spectral algorithms have been very useful in unsupervised learning clus­

tering, little work has been done in developing semi-supervised spectral clustering. 

One spectral approach to semi-supervised clustering is the spectral learning algorithm 

[441. In this approach, the authors present a simple extension to the spectral learn-
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ing algorithm to take advantage of available supervision information. This algorithm 

does not have an explicit underlying objective function. It simply injects the pairwise 

constraints into the affinity matrix before clustering. In fact, since for most similarity 

functions, the maximum pairwise similarity value is 1, and the minimum similarity is 

0, the authors assigned 1 to the affinity matrix entries corresponding to a Must-Link 

pairs of points and 0 to the affinity matrix entries corresponding to a Cannot-Link 

pairs of points. The Semi-Supervised spectral learning steps are outlined in algorithm 

9. 

Algorithm 9 The Semi-Supervised spectral learning algorithm 

Input the feature matrix X, the number of clusters C 

1. Construct a similarity graph and the weighted adjacency matrix ~j. The fully connected 

graph is very often used in connection with the Gaussian similarity function 

{ 

e_llxi:;iI12 if i -I- j 

Rij = 

o subject to xdeature vector i 
(50) 

2. Assign 1 to the affinity matrix entries corresponding to a Must-Link pairs of points and 

o to the affinity matrix entries corresponding to a Cannot-Link pairs of points. 

2. Compute the degree matrix D 

(51) 

3. Compute the Laplacian; 

4. Compute the first C eigenvectors V1,V2, ... ,Ve. Let V be the matrix containing the 

7. For i=l...n, let Yi be the vector corresponding to the ith row of v. Cluster the 

points (Yi)i=l, .. ,n with the K-mean algorithm into clusters C1 , C2, .. , Ce . 

Output Cluster A 1 , ... , Aewith Ai = {j/Yj E Ci} 
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Algorithm 10 The Semi-Supervised graph clustering algorithm 

Input the feature matrix X, the number of clusters C 

1. Construct a similarity graph and the weighted adjacency matrix Rj. The fully connected 

graph is very often used in connection with the Gaussian similarity function 

{

e_IIXi:;iI12 ifi-j.j 

Rij = 
o subj ect to Xi feature vector i 

2. Compute the degree matrix D 

3. Compute the Laplacian. 

(52) 

(53) 

4. Construct the constraint matrix W such that W ij is -Wij for a cannot link, Wij for a 

must link, and 0 otherwise. 

5. Compute the matrix 

(54) 

6. Compute the first C eigenvectors VI,V2, ... ,Ve. Let V be the matrix containing the 

7. For i=l...n, let Yi be the vector corresponding to the ith row of v. Cluster the 

points (Yi)i=l, .. ,n with the K-mean algorithm into clusters GI, G2, •• , Ge . 

Output Cluster AI, ... , Aewith Ai = {j/Yj E Gi } 

Recently, the authors in [411 considered a semi-supervised formulation of the 

normalized cut objective that had a spectral algorithm associated with it. In this 

work, only Must-Link constraints are considered in the formulation, and penalty 

weights for constraint violations are not considered. Moreover, it solves an expensive 

constrained eigen-decomposition problem. 

The recent theoretical connection between weighted kernel k-means and several 
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graph clustering objectives has lead to algorithms for optimizing the semi-supervised 

graph clustering algorithm [11. The steps of the semi-supervised graph clustering 

algorithm are outlined in algorithm 10. 
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CHAPTER III 

UNSUPERVISED RELATIONAL CLUSTERING WITH 

LOCAL SCALE PARAMETERS 

A Introduction 

Recently, relational clustering has become an active field of research due to its 

ability to use the adjacency structure of the data and avoid dealing with a prefixed 

shape of clusters. Relational clustering can be seen as kernel based approaches since 

a kernel function can be thought of as a pairwise dissimilarity function. The choice 

of such a kernel function allows the mapping of the input data into a new space in 

such a way that computing nonlinear partitioning in the input space can reduce to a 

simple partitioning in the feature space. 

One of the most common dissimilarity function, due to its analytical propri­

eties, is the Gaussian kernel function. Although good results were obtained using this 

kernel, generally, its performance depends on the selection of the scaling parameter a. 

This selection is commonly done by trying several values. Moreover, since one global 

parameter is used for the entire dataset, it may not be possible to find one optimal a 

when there are large variations between the distributions of the different clusters in 

the feature space. 

In Figure 1, we use a simple example to motivate the advantage of cluster 

dependent kernel resolution ai compared to one global a. As this data contains two 

clusters, we construct a Gaussian kernel with respect to each cluster using a different 

scaling parameter. In particular, we run kNERF [251 multiple times using all pairwise 

combinations of ai = 0.001,0.01,0.02,0.03 ... ,0.2. 

30 
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0.15 

0.05 .,j\ o 
Figure 1. 2-D dataset with 2 clusters with different densities 

b'"' 0.1 

0.00 1 
0.001 

Figure 2. Accuracy results obtained on the dataset of Figure 1 using an extensive 

search of cluster dependent scaling parameters 

Figure 2 shows the accuracy results as heat map obtained using several com­

binations of 0"1 and 0"2. The colors toward "red" indicate a high accuracy and colors 

toward "blue" indicate a low accuracy. We can see from Figure 2 that the clustering 

results corresponding to the specific cases where 0"1 = 0"2 (i.e. along the diagonal) can­

not achieve accuracy better than 80%. On the other hand, for different combinations 

of 0" (such as O"i = 0.001 and O"j = 0.03) , an accuracy of 100% can be achieved. This 

simple example confirms that one global scaling parameter cannot deal effectively 

with this data and a cluster dependent scaling parameter O"i is more appropriate. 

One way to learn optimal scaling parameters is to try several combination (as 

31 



illustrated in the above example), evaluate each partition by using some validity mea­

sure [20], and identify the optimal partition. However, this exhaustive search of one 

scaling parameter with respect to each cluster is not practical. It is computationally 

expensive and increases significantly with the number of clusters and the range of 

possible values of (J"i. 

In this chapter, we introduce new fuzzy relational clustering techniques that 

learns cluster dependent (J"i in an efficient way through optimization of an objective 

function. The proposed algorithms learn the underlying cluster dependent dissimilar­

ity measure while finding compact clusters in the given data. The learned measure 

is a local dissimilarity based on the Gaussian kernel function, which is highly related 

to the heat kernel equation [581. 

B Relational clustering with local scale parameters 

1 The clustering and Local Scale Learning algorithm 

In the following, we assume that {Xl,···, x N } is a set of N data points to 

be partitioned into C clusters. We also assume that R = [rjkl is a relational matrix 

where rjk represents the degree to which pairs of objects Xj and Xk are related. The 

matrix R could be given or it could be constructed from the features of the objects. 

Each object Xj belongs to cluster i with a fuzzy membership Uij that satisfies 
c 

o :s: Uij :s: 1, and L Uij = 1, for i, j E {I, ... N}. (55) 
i=l 

To simplify notation, in the rest of the thesis, we will drop the square from r 

and (J" and use r to denote r2 and (J" to denote (J"2. That is, our kernel distance would 

be defined as D~k = 1 - exp ( -;.;) instead of Djk = 1 - exp ( - ~ ) . 

The clustering and Local Scale Learning algorithm (LSL) minimizes 
C N N ( C 

J = ~f;£;U0Urk 1- exp (- ;;)) - ~ ~; (56) 

subject to the membership constraint in (55). 

In (56), m E (1, (0) is the fuzzifier. The term ui]urk can be regarded as the likelihood 

that two points Xj and Xk belong to the same cluster i. We use f3jk to denote this 
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term. That is, we let 

(57) 

The L8L algorithm is based on minimizing a joint objective function with two 

terms. The first term seeks compact clusters using a local relational distance, D;k' 

with respect to each cluster i. This distance is defined as 

i ( r jk ) D 'k = 1 - exp --
J ~i 

(58) 

In (58), D;k is based on the Gaussian kernel function and is intimately related to the 

heat flow [58]. In fact, locally, the heat kernel is approximately equal to the Gaussian, 

i.e., 

_£ (d(X,y)) H". (x, y) ~ (47r~) 2 exp 4~ (59) 

when the squared distance between x and y, d (x, y), is sufficiently small [58]. 

In (58), the scaling parameter ~i controls the rate of decay of D;k as a function 

of the distance between Xj and Xk with respect to cluster i. Using a cluster dependent 

scaling parameter ~i allows L8L to deal with the large variations in the feature space 

between the distributions and the geometric characteristics of the different clusters. 

The second term in (56) is a regularization term to avoid the trivial solution 

where all the scaling parameters ~i are infinitely large. In fact, without this term, 

minimizing (56) with respect to ~i gives the trivial solution of a very large ~i that 

merges all points into a single cluster. Another trivial solution that minimizes the 

objective function in (56) is when one of ~i is zero. In order to keep the derivation 

simple, we do not introduce another regulation term. We simply assume that ~i is not 

null. Later in this section, we will discuss how to handle this case when it happens. 

The goal of the proposed L8L algorithm is to learn the C clusters, the scaling 

parameters ~i of each cluster, and the membership values uij , of each sample Xj in 

each cluster i. We achieve this by optimizing the objective function in (56) with 

respect to ~i and Uij' In order to optimize (56) with respect to Uij, we use the 

relational dual of the fuzzy C-mean algorithm formulated by Hathaway et al. [85]. It 

has been proven in [85] that the Euclidean distance d;k = Ilxk - Ci 11
2

, from feature Xk 
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to the center of the ith cluster, Ci, can be written in terms of the relational matrix Di 

as 

(60) 

where Vi is the membership vector of all N samples in cluster i defined by 
( m m )t uil ,···, UiN 

Vi= N 
Lj=l ui] 

(61 ) 

Using the implicit distance values, drk' the objective function in (56) could be rewrit-

ten as 

(62) 

To optimize J with respect to Uij subject to (55), we use the Lagrange multiplier 

technique and obtain 

C N C K N (C ) 
J = ~ f; uij . drj - ~ ai - f; Aj ~ Uij - 1 (63) 

By setting the gradient of J to zero, we obtain 

8J C 
8A = I>ij - 1 = 0 

i=l 

(64) 

and 

8J m-1 2 
8Uij = mUij dij - A = 0 (65) 

Solving (65) for Uij yields 

.. _ (_A ) (m~l) 
utJ - d2 m ij 

(66) 

Substituting (66) back into (64), we obtain 

t Uij = (~) m~l t (d~) m~l = 1 
i=l i=l tJ 

(67) 

Thus, 
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1 

"c (1) m~l • 

L..~=1 df; 

Substituting this expression back in (66), we obtain 

Uij = "C (1) m~l • 

L..t=l d'[ 

Simplifying (69) , we obtain the following update equation 
1 

uij = 1 • "C (d2 jd2 ) m-l 
L..t=l ij tj 

(68) 

(69) 

(70) 

We notice from equations (60) and (70) that the expression of Uij does not depend on 

any notion of cluster prototype (e.g center). In fact, it depends only on the relational 

matrix R, and the normalized membership vector v. 

In the objective function in (56), the resolution of the different clusters ai are 

independent of each other. Thus, in order to optimize (56) with respect to ai, we can 

reduce the optimization problem to C independent problems. That is, we convert the 

objective function in (56) to the following C simpler functions 

Ji ~ ~ m m (1 (rjk)) K1 = ~ ~ Uijuik - exp --;;: - a 2 
)=1 k=l ' 

(71) 

for i = 1, ... , C. The optimal update equation of the scaling parameters ai can be 

obtained using the Lagrange method by solving 

aJi ~~ m mrjk (rjk) 2K1 
-. = - ~ ~ Uijuik2exp --. + -3 = 0 
aa, j=l k=l ai a, ai 

(72) 

Using the duality between the Gaussian similarity and the heat flow function, it has 

been shown in [581 that 

(73) 

when E is sufficiently small. In (73), p is the dimension of the manifold. In the worst 

case, the point located in the neighborhood of a point j within the radius E are distant 

from j with at most E. As E is sufficiently small, we can assume that the distances 

rjk are almost constant in the neighborhood of j. Thus, (73) can be rewritten as 

35 



( 
rOk) N 

exp - ~i = INI (7r()i)-~ (74) 

where INI is the cardinality of the neighborhood of j. Substituting (74) in (72) gives 
o N N 

8J' "" m m N.rjk 2K1 (75) 
8(} = - ~ ~ Uij Uik 2 2- E INI ( o)2-~ + (}3 

, j=1 k=1 7r 2 (), , 

Setting (75) to zero and solving for ()i, we obtain 

()i = ( K ) 2!P 
I:f=1 I:~=1 uiJuf!erjk 

(76) 

where 

(77) 

We should recall here that our assumption about a non null ()i is reasonable. 

In fact, the update equation in (76) shows that ()i is zero only when the distance rjk 

between two points, Xj and Xk, that belong to cluster i (non zero fuzzy memberships 

Uij and Uik) is infinitely large. This scenario is very unlikely. 

We notice from (76) and (58) that for each cluster i, ()i controls the rate of 

decay of D~k with respect to the distance rjk. In fact, ()i is inversely proportional to 

the intra-cluster distances with respect to each cluster i. Thus, when the intra-cluster 

dissimilarity is small, ()i is large allowing the pairwise distances over the same cluster 

to be smaller and thus obtain a more compact cluster. On the other hand, when the 

intra-cluster dissimilarity is high, ()i is small to prevent points which are not highly 

similar from being mapped to the same location. According to (76), ()i can also be 

seen as the average time to move between points in cluster i. 

The resulting LSL approach is outlined in algorithm 11. 

2 Performance illustration 

To illustrate the ability of LSL to learn appropriate local scaling parameters 

and cluster the data simultaneously, we use it to partition synthetic 2D datasets. We 

should mention here that, for the purpose of visualizing the results, we use feature 

based and 2-dimensional data. Relational dissimilarity matrices are obtained by com­

puting the Euclidean distance between these feature vectors. We use 5 datasets that 
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include categories of different shapes with unbalanced sizes and densities. Figure 3 

displays the 5 synthetic datasets. Each cluster is displayed with a different color. 

For the five datasets, we set the number of clusters C to the true one (see Figure 

3), the fuzzifier m to 1.1, and the maximum number of iterations to 100. As L8L 

requires the specification of one parameter K, we repeat the clustering process with 

K =[0.001, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 4, 8, 10] and select the best results. The 

matrix of fuzzy memberships is initialized randomly. 

Algorithm 11 The L8L algorithm 

Fix number of clusters C, K E]Ooo), and mE [100); 

Initialize the fuzzy partition matrix U; 

Initialize the scaling parameters O"i; 

REPEAT 

Compute the dissimilarity Di for all the clusters using (58) ; 

Compute the membership vectors Vi using (61); 

Compute the distances using (60); 

Update the fuzzy membership using (70); 

Update the scaling parameter O"i using (76); 

UNTIL (fuzzy membership do not change or maximum number of iteration is 

reached) 

Table 1 displays the clustering results and the scaling parameters learned by 

L8L on dataset 1. First, we notice that the estimated cluster dependent kernel pa­

rameters reflect the geometry of the data. More specifically, they are related to the 

densities of the clusters. In fact, the smallest scaling parameter is found for cluster 

3 which is the least dense cluster, and 0"1 and 0"2 are comparable. This is due to 

the fact that cluster 1 and cluster 2 have comparable geometric characteristics. By 

learning appropriate scaling parameters, L8L partitions this data correctly. Figure 

4 displays the fuzzy memberships with respect to each cluster. We can notice that 
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most membership values tend to be binary (either 0 or 1). 
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Figure 3. Datasets used to illustrate the performance of L81. Each cluster is shown 

by a different color. 
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This means that the learned scaling parameters have mapped the data to well 

separated clusters in the feature space. 

TABLE 1 

Partition and scaling parameters learned by L8L for dataset 1 displayed in Figure 3 

(a) when K = 0.01 
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3 4 
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<41 Cluster1 
• Cluste r2 
• Cluster3 

Learned 

0"1 = 3.093 

0"2 = 2.583 

0"3 = 0.007 

'. 
Figure 4. Fuzzy memberships learned by L8L on dataset 1 (Figure 3 (a)) with respect 

to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 

The partitioning of dataset 2 is reported in Table 2. For this example, the three 

clusters have the same density. As a result, L8L learns three scaling parameters that 

are comparable. However, some points along the cluster boundaries are not correctly 
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categorized. In fact, as shown in Figure 5, the returned fuzzy memberships of cluster 

2 and cluster 3 are too fuzzy (between 0.3 and 0.33). This is due to the characteristic 

of this dataset where the boundaries are not well defined. 

TABLE 2 

Partition and scaling parameters learned by L8L for dataset 2 displayed in Figure 3 

(b) when K = 0.05 
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Figure 5. Fuzzy memberships learned by L8L on dataset 2 (Figure 3 (b)) with respect 

to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 
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TABLE 3 

Partition and scaling parameters learned by L8L for dataset 3 displayed in Figure 3 

(c) when K = 4. 
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Figure 6. Fuzzy memberships learned by L8L on dataset 3 (Figure 3 (c)) with respect 

to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 

A similar analysis on the learned scaling parameters for dataset 3 is conducted 

and reported in Table 3. As it can be seen, the sparse cluster, cluster 1, has the 

smallest scaling parameter (al = 2.887). Cluster 3 which is less sparse than cluster 

1 has smaller a , (a3 = 25.6), and the densest cluster, cluster 2, has the highest a 

(a2 = 53.33) . From Table 3, we observe that some boundary points are not categorized 

correctly. However, as it can be seen in Figure 6, the fuzzy membership of these points 
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is around 0.5. Thus, the learned memberships can be used to identify these boundary 

points. 

TABLE 4 

Partition and scaling parameters learned by LSL for dataset 4 displayed in Figure 3 

(d) when K = 1.5 

Partition 

(a) 

Clusterl I 
Cluster2 

Learned 

0"1 = 0.014 

0"2 = 0.029 

Figure 7. Fuzzy memberships learned by LSL on dataset 4 (Figure 3 (d)) with respect 

to (a) cluster 1, and (b) cluster 2. 

Although it is hard to define the notion of density on dataset 4 (Table 4), we 

can notice that the two learned scaling parameters (0"1 = 0.0014 and 0"2 = 0.029) are 

meaningful. In fact , as cluster 2 is slightly denser than cluster 1, 0"2 is slightly higher 
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than (Jl. We should mention here that the learned scaling parameters are equal to 

the ones found by extensive search in section III-A. This shows the efficiency of LSL 

in learning the scaling parameters. 

Figure 7 shows that some points have fuzzy memberships around 0.5 , indicating 

that they are close to both clusters in the mapped feature space. This is an inherit 

limitation of the LSL since it implicitly uses the Euclidean distance to map the data 

TABLE 5 

Partition and scaling parameters learned by LSL for dataset 1 displayed in Figure 3 

(a) when K = 2. 
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Figure 8. Fuzzy memberships learned by LSL on dataset 5 (Figure 3 (e)) with respect 

to (a) cluster 1 and (b) cluster 2 
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As displayed in Table 5, L8L cannot categorize dataset 5 correctly. This is due 

to the fact that it optimizes only the intra cluster dissimilarity. In fact , since the intra 

cluster dissimilarity of the sparse cluster is smaller than its inter cluster dissimilarity 

with the denser one, the two cluster are merged together by the L8L algorithm. This 

constitute one drawback of the L8L approach. In fact , this is an inherited limitation of 

all clustering algorithms that minimize the intra-cluster distances without considering 

the inter-cluster distances. 

3 Limitations of LSL 

We can notice from the update equation (76) that (Ji depends on one parameter, 

K . This parameter is a function of the balancing constant Kl and the characteristics 

of the dataset (Eq. 77). Although, L8L learns C scaling parameters with the specifi­

cation of one parameter, this is still a limitation of this approach. In fact, the choice 

of the parameter K can have a significant impact on the final partition. For instance, 

if we consider the case of dataset 1 (Figure 3 (a)) , the good result displayed in Table 

1 is obtained for K = 0.05. However, if we consider other different values of K as in 

Figure 9, the clustering results are not meaningful. 

In order to address this drawback, in the next section, we propose a new ap­

proach that avoids the need to specify K by exploring the inter cluster dissimilarities 

in addition to the intra cluster dissimilarities. 

C Relational clustering by optimizing both the intra-cluster and inter­

cluster distances 

1 The Fuzzy clustering with learnable cluster dependent kernels algo­

rithm 

Although, the L8L algorithm learns C scaling parameters that reflect the ge­

ometric characteristics of the dataset , we have shown in the previous section that 

it has two limitations. First, as it minimizes only the intra-cluster dissimilarity, the 

scaling parameter reflects only the intra-cluster characteristics of the data. Thus, 
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LSL may not categorize data with small inter-cluster distances correctly. Second, its 

performance depends on the specification of one parameter, K. 
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Figure 9. LSL clustering results on dataset 1 (Figure 3 (a)) with different parameters 

K, (a) K = O.OOl ,(b) K = O.OI ,(c) K = 0.1 , (d) K = I , and (e) K = 0.05 . 

To address the above limitations, we propose an alternative approach to learn 
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local kernels by minimizing the intra-cluster distances and maximizing the intra­

cluster distances simultaneously. This is consistent with the basic definition of clus­

ter analysis: seeks to partition data into groups by minimizing within-group dissim­

ilarities or by maximizing between-group dissimilarities. Thus, if we consider the 

Gaussian dissimilarity function as defined in (58), the optimal choice of the scaling 

parameter is the one that allows high intra-cluster dissimilarity and low inter-cluster 

dissimilarity. The proposed algorithm, called Fuzzy clustering with learnable cluster 

dependent kernels (FLeCK), learns a scaling parameter with respect to each cluster 

that allows it to distinguish and separate the cluster's objects from the rest of the 

data. By considering one cluster at a time, FLeCK learns a scaling parameter ai 

from the intra-cluster characteristics of cluster i and its relative dissimilarities with 

the remaining objects on the dataset. 

Using the same notation defined in subsection III-B-1, the FLeCK algorithm 

minimizes the intra-cluster dissimilarity 

C NNe K 
Jintra = LLLu7Jurzk (1- exp (-rjk

)) - L~' (78) 
i=1 j=1 k=1 at i=1 at 

That is, we replace the L8L objective function in (56) with the objective function 

in (78). The first term in (78) that seeks clusters that have compact local relational 

distances is kept the same as in (58). However, the second term is slightly different. 

In fact, it is 2::;=1 !f; instead of 2::~1 !h in order to keep the optimization simple. It 
t 

still aims to avoid the trivial solution where all the scaling parameters ai are infinitely 

large. Another trivial solution that minimizes the objective function in (78) is when 

one of ai is zero. In order to keep the derivation simple, we do not introduce another 

regulation term. We simply assume that ai is not null. Later in this section, we will 

discuss how to handle this case when it happens. 

In FLeCK, instead of treating K as a constant, we propose to determine the 

optimal K by simultaneously minimizing the intra-cluster dissimilarity and maxi­

mizing the inter-cluster dissimilarity. Thus, in addition to minimizing the objective 

function in (78), we maximize 
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C N N )) C K 
Jinter = L L L a;k ( 1 - exp ( - ;: + L ai 

,=1 )=1 k=1 ,=1 
(79) 

The term a;k in (79) refers to the likelihood that two points Xj and Xk do not belong 

to the same cluster i. It can be defined using the fuzzy memberships of the two points 

as 

(80) 

Similar to the second term in (78), the second term in (79) is a regularization 

term to avoid the trivial solution where all the scaling parameters ai are infinitely 

large. 

The objective of FLeCK is to learn the C clusters, the scaling parameters ai 

of each cluster, and the membership values uij , of each sample Xj in each cluster i 

that optimize (78) and (79). In order to optimize these functions with respect to 

ai, we assume that ai's are independent from each other and reduce the optimization 

problem to C independent problems. That is, we convert the set of objective functions 

in (78) and in (79) to the following C simpler set of functions 

N N 

mm J;ntra = L Lf3jk (1- exp (_ ;k)) _ K, j=1 k=1 ,a, (81) 

and 

N N 

max J;nter = L L a;k (1- exp (_ ;k)) + K j=1 k=1 ,~ 
(82) 

for i = 1, ... , C. In (81), f3]k is the likelihood that two points Xj and Xk belong to the 

same cluster i and is defined as in (57). 

To obtain an update equation for the scaling parameters ai, we first set 
8Jintra N N . rjk (rjk) K 
-'-.- = - LLf3jk2:eXp --. + 2 = 0 

8a, j=1 k=1 ai a, ai 
(83) 

and solve for K. We obtain 
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(84) 

Substituting (84) back in (82) gives 

l inter ~~ i (1 (rjk)) 1 ~~(3i ( rjk ) 
i = ~ ~ (J;jk - exp --;;; + ai ~ ~ jkrjkeXp --;;; 

)=1 k=1 )=1 k=1 

(85) 

Taking the derivative of (85) with respect to ai, we obtain 

(86) 

In the LSL approach (refer to III-B), we used the Heat kernel approximation 

(Eq. 74) in order to derive the update equation for ai. This approximation requires 

the specification of a neighborhood parameter. Moreover, as we are optimizing both 

the intra-cluster and inter-cluster distances, the update equation is more complex to 

drive. Instead, to keep the algorithm simple, we use a different approximation. We 

assume that the values of ai do not change significantly from one iteration (t - 1) to 

the next one (t), and set (86) to zero, we obtain 

(t) _ Qi 
a· --. 

t Q2 (87) 

where 

(88) 
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and 

(89) 

As mentioned earlier, in theory, a trivial solution that optimizes the objective 

functions in (78) and in (79) is to have one of (J~s equal to zero. We notice from 

equation (87) that this happens when Q\ is equal to zero or when Q~ tends toward 

infinity. The first situation happens when a cluster has at most one point (i.e. all 

f3jk are zero). If this occurs at any given iteration, we simply discard the cluster and 

update the number of clusters. The second situation occurs when rjk approaches 

infinity. This scenario is not possible as discussed in subsection III-B-1 for the LSL 

algorithm. 

Optimization of (78) and (79) with respect to Uij is not trivial and does not lead 

to a closed form expression. To keep the computation simple, we optimize only (78) 

with respect to uij , use the relational dual of the fuzzy C-means algorithm formulated 

by Hathaway et al. [85], and obtain the same update equation as in (70). 

The resulting FLeCK approach is outlined in algorithm 12. 

2 Interpretation of the learned scaling parameters 

The expression of the scaling parameter defined by equation (87) is different 

from the one learned by the LSL algorithm (Eq. (76)). It depends on both the inter­

cluster and the intra-cluster distances. One possible interpretation of this expression 

is that (Ji is related to the rate of the dissimilarity change. In fact, according to Fick's 

Second Law of Diffusion [28], the time rate of concentration change is related to the 

second derivative of the concentration gradient through the diffusion coefficient ,,(, i.e, 

(90) 

where Cd is the concentration at a distance d at the time t. In our case, 
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i ( r jk
) Cd = Dk = 1- exp --

J ai 
(91) 

and 

(92) 

which gives 

(93) 

Setting the diffusion constant 'Y;k to * and summing over all the points belonging 

to the same cluster, we obtain an expression of the scaling parameter ai with respect 

to each cluster i (defined in (87)) that matches the definition of the time rate of the 

dissimilarity change within the same cluster. 

Algorithm 12 The FLeCK algorithm 

Fix number of clusters C and m E [100); 

Initialize the fuzzy partition matrix U; 

Initialize the scaling parameter ai to 1; 

REPEAT 

Compute the dissimilarity Di for all clusters using (58) ; 

Compute the membership vectors Vi using (61); 

Compute the distances using (60); 

Update the fuzzy membership using (70); 

Discard empty clusters and update the number of clusters; 

Update the scaling parameter ai using (87); 

UNTIL (fuzzy membership do not change) 
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TABLE 6 

Variations of (Ji with respect to the inter-cluster distance when 2 clusters have the 

same density and size. 

, , 0.5 

.0.5 

0.5 

.05 

·1 ·1 

To provide an empirical interpretation of the scaling parameters learned by 

FLeCK, we run few experiments using synthetically generated datasets. In the first 

experiment, we use a dataset that has two clusters with the same shape, density, and 

number of points. We only vary the inter-cluster distances and examine the scaling 

parameters learned by FLeCK. Table 6 shows the datasets and the learned (Ji for 

each cluster. As it can be seen, when all parameters are fixed, (Ji gets larger as the 

inter-cluster distance increases. In fact, (Ji is designed to allow high dissimilarity 

between each given point and other points in its cluster but low dissimilarity between 

points in different clusters. That is, when the inter-cluster distance is larger, FLeCK 

assigns higher values of (Ji to allow for larger intra-cluster dissimilarity. However, as 

the clusters are moved closer to each other, FLeCK assigns lower (Ji to avoid small 

inter-cluster dissimilarity. 

In the second experiment, we use a similar dataset, shown in Figure 10, that has 

3 clusters with different relative arrangement. Clusters 1 and 3 are close to each other 

but far from cluster 2. Consequently, FLeCK learns two similar scaling parameter 

for clusters 1 and 3 ((Jl = 2.5 and (J3 = 2.6) and a larger parameter ((J2 = 3.5) for 

cluster 2. In fact, (Jl should not be too large so that points from cluster 3 cannot have 

high degrees of dissimilarity. A similar analysis applies to cluster 3. Cluster 2, on the 
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other hand, is far away from the other clusters. Thus, a2 can be larger (to increase 

the within cluster dissimilarity) without the risk of including points from the other 

clusters. 

3.5 

2.5 

1.5 

Figure 10. Three clusters with the same density and size, but different intra-cluster 

distances. 

TABLE 7 

Variations of ai for different cluster sizes and densities 

1.5 1.5 
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1 . 1' Xk 

0.5 
III 1· :·~~· 2 - 0.5 . ~ 2 0.5 «) ~ ~ ... ~;.;".":', 
III 

~ ~. 
• • 4 .. ' 

to 0 0 0 4:,/~:~:.:'. :: 
~ c -0.5 'If • ·05 ... ~ J<~;.' 

: • 'I • 
:. ..,~. c 

-0.5 -1 -1 

-1 0 2 
-1.5 ·1.5 

-1 0 2 -2 0 2 4 

III ... 
C)a> 

lfffiD ~ ~ c:::i) 
:':E 
to to 

1.4 1.4 3-9 1 5.7 23 (.) ... 
Cl)to 

Q. 

In the third experiment, we vary the cluster densities and sizes and examine 

the values of ai learned by FLeCK The different datasets and the learned ai are 

reported in Table 7. As it can be seen, for the second dataset, the relatively larger 

cluster gets assigned a larger a_ Similar intuitive results would be obtained if ai's 
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were learned using the variance of each cluster. However, these variances would be 

the same regardless of the intra-cluster distance. FLeCK, on the other hand, would 

assign different values as the intra-cluster distance varies. For the third dataset in 

this experiment, FLeCK assigns smaller a to the cluster with larger density. 

We should emphasize that, in addition to identifying more meaningful clusters, 

the learned ai's can be used in subsequent steps to provide better cluster assignment. 

For instance, for point Xk in the second dataset in Table 7, FLeCK would assign a 

higher membership in cluster 1 than cluster 2. This is not the case when the Euclidean 

distance is used since Xk is spatially closer to cluster 2. Using a covariance matrix 

induced distance, such as the GK algorithm [88], would provide results similar to those 

obtained by FLeCK. However, the latter approach is restricted to data represented 

by feature vectors. Similarly for Xk in the third dataset in Table 7, FLeCK would 

assign a higher membership in cluster 2 than cluster 1. This intuitive result may not 

be obtained with the Euclidean distance or even with a covariance matrix induced 

distance. 

3 Performance illustration 

To illustrate the ability of FLeCK to learn appropriate local scaling parameters 

and cluster the data simultaneously, we use it to categorize synthetic 2D datasets. 

We use the same datasets as those used to illustrate the LSL algorithm (Figure 3), 

and the same parameters and initialization. 

Table 8 displays the partition and the scaling parameters learned by FLeCK 

on dataset 1. The learned parameters reflect the relative position of each cluster 

with respect to the others. For this data, cluster 1 and cluster 2 are close to each 

other, and quite distant from cluster 3. Consequently, FLeCK learns a large scaling 

parameter (a3 = 106.6) for cluster 3. This large a3 allows points that are spatially 

dispersed to be grouped into one cluster without including points from the other 

clusters. On the other hand, FLeCK learns smaller ai's for the two small and dense 

clusters (al = 24.94 and a2 = 30.17). These small al and a2 prevent points that are 

not spatially very close from being assigned to these clusters. The fuzzy memberships 
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of all points in the three clusters are displayed in Figure 11. As it can be seen, 

most of the points belong to one of the clusters with a membership larger than 0.8. 

This indicates that the mapping using the learned O"~s makes the three clusters well 

separated in the feature space. 

TABLE 8 

Partition and scaling parameters learned by FLeCK for dataset 1 displayed in Figure 

3 (a) 

Learned 
Partition 

O"i's 

6 <41 Cluster1 

• Cluster2 

5 , ~;~~X~~ • Cluster3 
'" fi·· .. . . .... 

~'S. • -I""· • • t.!. ~ 4 ~AC: t: ~ ... ,/.lI'a · 0"1 = 24.94 . _ .... ~ ... 
3 0"2=30.17 

0"3 = 106.6 
2 

1 
0 3 4 

- -
Figure 11. Fuzzy memberships learned by FLeCK on dataset 1 (Figure 3 (a)) with 

respect to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 
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TABLE 9 

Partition and scaling parameters learned by FLeCK for dataset 2 displayed in Figure 

3 (b) 

Partition 

6 .. Cluster1 
• Cluster2 
• Cluster3 

Learned 

0"1 = 0.0007 

0"2 = 12.21 

0"3 = 11.3 

Figure 12. Fuzzy memberships learned by FLeCK on dataset 2 (Figure 3 (b)) with 

respect to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 

The second dataset, shown in Figure 3 (b) , contains two clusters that have 

the same shape, density, and size, and a third cluster that is larger. The partition 

and the scaling parameters are displayed in Table 9. As it can be seen, FLeCK 

was able to partition this data correctly. This was possible due to the learned scaling 

parameters for each cluster. For instance, cluster 1 has the smallest scaling parameter 

(0"1 = 0.0007) . This reflects the fact that points within this cluster are dispersed and 
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some of them are spatially closer to cluster 2 and cluster 3 than other points within 

this cluster. This small 0"1 ensures that cluster 1 does not include points from the 

other clusters. FLeCK learns relatively larger scaling parameters for cluster 2 and 

cluster 3 (0"2 = 12.21 and 0"3 = 11.3) . In fact, these two parameters can be relatively 

larger (to maximize the intra-cluster dissimilarity) without including points from the 

other cluster. We can also notice that FLeCK performs better than L8L on this 

dataset (refer to Table 9 and Table 2), and handles the boundary points better. We 

also notice from Figure 12 that the points lying at the boundaries separating the 

three clusters have fuzzy memberships in the 0.5 range, thus reflecting the geometric 

characteristic of this dataset. 

TABLE 10 

Partition and scaling parameters learned by FLeCK for dataset 3 displayed in Figure 

3 (c) 

Partition Learned O"/ s I 
15 .. Cluster1 

• Cluster2 

10 •••• • Cluster3 

•• •• 
5 . ........ .. ... ... . • 0"1 = 109.92 . ... ... ...... • • ~ . ... ... . . .. . . . " . . 

0"2 = 18.29 . 
-G. 

.... . 10 · 0 · ... ~ . · . .. . . . .. . . •• . . 0"3 = 2.44 . · · . . . . . . . -5 . · . • . • . · 
·10 

0 2 4 6 8 10 12 

Table 10 reports a similar analysis conducted on dataset 3. As it can be seen, 

the sparse cluster (cluster 1) has the largest scaling parameter (0"1 = 109.92). This 

large 0"1 allows points that are spatially dispersed to be grouped into one cluster. On 

the other hand, the small and dense cluster (cluster 3) has the small scaling parameter 

(0"3 = 2.44) . This smallest 0"2 prevents points that are not spatially very close from 

being assigned to this cluster. As in the previous example, FLeCK has outperformed 
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LSL especially at the cluster's boundaries (refer to Table 3). This good clustering 

result is also reflected by the fuzzy memberships of all points in the three clusters as 

shown in Figure 13. 

TABLE 11 

Partition and scaling parameters learned by FLeCK for dataset 4 displayed in Figure 

3 (d) 

Learned 
Partition 

ai's 

0.2 

I 
... Cluster1 

• Cluster2 

........ ............. ....... 
0.15 • * .. 

... ......... \. 
: ...... \ . . . 

* * . 
d~t'~~ .. 't al = 2.12 0.1 

.. . 
~:' c* . . ~J a2 = 2.10 r •• J* 0.05 ..... 

* * .. ,,* .. . ** . .. • • 
0 

........... ....... • •••••• 
0 0.2 0.4 0.6 0.8 1 

The clustering results returned by FLeCK on dataset 4 (Table 11) are not 

meaningful. In fact , as dataset 4 is constituted of two co-centric ovals, it does not 

correspond to the standard way of perceiving the intra-cluster and the inter-cluster 

dissimilarities. That is why the scale parameters learned by FLeCK fail to deal with 

the geometric characteristics of this dataset. 

Table 12 reports the results obtained by partitioning dataset 5 using FLeCK. 

We should recall that LSL was not able to partition this data correctly (refer to Table 

5). FLeCK, on the other hand, was able to partition this data correctly because it 

takes into account both the intra cluster and the inter cluster dissimilarities. The 

scaling parameters learned by FLeCK reflect the geometric characteristics of this 

dataset. As it can be seen, since this dataset contains two clusters that have the 

same shape, density, and size, and a third cluster that is denser and much smaller, 
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FLeCK learns a small scaling parameter for cluster 1 (al = 3.33) and the same scaling 

parameter for clusters 2 and 3 (a2 = 22.36 and a3 = 22.36) . 

15 15 15 

10 ... 10 ... 10 ... 

5 if . .. ,. ,. 5 if . .. ,. ,. 5 if ... ,. ,. ........ ',. .... .... ', . . ....... ', . , -·1· · , -·1· · , -·1· · .. ... .', .. ... .', .. ... .', 
-5 ~ Ie ••••••• : -5 ~, •• •••••• : -Ii ., I •• •••••• : 

·10 ·10 ·10 
0 

5 (a) 10 15 0 10 15 0 10 15 
(b) (c) 

Figure 13. Fuzzy memberships learned by FLeCK on dataset 3 (Figure 3 (c)) with 

respect to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 

TABLE 12 

Partition and scaling parameters learned by FLeCK for dataset 5 displayed in Figure 

3 (a) 

Learned 
Partition 

10 -<41 Cluster1 • • • • • • Cluster2 
• • • • • • Cluster3 8 
• • • • • 
• • • • • 

6 al = 3.33 • • • • • • • • • 
4 • • • • • a2 = 22.36 

• • • • • a3 = 22.36 
2 • • • • • 

• • • • • 
0 

0 2 4 6 8 10 
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10 • ••• • 
• •••• 
• •••• 
• •••• 

• •• . I · • · · .. .... . 
• •••• 

2 ••••• 

• ••• • 
°0~----!5------:10 

(a) 

10 • • • • • 
• ••• • 
• ••• • 
• • •• • 

· .• . I • • • • 
• ••• • 
• • • • • 
• •••• 
• •••• 

°OL---~5--~10 

(b) 

10 • •••• 
• • • • • 
• •••• 
• •••• 

• • • . I · · • • .. . .. .. 
• • • • • 
• ••• • 
• ••• • 

5 
(c) 

10 

Figure 14. Fuzzy memberships learned by FLeCK on dataset 5 (Figure 3 (e)) with 

respect to (a) cluster 1, (b) cluster 2, and (c) cluster 3. 

In this chapter, we presented two approaches that learn local Gaussian kernel 

for each cluster and cluster the data simultaneously. We showed that both approaches 

give satisfactory clustering results on 2D datasets. Moreover, we showed that the 

learned scaling parameters and the fuzzy memberships returned by L8L and FLeCK 

are meaningful and reflect the geometric characteristic of the data. 

The first algorithm, L8L, minimizes the intra-cluster distances only, while the 

second algorithm, FLeCK, optimizes both the intra-cluster and the inter-cluster dis­

similarities. Thus, the scaling parameters leaned by FLeCK contain more information 

than the one learned by L8L. In fact, these parameters are not only influenced by the 

intra-cluster distances, but also by the relative cluster positions, densities and sizes. 

This allows a better description of the data and consequently, a better partition of 

the data. 

To derive the update equation for ai, L8L uses the Heat flow approximation. 

While this assumption allowed L8L to deal with clusters with irregular shapes (e.g. 

co-centric ovals in Table 4) , it requires the specification of a parameter K. This 

parameter which is a function of the regulation term K 1 and the local geometric 

characteristics of the data, can affect the clustering results . 

To overcome the need to specify K , FLeCK was formulated to optimize both 

the intra-cluster and inter-cluster distances. Also, instead of using the heat flow 

approximation while deriving the update equations, it uses a different approximation 

that assumes that the cluster's scaling parameters do not vary significantly from one 
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iteration to another. While this assumption has made the derivation simpler and 

the a!gorithm parameter free, it also made FLeCK unable to deal with clusters of 

arbitrary shapes where the notion of intra-cluster and inter-cluster distances are not 

well defined. 

The L8L and FLeCK objective functions have several parameters and their 

optimization is prone to several local minima and is sensitive to initialization. This 

problem is more acute for high dimensional dataset. Thus, if a small amount of prior 

knowledge is available, it can be used to guide the clustering algorithms to avoid most 

local minima and obtain a better partition. In the next chapter, we present semi­

supervised versions of these algorithms that use a small amount of side information. 
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CHAPTER IV 

SEMI-SUPERVISED RELATIONAL CLUSTERING WITH 

LOCAL SCALE PARAMETERS 

Clustering is a difficult combinatorial problem that is susceptible to local min­

ima, especially for high dimensional real world data. Incorporating prior knowledge in 

the unsupervised learning task, in order to guide the clustering process has attracted 

considerable interest among researchers in the data mining and machine learning com­

munities. This prior knowledge is usually available in the form of hints, constraints, 

or labels. Supervision in the form of constraints is more practical than providing class 

labels. This is because in many real world applications, the true class labels may not 

be known, and it is much easier to specify whether pairs of points should belong to 

the same or to different clusters. In fact, pairwise constraints occur naturally in many 

domains. 

In this chapter, we present two semi-supervised clustering approaches: the 

Semi-Supervised clustering and Local Scale Learning algorithm (SS-LSL), and the 

Semi-Supervised Fuzzy clustering with LEarnable Cluster dependent kernels (SS­

FLeCK). As is common for most semi-supervised clustering algorithms, we assume 

that for both algorithms we have pairwise "Should-Link" constraints (pairs of points 

that should belong to the same cluster) and "Should not-Link" constraints (pairs of 

points that should belong to different clusters) provided with the input. 

We should note here that, in standard semi-supervised clustering [9, 47], the 

above constraints are referred to as "Must-Link" and "Cannot-Link" because they are 

crisp, treated equally important, and enforced during the optimization. In our formu­

lation, the pairwise constraints used in SS-LSL and SS-FLeCK are soft reflecting the 

uncertainty associated with a priori knowledge about the pair of points that should or 
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should not belong to the same cluster. Thus, they can be viewed as recommendations. 

Let {Xl,' . " XN} be a set of N data points and let R = [rjk] be a relational 

matrix where rjk represent the distance between Xj and Xk. We assume that some 

partial information is available and let Sl be the indicator matrix for the set of 

"Should-Link" pairs of constraints such that Sl (j, k) = 1 means that Xj and Xk 

should be assigned to the same cluster and 0 otherwise. Similarly, let SNl be the 

indicator matrix for the set of "Should not-Link" pairs such that SNl (j, k) = 1 

means that Xj and Xk should not be assigned to the same cluster and 0 otherwise. 

A Semi-Supervised relational clustering with local scaling parameter 

1 The Semi-Supervised clustering and Local Scale Learning algorithm 

The Semi-Supervised Local Scaling Learning (SS-LSL) minimizes the following 

multi-term objective function: 

subject to 

C N N 

J ~ f; £; uijurk (1 -exp ( _ r;; ) ) 
C N N 

W L L L uijurkSl (j, k) 
i=l j=l k=l 

C N N 

+ wLLLuijurkSNl(j,k) 
i=l j=l k=l 

C 

'"' K1 
~ a2 
i=l 2 

C 

o ::; Uij ::; 1, and L Uij = 1, for j E {I, ... N} . 
i=l 

(94) 

(95) 

It is an extension of the LSL algorithm that incorporates partial supervision in the 

same way as in [6]. As in the LSL objective function, the first term in (94) seeks 

compact clusters, and the last term, 2::;=1 ~, is a regularization term to avoid the 
t 

trivial solution where all ai are infinitely large. 
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The second term in (94), is a reward term for satisfying "Should-Link" con­

straints. It is constructed in such a way that the reward between nearby "Should­

Link" points is higher than that between distant ones. In fact, it is weighted by 

the term (u0u~) which measures the extent to which Xj and Xk belong to the same 

cluster i. I'f this term is high and (Xi,Xj) are supposed to be "Should-Link" then the 

learned kernel for this cluster is appropriate and the reward should be larger to al­

low the adjustment. A similar analysis could be conducted with respect to the third 

term, which is a penalty for violating "Should not-Link" constraints. It is constructed 

in such a way that the penalty between nearby "Should not-Link" points is higher 

than distant ones. It is also weighted by the term (uIjur,;). If this term is large and 

(Xi,Xj) are supposed to be "Should not-Link" then the kernel for this cluster is not 

appropriate and the penalty should be larger to allow the adjustment. 

In (94), the weight W E (0,1) provides a way of specifying the relative impor­

tance of the "Should-Link" and "Should not-Link" constraints compared to the sum 

of inter-cluster distances. In our approach, we fix it as the ratio of the number of 

constraints to the total number of points. 

In order to optimize (94) with respect to (Ji, we assume that (J/s are indepen­

dent from each other and reduce the optimization problem to C independent prob­

lems. That is, we convert the objective function in (94) to the following C simpler 

set of functions 

Ji t t u0u~ (1 -exp ( _ r;: ) ) 
J=1 k=1 

N N 

W L L u0u~Sl (j, k) 
j=1 k=1 

N N 

+ W L L u0u~SNl (j, k) 
j=1 k=1 

K 
(J2 , 

(96) 

for i = 1 ... C. As the reward and penalty terms do not depend on the scaling pa­

rameters (Ji explicitly, setting the derivative of Ji with respect to (Ji gives the same 
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update equation for ai as the LSL algorithm, i.e, equation (76). 

In order to optimize (98) with respect to uij ' we rewrite the objective function 

in (94) as 

J tt,~UijU:-:; (1- exp (-::;) -wSI(j,k) +wSNI (j,k)) 

or simply as 

where 

C K 

La2 
i=l z 

J 

D~k = D~k - wSl (j, k) + wSNl (j, k) 

(97) 

(98) 

(99) 

In (99), Djk is the distance between Xj and Xk using the scaling parameter of cluster 

i. This is the same distance used within LSL algorithm (refer to Eq. (58)). D~k can 

be regarded as the "effective distance" that takes into account the satisfaction and 

violation of the constraints. For instance, if the pair of points (Xi, Xj) are supposed to 

be "Should-Link" then 

{

Sl(j,k) =1 

SNl (j,k) = 0 

In this case, the effective distance Djk reduces to 

(100) 

In other words the actual distance is reduced to help in keeping these points within 

the same cluster and thus, maintaining the satisfaction of the constraints. 

Similarly, if a pair of points (Xi, Xj) are supposed to be "Should not-Link" then 
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{

Sl(j,k) =0 

SNl (j,k) = 1 

Thus, the effective distance D;k defined by (99) becomes 

(101) 

That is, the actual distance is increased to help in preventing these points from being 

assigned to the same cluster. 

Following the same steps used to derive the update equations for Uij in L8L, 

it can be shown that optimization of J w.r.t Uij yields 
1 

(102) 

where 
t A i 

d2 _ (DA i .) _ viD Vi 
ik - V z k 2' (103) 

and 
( m m )t uil ,· .. , UiN 

Vi= N 
Lj=l uij 

(104) 

We should note that it is possible for the effective distances D;k to be negative 

depending on the constant w. To overcome this, we use the fJ-spread transform [80] 

to convert the non-Euclidean distance f> into Euclidean distance f>lh as follows 

(105) 

In (105), fJ1 is a suitably chosen scalar, I E RNXN is the identity matrix and M E 

RNXN has all its entries equal to one. The lower bound by which its necessary to 

shift fJ1 to make the distances positives is derived in [80] to be 

(106) 

where ek denotes the kth column of the identity matrix. The 88-L8L algorithm is 

summarized in algorithm 13. 
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Algorithm 13 The SS-LSL algorithm 

Fix number of clusters C and m E]loo); 

Initialize f31 = 0; 

Initialize the fuzzy partition matrix U; 

Initialize the scaling parameter ai to 1; 

Create Sl and SNl pairwise constraints; 

REPEAT 

Compute the dissimilarity D for all clusters using (58) ; 

Compute the dissimilarity :6i for all clusters using (99) ; 

Compute :6,61 using (105); 

Compute the membership vectors Vi using (104); 

Compute the distances using (103); 

IF dTk < 0 for any i, k 

Computel:.f31 using (106); 

dTk = dTk + (l:.f31/2) * Ilvi - ekll; 
f31 = f31-1-l:.f3; 

END IF 

Update the fuzzy membership using (102); 

Update the scaling parameter ai using (76); 

UNTIL (fuzzy membership do not change) 

Partial supervision information can also come from users feedback. In con­

trast to relevance feedback which asks users to label retrieved information, providing 

pairwise constraints does not necessarily require users to have prior knowledge or ex­

perience with the dataset. Typically, the system identifies the most ambiguous pairs 
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of samples and presents them to the user. The user then provides the constraint 

information as a feedback. In order to maximize the utility of the limited supervised 

data available in a semi-supervised setting, pairwise constraints should be, if possi­

ble, actively selected as maximally informative ones rather than chosen at random. 

This would imply that fewer constraints will be required to significantly improve the 

clustering accuracy. To this end, pairwise constraints are selected among points lying 

at the clusters boundaries. 

2 Performance illustration 

To illustrate the ability of SS-LSL to learn appropriate local scaling parameters 

and cluster the data simultaneously, we use it to categorize synthetic 2D datasets. We 

use the three datasets where the unsupervised LSL did not perform well. These are 

dataset 2 (Figure 3(b)), dataset 3 (Figure 3(c)), and dataset 5 (Figure 3(b)). dataset 

1 and dataset 2 are not considered because LSL have partitioned them correctly, and, 

thus, no further enhancement is possible. We use the same experiment setting as in 

section III-B. 

In order to construct the set of "Should-Link" and "Should-Not Link" con­

straints, we randomly select few points that are at the boundary of each cluster. 

For each dataset, we select 2% of the total number of points to construct the set of 

"Should-Link" and "Should-Not Link". Pairs of selected points that belong to the same 

cluster (using the ground truth) constitute the "Should Link" set, Sl. Similarly, pairs 

of points belonging to different clusters constitute the "Should not-Link" set, SN1. In 

addition, we use the transitive closure [481 to obtain more pairwise constraints from 

the available ones. 

Table 14 reports the results of dataset 2, where the three clusters have the 

same density. First, we notice that the three learned scaling parameters are very 

close to each other. Second, we notice that the points at the boundaries of cluster 

2 and cluster 3 are better categorized than for the LSL approach (refer to Table 

2). Moreover, in terms of the learned fuzzy memberships, we can see from Figure 

(16), that cluster 2 and cluster 3 are better characterized, compared with the LSL 

67 



results (Figure 5). Thus, the pairwise constraints have helped the clustering process 

to obtain a better partition. 

TABLE 13 

Partition and scaling parameters learned by 88-L8L on dataset 3 displayed in Figure 

3 (c) 

Learned 
Partition 

15 
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Figure 15. Fuzzy memberships learned by 88-L8L on dataset 3 (Figure 3 (a)) with 

respect to cluster 1 (a) , cluster 2 (b), and cluster 3 (c). 

Table 15 displays the results of applying 88-L8L on dataset 3. Compared 

to the L8L results (refer to Table 3), this is a better partition. In fact , the points 

lying at the boundaries separating the different clusters are better categorized. This 

is also reflected in the learned fuzzy memberships as displayed in Figure 15. This 
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enhancement is due to the few constraints that guided the algorithm in learning 

better kernel parameters. 

TABLE 14 

Partition and scaling parameters learned by 88-L8L on dataset 2 displayed in Figure 

3 (b) 

Learned 
Partition 
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Figure 16. Fuzzy memberships learned by 88-L8L on dataset 2 (Figure 3 (a)) with 

respect to cluster 1 (a) , cluster 2 (b) , and cluster 3 (c). 
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TABLE 15 

Partition and scaling parameters learned by 88-L8L on dataset 1 displayed in Figure 

3 (a) 

Learned 
Partition 

10 .. Cluster1 
• • • • • • Cluster2 
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Figure 17. Fuzzy memberships learned by 88-L8L on dataset 5 (Figure 3 (a)) with 

respect to cluster 1 (a), cluster 2 (b), and cluster 3 (c). 

As reported in Table 3, dataset 5 was a hard example for L8L that was not 

partitioned correctly. Using 2% of the data for partial supervision, the 88-L8L was 

able to provide satisfactory clustering results on this dataset as shown in Table 15. 

Moreover, the learned scaling parameters reflect the structure of the data as the sparse 

clusters (cluster 1 and cluster 3) have smaller scaling parameters than the densest 

one (cluster 2). 
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B Semi-Supervised relational clustering optimizing both the intra-cluster 

and inter-cluster distances 

1 The Semi-Supervised Fuzzy clustering with LEarnable Cluster depen­

dent kernels algorithm 

The Semi-supervised Fuzzy clustering with LEarnable Cluster dependent ker­

nels (SS-FLeCK) is an extension of the FLeCK algorithm described in section III-B­

e that incorporates partial supervision information. It attempts to satisfy a set of 

"Should-Link" and "Should-Not Link" constraints while minimizing the intra-cluster 

dissimilarity 

Jintra 
C N N 

~ f; £; ~;k ( 1 - exp ( - ;: ) ) 

C N N 

w LLL~;kSI (j,k) 
i=1 j=1 k=1 
C N N 

+ W L L L~;kSNI (j, k) 
i=1 j=1 k=1 

C K 
L~ 
i=1 t 

and maximizing the inter-cluster dissimilarity 

C NNe 

Jinter = L L L a~k (1 -exp (- r
jk

)) + L K. 
i=1 j=1 k=1 at i=1 at 

(107) 

(108) 

In (108), ~jk is the likelihood that two points Xj and Xk belong to the same cluster i 

as defined in (57), and a;k is the likelihood that two points Xj and Xk do not belong 

to the same cluster i as defined in equation (80). 

The first task of SS-FLeCK is based on minimizing a joint objective function 

with multiple terms. The first term in (107) seeks compact clusters as for the FLeCK 

approach. Similarly, the regularization term (L~1 ~) in (107) which avoids the 

trivial solution of infinitely large ai is kept the same as in (78). 
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The second and the third terms are the reward and penalty terms respectively. 

They are constructed in the same way as for SS-LSL. In particular, the second term 

in (107), is a reward term for satisfying "Should-Link" constraints. It is constructed 

in a such a way that the reward between nearby "Should-Link" points is higher than 

that between distant ones. It is weighted by the term f3]k which measures the extent 

to which Xj and Xk belong to the same cluster i. If this term is high and (Xi, Xj) are 

supposed to be "Should-Link" then the learned kernel for this cluster is appropriate 

and the reward should be larger to allow the adjustment. A similar analysis could be 

conducted with respect to the third term, which is a penalty for violating "Should not­

Link" constraints. It is constructed in such a way that the penalty between nearby 

"Should not-Link" points is higher than distant points one. It is also weighted by 

the term f3]k. If this term is large and (Xi,Xj) are supposed to be "Should not-Link" 

then the kernel for this cluster is not appropriate and the penalty should be larger to 

allow the adjustment. 

In (107), the weight W E (0,1) provides a way of specifying the relative impor­

tance of the "Should-Link" and "Should not-Link" constraints compared to the sum 

of inter-cluster distances. As for SS-LSL algorithm, we fix it as the ratio of the total 

number of constraints to the number of points. 

The second objective function Jinter in (108), is related to the inter-cluster 

dissimilarities. It is the same as its corresponding one for the FLeCK algorithm (see 

Eq. (79)). 

The proposed SS-FLeCK algorithm attempts to optimize (107) and (108) by 

learning the C clusters, the scaling parameter, ai, of each cluster, and the membership 

values, uij , of each sample Xj in each cluster i. 

In order to optimize (107) and (108) with respect to ai, we assume that ai's are 

independent from each others and reduce the optimization problem to C independent 

problems. That is, we convert the set of objective functions in (107) and (108) to the 

following C simpler set of functions 
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and 

J;ntra t t !3jk ( 1 - exp ( -;; ) ) 
)=1 k=1 

N N 

W L L !3jk Sl (j, k) 
j=1 k=1 
N N 

+ wLL!3jkSNl (j,k) 
j=1 k=1 

K 
(Ji 

J;nter = tta;k (1- exp (_ ;k)) + K 
j=1 k=1 ,(J, 

(109) 

(110) 

for i = 1, ... ,C. To obtain an update equation for the scaling parameters, we first 

set the derivative of J;ntra with respect to (Ji to zero and solve for K. Then, we 

substitute the expression of K back in (110). Assuming that the values of (Ji do not 

change significantly from one iteration (t - 1) to the next one (t) and setting the 

derivative of Jfnter to zero, we obtain 

where 

and 

Q\ t t. a)krjkeXp ( - ur;~!) ) 

+ tt.~JkrjkeXp (- urI:!)) 
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We notice that the expression of the scaling parameter defined by equation 

(111) is the the same as for FLeCK algorithm (Eq. 87). In fact, a/s are independent 

from the "Should-Link" and "Should not-Link" constraints terms. Thus, optimizing 

(107) and (108) with respect to ai, is the same as optimizing (78) and (79) with 

respect to ai. 

Optimization of (107) and (108) with respect to uij is not trivial and does not 

lead to a closed form expression. To keep the computation simple, we optimize only 

(107) with respect to uij . First, we rewrite the objective function in (107) as 

(114) 

or simply as 

Jintra (115) 

where 

bjk = 1- exp (- :;;) - wSl (j,k) +wSNl (j,k) (116) 

The "effective" distance, D;k' has the same expression and interpretation as the dis­

tance in SS-LSL (refer to subsection IV-A-l). As the term L~l ~ does not depend 
• 

on uij , optimizing (115) with respect to uij is the same as optimizing (98) with respect 

to uij . Thus, as for SS-FLeCK, we substitute D by D in (103), and obtain the same 

uij update equation as in (102). 

The resulting SS-FLeCK algorithm is summarized in algorithm 14. 
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Algorithm 14 The 88-FLeCK algorithm 

Fix number of clusters C and mE [1(0); 

Initialize /11 = 0; 

Initialize the fuzzy partition matrix U; 

Initialize the scaling parameter (Ji to 1; 

Create Sl and SNl pairwise constraints; 

REPEAT 

Compute the dissimilarity D for all clusters using (58) ; 

Compute the dissimilarity ni for all clusters using (116) ; 

Compute D,61 using (105); 

Compute the membership vectors Vi using (104); 

Compute the distances using (103); 

IF dTk < 0 for any i, k 

Compute 1::./11 using (106); 

distTk = distTk + (1::./11/2) * Ilvi - ekll; 

/11 = /11 ~1::./1; 

END IF 

Update the fuzzy membership using (102); 

Update the scaling parameter (Ji using (111); 

UNTIL (fuzzy membership do not change) 

2 Performance illustration 

Tb illustrate the ability of 88-FLeCK to use partial supervision information 

to improve the results, we use it to categorize the two synthetic datasets where the 

unsupervised FLeCK did not perform well. The two datasets are displayed in Figure 
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3 (b) and Figure 3 (c). We use the same experimental setting as outlined in subsection 

IV-A-2. 

In order to construct the set of "Should-Link" and "Should-Not Link" con­

straints, we randomly select few points that are at the boundaries of each cluster. 

For each dataset, we select 2% of the total number of points to construct the set 

of "Should-Link" and "Should-Not Link". Pairs of selected points that belong to the 

same cluster (using the ground truth) constitute "Should Link" set, Sl. Similarly, 

pairs of points belonging to different clusters constitute "Should not-Link" set, SNl. 

In addition, we use the transitive closure [48] to obtain more pairwise constraints 

from the available ones. 

TABLE 16 

Partition and scaling parameters learned by SS-FLeCK on dataset 2 displayed in 

Figure 3 (b) 

Partition 
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Figure 18. Fuzzy memberships learned by SS-FLeCK on dataset 2 (Figure 3 (a)) with 

respect to cluster 1 (a) , cluster 2 (b), and cluster 3 (c). 

Table 16 reports the results of dataset 2, where the three clusters have the same 

density. We notice that the points at the boundaries of the three clusters are better 

categorized than for the FLeCK approach (refer to Table 9) . Moreover, in terms 

of the learned fuzzy memberships, we can see from Figure 18, that three clusters 

are better characterized, compared with the FLeCK results (Figure 12). Thus, the 

pairwise constraints have helped the clustering process to obtain a better partition. 

TABLE 17 

Partition and scaling parameters learned by SS-FLeCK on dataset 4 displayed m 

Figure 3 (d) 
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Figure 19. Fuzzy memberships learned by SS-FLeCK on dataset 4 (Figure 3 (a)) with 

respect to cluster 1 (a), and cluster 2 (b). 

As reported in Table 11 , dataset 4 was a hard example for FLeCK that was 

not partitioned correctly. Using 2% of the data for partial supervision, the SS-FLeCK 

was able to provide a satisfactory clustering results on this dataset as shown in Table 

17. Moreover, the learned scaling parameters reflect the structure of the data as the 

sparse cluster (cluster 2) has the largest scaling parameter (U2 = 24.02). This large 

U2 allows points that are spatially dispersed to be grouped into one cluster. On the 

other hand, the small and dense cluster (cluster 1) has the smallest scaling parameter 

(Ul = 4.04). This is also reflected in the learned fuzzy memberships as displayed in 

Figure 19. 

In this chapter, we presented two semi-supervised algorithms that learn mul­

tiple kernels and the fuzzy partitioning of the data simultaneously, guided by a small 

amount of pairwise constraints. We have shown that the incorporation of these con­

straints have guided the clustering process to better learn the scaling parameters and 

the fuzzy memberships that reflect the structure of the data. Consequently, a better 

partition of the data can be obtained. These pairwise constraints can be even more 

useful on real high dimensional datasets where the algorithm is more susceptible to 

local minima. Results on real and high-dimensional datasets will be reported in the 

next chapter and compared to other similar algorithms. 
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CHAPTER V 

EXPERIMENTS 

The objective of the proposed algorithms (LSL, FLeCK, SS-FLeCK, and SS­

LSL) is to partition the data and learn a kernel resolution for each cluster. In this 

chapter, we assess the performance of the proposed approaches and compare their 

performances to different clustering algorithms. First, we compare these algorithms 

using the same five datasets used to illustrate LSL and FLeCK (refer to Figure 3). 

Then, in order to illustrate the ability of the proposed algorithms to learn local kernels 

and to cluster dissimilarity measure derived from real and high dimensional data, we 

use it to categorize a subset of the COREL image database and the handwritten 

digits database. A description of these datasets and the performance measures used 

to compare the different algorithms is provided in the following subsections. 

A Datasets and performance measures 

1 Image database 

We use a subset of 450 color images from the COREL image collection. This 

subset includes five categories. Table 18 displays a sample image from each category 

along with the number of images for each category. The categories and the images 

within each one are selected to have different sizes, intra-group, and inter-group vari­

ations. Table 19 displays the sum of the intra - group and inter - group distances. 

For instance, some categories such as "Butterfly" and "Antelope" have the smallest 

sum of intra - group distances while category "Garden", and "Bus" have the largest 

sum of intra - group distances. Similarly, category "Butterfly" has small sum of inter­

category distances, while other categories such as "Beaches", "Garden", and "Buses" 

have large sum of inter-category distances. 
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TABLE 18 

Sample image from each category of the COREL image database and the number of 

images for each category. 

TABLE 19 

Variations of the sum of intra-group and inter-group distances across the five image 

categories of the COREL image database. 

Antelope Beach Butterfly Garden Bus 

Antelope 6558 10895 5853 9282 11059 

Beach 10895 7829 5725 10032 11635 

Butterfly 5853 5725 1841 6312 5969 

Garden 9282 10032 6312 7483 11404 

Bus 11059 11635 5969 11404 7358 

To compute the distance and compare the content of the images, we use two 

standard MPEG-7 descriptors [531 . The first one is a 32 bin Scalable Color Descrip­

tor (SCD). This descriptor extracts a quantized HSV color histogram from an RGB 

image. The probability values of each bin are calculated and indexed. The resulting 

histogram is then transformed, via a discrete Haar transformation, and non uniformly 

quantized and offset. The resulting array of values is then sorted and used as a feature 

descriptor. 

The second MPEG-7 feature is the edge histogram descriptor (EHD) . The EHD rep­

resents the frequency and directionality of the edges within the image. First, simple 

edge detector operators are used to identify edges and group them into five categories: 
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vertical, horizontal, 45-degree diagonal, 135-degree diagonal, and non-directional edge 

types. Then, local, global, and semi-local edge histograms are generated. The EHD 

feature is represented by a 150-dim vector. 

2 Handwritten digits 

The second real data that we use is a subset of 1166 handwritten digits from 

the Pen-Based Recognition of handwritten digits collection [761 available at the UCI 

Machine Learning repository. The categories within this data have different sizes, 

intra-group, and inter-group variations. Table 20 displays the number of samples 

form each category, and Table 21 displays the sum of the intra - group and inter -

group distances. 

The handwritten samples were collected using a pressure sensitive tablet that 

sends the x and y coordinates of the pen at fixed time intervals. The raw data is 

processed so that each digit is represented by 8 (x,y) coordinates resulting in a 16-D 

feature vector. 

TABLE 20 

Number of samples form each category of the handwritten digits 

Category 0 1 2 3 4 5 6 7 8 9 

No. of 128 131 107 122 108 119 114 117 109 111 

samples 

3 Performance measures 

To assess the performance of the proposed approaches and compare their per­

formances to different clustering algorithms, we assume that the ground truth is 

known and we compute the partition accuracy. First, each cluster is assigned a label 

based on the majority of the true labels of its elements. Then, the correct classification 

rate of each cluster is computed. The overall accuracy of the partition is computed 

as the average of the individual clusters rates weighted by the clusters cardinality. 
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TABLE 21 

Variations of the sum of intra-group and inter-group distances across the handwritten 

digits categories. 

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9' 

'0' 6046 12421 10352 10626 7714 9969 8813 10082 7964 9705 

'1' 12421 7018 5879 7604 7868 9544 9351 7046 9534 7895 

'2' 10352 5879 2622 7129 6613 7429 6928 4860 6991 7600 

'3' 10626 7604 7129 3040 6983 8272 7552 6990 9114 5436 

'4' 7714 7868 6613 6983 3902 7670 6377 7145 7389 5739 

'5' 9969 9544 7429 8272 7670 7381 7555 7939 7578 8051 

'6' 8813 9351 6928 7552 6377 7555 3165 8023 7117 6990 

'7' 10082 7046 4860 6990 7145 7939 8023 4825 7233 7870 

'8' 7964 9534 6991 9114 7389 7578 7117 7233 5411 8631 

'9' 9705 7895 7600 5436 5739 8051 6990 7870 8631 4209 

Another way of evaluating the performance of a clustering algorithm is by 

comparing its partition matrix U to the ground truth partition matrix U(T). Since 

the best one-to-one mapping of the clusters needs to be identified by finding the best 

permutation of the rows of the U matrices, such comparison is not trivial. An efficient 

way of comparing the partition matrices indirectly is by using the coincidence matrix, 

also called cluster connectivity matrix [601. The coincidence matrices 1j!(l)and 1j!(2) of 

two partition matrices U(l) and U(2)are defined as 

(117) 

where 
C 

1j!jk = L f-Lijf-Lik· (118) 
i=l 

Using the two coincidence matrices, a 2 x 2 contingency Table 
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is defined where 

N ss (7j;(1) , 7j;(2)) 
N j-1 

L L 7j;;~)7j;;~), 
j=2 k=l 

N j-1 

L L 7j;;~) ( 1 -7j;;~)) , 
j=2 k=l 

N j-1 

L L (1 - 7j;;~) 7j;;~), 
j=2 k=l 

N j-1 

NDD (7j;(1),7j;(2)) = LL (l-7j;j~) (l-7j;j~). 
j=2 k=l 

(119) 

(120) 

(121) 

(122) 

In the above, the indices Sand D stand for Same cluster and Different clusters 

respectively. 

Using the contingency Table, many measures can be computed to compare two 

partitions [201. In this paper, we use the Rand statistics QRand, Jaccard coefficient 

QJaccard, Folkes-Mallows index QFM, and the Hubert index QHubert. These indices 

are defined as: 

QRand (7j;(cl), 7j;(T)) Nss + NDD 
(123) 

N. 

Q (7j;(cl) 7j;(T)) Nss 
(124) Jaccard , 

Nss + NSD + NDS 

QFM (7j;(cl),7j;(T)) Nss 
(125) 

y!(Nss + NSD) (Nss + NDS ) 

QHubert (7j;(cl), 7j;(T)) N.Nss - Ns.Ns 
(126) 

VNsNs.NDND. 

These measures compare each generated partition U(cl) to the ground truth partition 

U(T). For the ground truth and for non-fuzzy clustering algorithms, we use crisp 

membership uij E {O, I}. All of the above measures provide larger values when the 

two partitions are more similar. 

83 



B Evaluation of the unsupervised clustering algorithms 

In this section, we compare our unsupervised clustering algorithms, L8L and 

FLeCK, to those obtained using the FCM [86] , DB8CAN [77], GK [88], kNERF [25], 

and self tuning spectral clustering [42]. For the relational approaches, the Euclidean 

distance is used to compute the pairwise distances. To assess the performance of the 

different clustering algorithms and compare them, we use the ground truth, and the 

five performance measures described in subsection V-A-3. 

1 Synthetic datasets 

In subsection III-B-2 and subsection III-C-3, we have illustrated how L8L 

and FLeCK learn local kernels and cluster dissimilarity measures on the five 2D 

datasets displayed in Figure 3. We also provided an interpretation of the learned 

scaling parameters. In order to better assess the performance of L8L and FLeCK 

on these datasets, we compare their clustering results with the clustering approaches 

mentioned above. 

For all algorithms, we set the number of clusters C to the true one (see Figure 

3), the fuzzifier m to 1.1, and the maximum number of iterations to 100. As L8L 

requires the specification of one parameter K, we use K =[0.001, 0.01, 0.05, 0.1, 0.5, 

1, 1.5, 2, 4, 8, 10] and select the best results. For DB8CAN and self tuning spectral, 

we tune the neighborhood parameter from 1 to 20 by an increment of 1. For kNERF, 

we tune the scaling parameter between 0.01 and 100 with a step of 0.1. The matrix 

of fuzzy memberships is initialized randomly. 

Figure 20 displays the clustering results of the considered algorithms on dataset 

1. As it can be seen, the FCM (Figure 20(a)), GK (Figure 20(b)) and kNERF (Figure 

20(d)) were not able to categorize this dataset correctly. Although, kNERF is based 

on a non linear mapping of the input data, it was not able to categorize this data 

correctly. This is due mainly to the fact that one global scaling parameter is not 

sufficient when the input data includes clusters with different local statistics. 
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Figure 20. Results of clustering dataset 1 using (a) FCM, (b) DBSCAN, (c) GK, (d) 

kNERF, (e) Spectral, (f) LSL, and (f) FLeCK 
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Figure 22_ Results of clustering dataset 3 using (a) FCM, (b) DBSCAN, (c) GK, (d) 

kNERF, (e) Spectral, (f) LSL, and (f) FLeCK 
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Figure 24. Results of clustering dataset 5 using (a) FCM, (b) DBSCAN, (c) GK, (d) 

kNERF, (e) Spectral, (f) LSL, and (f) FLeCK 

DBSCAN and self tuning spectral were able to categorize dataset 1 correctly 

after tuning the neighboring parameters. Similarly, LSL categorized dataset 1 cor-
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rectly by tuning the K parameter. On the other hand, FLeCK was able to categorize 

this dataset without any tuning. 

Figure 21 displays the clustering results on dataset 2. As it can be seen, neither 

FCM, DBSCAN, GK, kNERF, or Spectral clustering were able to categorize this data 

correctly. On the other hand, LSL and FLeCK learned local exponential mapping 

of the data and were able to partition this data correctly. This example illustrates 

the inability of existing algorithm to partition data that includes clusters with large 

intra-cluster and small inter-cluster distances. LSL was able to partition this data 

correctly by trying several values of K. On the other hand, FLeCK was designed to 

optimize both criteria simultaneously and was able to partition it correctly without 

fixing any parameters. 

Figure 22 displays the clustering results of dataset 3. Since this dataset con­

tains three clusters of different sizes and densities that are close to each other, widely 

used clustering algorithms such as FCM [86], DBSCAN [771 and GK [881 are not able 

to categorize it successfully. On the other hand, kNERF and LSL provide mean­

ingful partition of this dataset. They have categorized few points that are at the 

clusters boundaries incorrectly. On the other hand, spectral clustering and FLeCK 

categorized dataset 3 correctly. The self tuning spectral was able to do this by tun­

ing the neighborhood within a user specified range to find local scaling parameters. 

On the other hand, FLeCK without tuning any parameters learns the local scaling 

parameters and performs clustering simultaneously. 

dataset 4 is constituted of two concentric ovals. It does not correspond to 

the classical way of perceiving intra cluster and inter cluster distances. As a result, 

only LSL was able to categorize this data correctly (Figure 23 (f)) after tuning the 

parameter K. 

The firth synthetic data (Figure 3 (e)) contains two clusters that have the 

same shape, density, and size, and a third cluster that is denser and much smaller. 

As shown in Figure 24, only self tuning spectral and FLeCK were able to categorize 

this dataset correctly. This is due to the fact that this data has intra-cluster distances 

that are much larger than some inter cluster distances. LSL and FLeCK use local 
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Gaussian kernel and optimize both the intra-cluster and inter-cluster distances. 

2 Application to Image database Categorization 

To illustrate the ability of LSL and FLeCK to learn local kernels and to cluster 

dissimilarity measure derived from real and high dimensional data, we use it to cate­

gorize a subset of COREL image database that is described in subsection V-A-1. For 

object based algorithms (FCM and GK), the feature vectors described in subsection 

V-A-l are concatenated to construct a 182 dimensional feature vector. For the rela­

tional approaches, the Euclidean distance is used to compute the distance between 

images with respect to each feature. The relational dissimilarity matrix is the sum of 

these distances. For all algorithms, we fix the number of clusters to 5 (since we have 5 

categories). For the fuzzy algorithms, we fix the fuzzifier m to 1.1. As in the previous 

examples, we use K =[0.001, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2,4, 8, 10] for LSL approach. 

For DBSCAN and self tuning spectral, we tune the neighborhood parameter from 

1 to 20 by an increment of 1. For kNERF, we tune the scaling parameter between 

0.01 and 100 with a step of 0.1. Since we should not use the ground truth to select 

the optimal parameter, for each algorithm, we select the parameter that gives the 

minimum intra-cluster dissimilarity. 

To quantify the performance of the different clustering algorithms and compare 

them, we assume that the ground truth is known, and we evaluate the performance 

of the algorithms by using the accuracy, Rand statistics, QRand, Jaccard coefficient, 

Qjaccard, Folkes-Mallows index, QFM, and Hubert index, QHubert as described in 

subsection V-A-3. 

Figure 25 compares the performance of the seven considered algorithms. As 

it can be seen, object-based algorithms (FCM and GK) can not partition this data 

correctly. In fact, one prototype (center or center and covariance) is not sufficient for 

sparse high dimensional spaces. 

Moreover, kNERF, self tuning spectral and LSL were not able to categorize 

this image data base as good as FLeCK. In fact, these algorithms are sensitive to the 

choice of their respective parameters. However, for high dimensional data it is not 
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trivial to visualize the clustering result in order to choose the parameter that gives 

the best partition. Moreover, since we should not use the ground truth to compute 

the performance measures for the purpose of parameter selection, we selected the 

parameter that gives the minimum intra-cluster dissimilarity. Therefore, the choice of 

the parameters is not optimal in this case. Thus, although LSL was able to categorize 

complex data like the co-centric ovals, it cannot partition real world data where 

categories have generally cloud shapes. Figure 25 shows that FLeCK outperforms all 

of the other methods with respect to all five measures without tuning any parameter. 

Since the self tuning spectral has the closest performance to FLeCK, we will 

use the partitions of these two algorithms to compare and analyze the results in more 

details. Tables 22 and 23 summarize the partitions obtained by the self tuning spectral 

and FLeCK algorithms. For each algorithm, we display one sample image from each 

cluster, the number of images assigned to the cluster, and the most representative 

images (i.e. images closest to the cluster center for spectral algorithm and images 

with high memberships for FLeCK). 

Accuracy QRand QJaccard QFM QHabut 

_ FCM 
_ nBSCAN 

r::::::::J GK 
kNERF 
Spectral 

_ LSL 
_ FLeCK 

Figure 25. Performance measures obtained on categorizing COREL dataset using 

FCM, DBSCAN, GK, kNERF, Spectral, LSL and FLeCK clustering approaches. 
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TABLE 22 

Self tuning spectral clustering results on the COREL image data 

Cluster 
Image 

1 

2 

3 

4 

5 

No. 

images 

79 

97 

74 

133 

67 

Most representative images 
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TABLE 23 

FLeCK clustering results on the COREL image data 

Representative 
Cluster 

Image 

1 

2 

3 

4 

5 

a 2 = 23.94 

aa = 26.72 

a4 = 35.16 

a5 = 28.45 

No. 

images 

46 

105 

90 

110 

99 

Most representative images 

As it can be seen, the self tuning spectral has combined several images from 

different categories into the same cluster. For instance, cluster 3 contains images from 
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"Beach" and "Garden" categories, and cluster 4 contains images from "Butterfly" and 

"Antelope" categories. FLecK on the other hand, was able to partition most of the 

data correctly because it adapted a scaling parameter to each cluster. The learned 

scaling parameters are reported in Table 23 for each cluster. As it can be seen, cluster 

4 ("Garden") has a relatively large scaling parameter (a4 = 35.16). In fact, referring 

to the inter-group and the intra-group distances in Table 19, we observe that this 

category has larger intra and inter category distances than the other ones. Categories 

"Antelope", "Beach", and "Bus", on the other hand, have relatively smaller inter-cluster 

distances than "Garden" with the "Butterfly" category. Consequently, FLeCK learns 

smaller scaling parameters (a2 = 23.94, a3 = 26.72, and a5 = 28.45) for the clusters 

representing these categories. We should note here that a2, a3, and a5 could not be 

as large as a4 because their categories have smaller inter-category distance with the 

"Butterfly" category (refer to Table 19). In fact, a larger a2 ("Antelope" cluster) may 

result in including images of "Butterflies". 

Cluster 1 ("Butterflies") has the smallest scaling parameter. From Table 19, we 

notice that category "Butterfly" has the smallest intra-category distances. That is, 

images within this category form the densest region in the feature space. Moreover, 

these images are relatively close to images from the "Antelope" , "Beach", and "Bus" 

categories. FLeCK was able to identify this cluster correctly by learning a relatively 

much smaller scaling parameter (al = 11.07). A smaller a prevents images that are 

spatially close but, not within the dense region, from being assigned to this cluster. 

3 Application to categorization of handwritten digits 

In this experiment, we compare the performance of the considered clustering 

algorithms when used to categorize the handwritten digits database which is described 

in subsection V-A-2. We use this data to illustrate the abilities of L8L and FLeCK 

to learn local kernels and to cluster dissimilarity measure derived from real and high 

dimensional data. 

We use the same experimental setting as in subsection V-B- 2. That is, for all 

algorithms, we use the Euclidean distance and we fix the number of clusters to 16. 
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For the fuzzy algorithms, we fix the fuzzifier m to 1.1. For self tuning spectral, we 

tune the neighborhood parameter from 1 to 20 by an increment of 1. For kNERF, 

we tune the scaling parameter between 0.01 and 100 with a step of 0.1. We use 

K = [0.001 , 0.01 , 0.05, 0.1 , 0.5, 1, 1.5, 2, 4, 8, 10] for LSL approach. Since we should 

not use the ground truth to select the optimal parameter, for each algorithm, we 

select the parameter that gives the partition with the minimum sum of intra-cluster 

dissimilarities. 

_ FCM 
_ DBSCAN 
C:=J GK 
c:::J kNERF 
c:::J Spectral 
_ LSL 
_ FLeCK 

Figure 26. Performance measures obtained on categorizing handwritten digits dataset 

using FCM, DBSCAN, GK, kNERF, Spectral, LSL and FLeCK clustering approaches. 

We compare our clustering results to those obtained using FCM [86] , DBSCAN 

[77], GK [88], kNERF [25], and self tuning spectral [42]. To quantify the performance 

of the different clustering algorithms and compare them, we assume that the ground 

truth is known, and we evaluate the performance of the algorithms by using the ac­

curacy, Rand statistics, QRand, Jaccard coefficient , Qjaccard, Folkes-Mallows index, 

QFM, and Hubert index, QHubert, [20] as described in subsection V-A-3. 

Figure 26 compares the performance of the considered algorithms. As it can 

be seen, prototype based clustering (FCM and GK) are not able categorize this data 

correctly. In fact , prototype based clustering approaches cannot deal with high di-
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mensional data. Similarly, kNERF, self tuning spectral and LSL were not able to 

categorize this dataset correctly. In fact, as for the COREL dataset (see subsection 

V-B-2), they did not give good clustering on high dimensional real data because it is 

not trivial to fix their respective tuning parameters. 

As it can be seen from Figure 26, FLeCK outperforms the other methods. 

Since the self tuning spectral has the closest performance measure to FLeCK, we will 

use the partitions of these two algorithms to compare and analyze the results in more 

details. 

TABLE 24 

Self tuning spectral clustering results on the handwritten digit Data 

True class 

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9' Total 

1 0 7 0 4 0 0 0 7 0 3 21 

2 0 1 0 0 0 0 0 44 0 0 45 

3 0 0 0 0 37 0 0 0 0 7 44 

4 0 0 0 0 65 0 0 0 0 0 65 

5 14 0 0 0 0 0 0 0 0 0 14 

6 0 19 0 0 0 0 0 0 0 0 19 

7 0 0 0 0 0 0 108 0 0 0 108 

8 50 0 0 0 0 0 0 0 0 0 50 

Clusters 9 1 1 0 1 6 59 6 14 0 27 112 

10 0 5 58 0 0 0 0 0 0 0 63 

11 0 0 0 0 0 0 41 0 0 41 

12 0 15 0 0 0 0 0 0 0 0 15 

13 63 0 0 1 0 57 0 0 109 70 300 

14 0 51 49 0 0 0 0 1 0 0 101 

15 0 0 0 115 0 3 0 0 0 4 122 

16 0 32 0 1 0 0 0 10 0 0 43 
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TABLE 25 

FLeCK clustering results on the handwritten digit Data 

True class 

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9' Tota 

1 0 0 0 0 0 0 0 0 41 0 41 

2 0 55 59 0 0 0 0 1 1 0 156 

3 45 0 0 0 0 0 0 0 1 0 46 

4 9 0 0 0 0 0 0 0 0 0 9 

5 45 0 0 0 0 0 0 0 0 0 45 

6 0 0 0 0 0 0 0 0 59 1 60 

7 0 0 0 0 0 0 105 1 0 0 106 

8 0 0 0 1 0 2 0 0 0 76 79 

Clusters 9 0 1 0 116 0 34 0 12 0 14 177 

10 0 19 0 0 5 26 8 0 1 1 60 

11 0 0 0 0 68 0 0 0 0 3 71 

12 0 54 0 5 0 0 0 18 0 8 85 

13 0 0 0 0 0 57 0 0 5 0 62 

14 0 2 8 0 0 0 0 85 0 0 95 

15 29 0 0 0 0 0 1 0 1 0 31 

16 0 0 0 0 35 0 0 0 0 8 43 

The self tuning spectral did relatively better than the other existing approaches. 

However, as it can be seen from Table 24, it has created one big cluster that contains 

300 elements from categories '0', '6', '8' and '9'. Moreover, although category '1' was 

split in five clusters (cluster 1, 6,12,14, and 16), it was not well segregated in clusters 

1 and 14. This may be due to the fact that adapting one a to each sample distorted 

the structure of the data. 
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TABLE 26 

The scaling parameters learned by FLeCK for the clusters of the handwritten digits 

Clusters No. of O"i 

samples 

1 41 16.4 

2 156 49.2 

3 46 20.3 

4 9 3.4 

5 45 23.6 

6 60 18.5 

7 106 29.3 

8 79 27.4 

9 177 50.7 

10 60 17.3 

11 71 17.4 

12 85 27.8 

13 62 31.7 

14 95 25.6 

15 31 11.2 

16 43 10.11 

FLeCK on the other hand, was able to partition the data better than self 

tuning spectral. Referring to Table 25, some digits have been categorized using more 

than one cluster (clusters 0, 4, 5 and 8). This is due to the different writing styles. For 

instance, digit '4' has been categorized using two clusters (cluster 11 and 16). Figure 

27 displays the top 10 representatives of these two clusters (corresponding to the 

highest memberships). We can notice that each cluster contains one style of writing 

the digit '4'. On the other hand, FLeCK categorized other digits using one cluster 

(clusters 1, 2, 3, 6, 7, and 9). These are categories with more consistent writing style. 
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Figure 28 displays the top 10 representatives of one such cluster representing digit 3. 

(a) 

~~~brz 
~~~~b 

(b) 

Figure 27. The top 10 representatives of (a) cluster 11 and (b) cluster 16 obtained 

by FLeCK. 

Figure 28. The top 10 representatives of cluster 9 obtained by FLeCK. 

FLeCK learned a scaling parameter for each cluster. These parameters are 

reported in Table 26. For instance, cluster 4 is the smallest cluster and contains only 

9 digits. These digits form the densest region in the feature space (small sum of intra 

cluster distances) and are relatively close to other digits categories (small sum of inter 

cluster distances). Consequently, FLeCK learns a small scaling parameter (a4 = 3.4) 

for this cluster. This Small a prevent digits that are spatially close but not within the 

dense region, from being assigned to this clusters. On the other hand, FLeCK leaned 

a relatively larger scaling parameter for cluster 9 (ag = 50.65) representing the digit 

3. This is due to the fact that this cluster includes a large number of samples with 

large intra-cluster distances (without being split into small clusters). 
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4 Time complexity 

TABLE 27 

The simulation time (in second) for kNERF, the self tuning spectral, and the FLeCK 

algorithms 

No. of No. of Spectral FLeCK 

points clusters 

dataset 1 400 3 20.93 s 11.38s 

dataset 2 400 3 21.03 s 11.27s 

dataset 3 293 3 11.83 s 6.34 s 

dataset 4 200 2 3.81 s 2.61 s 

dataset 5 66 3 0.49 s 0.31 s 

COREL 450 5 49.68 s 16 s 

data 

digit data 1166 16 1323.05 s 144.20 s 

Since the self tuning spectral has the closest performance measure to FLeCK, 

we access the performance of FLeCK, and self tuning spectral [421 by comparing 

their performance in terms of computational time. As we can notice from Table 

27, FLeCK is computationally less expensive than self tuning spectral. This becomes 

more significant as the size ofthe dataset increases. In fact, though self tuning spectral 

can produce high-quality clustering on small datasets, it has limited applicability to 

large-scale problems due to its computational complexity of 0 (N3) where N is the 

number of data points [331. 

5 Conclusions 

The experimental results presented in this section demonstrate the effectiveness 

of our proposed clustering algorithms. In addition to giving better clustering results 

than the other clustering algorithms, FLeCK presents the advantage of auto-learning 

101 



of the scaling parameter. It does not need to tune any parameters. This is an 

important advantage since it may not be evident to even choose a range of possible 

values. In fact, in the 2 D experiments, we have selected the parameters for self 

tuning spectral based on visualizing the results and selecting the best one. Although 

this can be performed on 2D dataset, it is not possible for high dimensional dataset 

where visualization may not be trivial and the ground truth is not known. 

C Evaluation of the semi-supervised clustering algorithms 

In this section, we compare the semi-supervised versions of LSL and FLeCK 

(SS-LSL and SS-FLeCK) clustering results to those obtained by the most related 

semi-supervised clustering approaches. Namely, we compare our results to those ob­

tained using the semi-supervised kernel C-means (SS-kernel-C-Means) [27], the Semi­

Supervised Spectral Learning algorithm [441 and the Semi-supervised graph clustering 

algorithm [11. The five considered approaches are relational algorithms, and the Eu­

clidean distance is used to compute the relational dissimilarities for all of them. To 

assess the performance of the different clustering algorithms and compare them, we 

use the ground truth, and the same five performance measures described in subsection 

V-A-3. 

Ideally, the supervision information should be provided by the user (in terms 

of feedback) in an interactive mode. However, to carry out an objective experiment 

(for the purpose of algorithm evaluation), we automate the process of constraints 

selection and attempt to simulate the user's feedback. We assume that boundary 

points are the most informative points, and that these points should be selected 

for the supervision information. First, we ran the considered algorithms without 

supervision for few iterations. Then, we identify 2% of boundary points (points with 

low fuzzy membership values in all clusters). Next, we use the ground truth of these 

points to construct must-link and cannot-link constraints. 
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1 Synthetic datasets 

We have shown in subsection IV-A-2 and subsection IV-B-2 how SS-LSL and 

SS-FLeCK have enhanced LSL and FLeCK clustering results on 2D datasets by using 

a small amount of side information. In order, to better assess the performance of SS­

LSL and SS-FLeCK on these datasets, we compare their clustering results with other 

clustering approaches as mentioned above. We use the three synthetic datasets where 

the unsupervised algorithms (LSL and FLeCK) did not perform well. The three 

datasets are displayed in Figure 3 (b), 3 (d), and Figure 3 (e). 

Figure 29 displays the clustering results on dataset 2. As it can be seen, nei­

ther SS-kernel-C-Means (Figure 29 (a)), semi-supervised spectral (Figure 29 (b)) or 

semi-supervised graph clustering (Figure 29 (c)) were able to categorize this dataset 

correctly. The main reason is that these three algorithms use a global scaling param­

eter and thus, they are not able to deal with the local characteristics of this data even 

when partial supervision information is used to guide them. 

As mentioned in subsection IV-C-2, the points at the boundaries of cluster 2 

and cluster 3 are better categorized by LSL approach (refer to Table 2). Similarly, 

the overlapping boundaries between the three clusters are better characterized using 

SS-FLeCK (refer to Table 9). Thus, the partial supervision guided effectively the LSL 

and FLeCK towards a better categorization of the data. 

For dataset 4, and as it can be seen in Figure 30, the SS-kernel-C-Means (Figure 

30 (a)), semi-supervised spectral (Figure 30 (b)), and semi-supervised graph (Figure 

30 (c)) were not able to partition this data correctly. This confirms that the problem 

is not likely to be caused by bad initialization or by getting trapped in a local minima, 

but because a global scaling parameter is not appropriate when the data has different 

local statistics. On the other hand, the partial supervision has guided SS-FLeCK to 

partition dataset 4 correctly (Figure 30 (e)). 
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Figure 29. Results of clustering dataset 2 using (a) SS-kernel-C-Means, (b) semi­

supervised spectral learning, (c) semi-supervised graph clustering, (d) SS-LSL, and 

(e) SS-FLeCK. 
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Figure 3l. Results of clustering dataset 5 using (a) SS-kernel-C-Means, (b) semi-

supervised spectral learning, (c) semi-supervised graph clustering, (d) SS-LSL, and 

(e) SS-FLeCK. 

Figure 31 displays the clustering results on dataset 5 using the five clustering 
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algorithms. As it can be seen, SS-kernel-C-Means (Figure 31 (a)), semi-supervised 

spectral learning (Figure31 (b)), and the semi-supervised graph clustering (Figure 

31 (c)) were not able to partition this dataset. As with previous examples, this is 

also due to the one global scaling parameter used by these algorithms. The partial 

supervision on the other hand has guided SS-LSL to a better partition of the data 

(Figure 31 (d)). 

2 Application to image database categorization 

To evaluate the performance ofSS-LSL and SS-FLeCK on the COREL dataset, 

we compare their results to those obtained using the semi-supervised kernel C-means 

(SS-kernel-C-Means) [27], the Semi-Supervised Spectral Learning algorithm [44] and 

the Semi-supervised graph clustering algorithm [1]. We first perform the unsupervised 

versions of the five considered algorithms. Then, we run their corresponding semi­

supervised versions 10 times and incrementally add 1% of the total number of images 

as pairwise constraints each time. The performance of the five algorithms, measured 

in terms of accuracy rate, on the multiple runs is shown in Figure 32. As it can 

be seen, all these algorithms improve in performance when supervision is increased. 

However, the SS-FLeCK has the best performance for this dataset. This Figure also 

shows that a small amount of supervision has allowed SS-LSL to improve significantly 

its performance. In fact, when the percentage of data samples used for supervision 

is equal to 10 %, SS-LSL outperforms Semi-Supervised spectral learning and Semi­

Supervised graph clustering, and has the same performance as SS-kernel-C-Means. 

Table 28 compares the number of images used to construct the constraints and 

the number of images with improved categorization when the constraint ratio is equal 

to 2%. We note that the improvement is much higher than the number of images used 

to construct the constraints. That is, the 2% of supervision information has guided 

the algorithm to categorize more images correctly. 

As mentioned earlier, the partial supervision information is used to guide the 

clustering algorithm and can make them less sensitive to initialization. To illustrate 

this point, we compare the performance of the unsupervised and semi-supervised 
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algorithm (with 2% of supervision) for 20 runs with different initializations. We use 

the performance measures defined in subsection V-A-3. 

SS-FLeCK 
SS-LSL 
SS-Kernel-C-Means 
SS-spectral-Iearning 
SS-grapb-c1ustering 

0.' "-0 --L-----"-----e----....J- -'----'----'---c'---'----"lO 

% of data simples used Cor supervision 

Figure 32. The accuracy of the five semi-supervised algorithms on COREL data as 

the number of constraints used for partial supervision is increased. 

TABLE 28 

Number of images used to construct the constraints versus the number of images with 

improved categorization 

Algorithm Number of images Number of images 

used to construct the with improved 

constraints categorization 

I SS-LSL I 9 58 

18 9 

Figure 33 compares the mean and standard deviation of the five performance 

measures obtained on the COREL dataset using LSL and SS-LS1. Similarly, Fig­

ure 34 compares the mean and standard deviation of these performance measures 

using FLeCK and SS-FLeCK. First, we note that the semi-supervised algorithms 
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outperform the unsupervised version since their performance mean is always larger. 

Second, the standard deviation of the performance of the semi-supervised algorithm 

is much smaller than that of the unsupervised version. This indicates that the partial 

supervision makes the algorithm less sensitive to initialization. 
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Figure 33. Mean and standard deviation of the five performance measures over 20 

runs of LSL and SS-LSL on the COREL dataset. 
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Figure 34. Mean and standard deviation of the five performance measures over 20 

runs of FLeCK and SS-FLeCK on the COREL dataset. 
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3 Application to categorization of handwritten digits 

Figure 35 reports the accuracy of the five considered algorithms as we increase 

the amount of supervision information. As expected, the accuracy of all algorithm 

improve as we increase the number of constraints. Moreover, as it can be seem, 88-

L8L outperforms 88-kernel-C-Means, 88-spectral learning and 88-graph clustering 

when the percentage of data sample used for supervision is above 2%. We also note 

that 88-FLeCK outperforms all the other approaches. 

Table 29 reports the number of digits used to construct the constraints versus 

the number of digits with improved categorization when the ratio of constraints is set 

to 2%. As it can be seen, the number digits with improved categorization is much 

larger than the number of digits used to construct the constraints. This indicates 

that the partial supervision has guided the algorithm to a more global optima. 

o.2."o-----!----;.-~,---,7--7--+----;7--;~-!;-------:!,O 

% of data samples used for supervision 

Figure 35. The accuracy of the five semi-supervised algorithms on handwritten digits 

data as the number of constraints used for partial supervision is increased. 
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TABLE 29 

Number of digits used to construct the constraints versus the number of digits with 

improved categorization 

Algorithm Number of digits used Number of digits with 

to construct the improved 

constraints categorization 

I 88-L8L I 23 109 

23 58 

Figure 36 and Figure 37 report the mean and standard deviation of the perfor­

mance measures of LSL versus SS-LSL and FLeCK versus SS-FLeCK, respectively, 

over 20 runs with different initializations. As with the image database, we note that 

in addition to giving better performance measures than their respective unsupervised 

clustering versions, the SS-LSL and SS-FLeCK are less sensitive to initialization and 

their final partition is more consistent. 
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Figure 36. Mean and standard deviation of the five performance measures over 20 

runs of LSL and SS-LSL on the handwritten digits dataset. 
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Figure 37. Mean and standard deviation of the five performance measures over 20 

runs of FLeCK and SS-FLeCK on the handwritten digits dataset. 

4 Conclusions 

In this section, we have illustrated the clustering performance of SS-LSL and 

SS-FLeCK on synthetic 2D datasets. We have shown that SS-LSL and SS-FLeCK 

outperform other related semi-supervised clustering algorithms on 2D synthetic data. 

In particular, we have shown that a small subset of constraints can guide the algo­

rithm towards a more optimal partition, and thus, improving the categorization of 

many more samples. We have also shown that the partial supervision can make the 

algorithm less sensitive to initialization and local minima. 
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CHAPTER VI 

CONCLUSIONS AND POTENTIAL FUTURE WORKS 

A Conclusions 

Clustering is a challenging task especially when the structure of the data does 

not correspond to easily separable categories, and when clusters vary in size, density 

and shape. Existing kernel based approaches allow the use of a specific similarity 

measure in order to make the problem easier. The choice of such a kernel function 

allows the mapping of the input data into a new space in such a way that computing 

a simple partitioning in this feature space results in a nonlinear partitioning in the 

input space. One of the most common dissimilarity functions, due to its analytical 

proprieties, is the Gaussian kernel function. Although good results were obtained 

using this kernel, generally, its performance depends on the selection of the scaling 

parameter (j. This selection is commonly done by trying several values. Moreover, 

since one global parameter is used for the entire dataset, it may not be possible to 

find one optimal (j when there are large variations between the distributions of the 

different clusters in the feature space. 

One way to learn optimal scaling parameters is to try several combinations, 

evaluate each partition using some validity measure, and identify the optimal parti­

tion. However, this exhaustive search of one scaling parameter with respect to each 

cluster is not practical. It is computationally expensive and increases significantly 

with the number of clusters and the range of possible values of (ji. Moreover, it may 

not be possible to quantify the optimal partition. 

In this thesis, we addressed this limitation and proposed two new fuzzy rela­

tional clustering techniques that learn cluster dependent (ji in an efficient way: the 

clustering and Local Scale Learning algorithm (LSL) and the Fuzzy clustering ap-
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proach with Learnable Cluster dependent Kernels (FLeCK). 

The clustering and Local Scale Learning algorithm (LSL) learns the underlying 

cluster dependent dissimilarity measure while finding compact clusters in the given 

dataset. The learned measure is a Gaussian dissimilarity function defined with respect 

to each cluster that allows to control the scaling of the clusters and thus, improve the 

final partition. We minimize one objective function for both the optimal partition 

and for the cluster dependent scaling parameter. This optimization is done iteratively 

by dynamically updating the partition and the local measure in each iteration. This 

make the kernel learning task takes advantages of the unlabeled data and reciprocally, 

the categorization task takes advantages of the local learned kernel. Moreover, LSL is 

formulated to work on relational data. This makes it applicable even when clusters of 

similar objects cannot be represented efficiently by a single prototype. It is also more 

practical when similar objects cannot be represented efficiently by a single prototype. 

To derive the update equation for ai, LSL uses the heat flow approximation. 

While this assumption allowed LSL to deal with clusters with irregular shapes, LSL 

still requires the specification of a parameter K. This parameter which is a function 

of the regularization term K 1 and the local geometric characteristics of the data, 

can affect the clustering results. To overcome the need to specify K, we proposed 

a second algorithm, called the Fuzzy clustering approach with Learnable Cluster 

dependent Kernels (FLeCK) that optimizes both the intra-cluster and inter-cluster 

distances. Instead of using the heat flow approximation while deriving the update 

equations, FLeCK uses a different approximation that assumes that the cluster's 

scaling parameters do not vary significantly from one iteration to another. The scaling 

parameter, ai, with respect to each cluster i is designed to distinguish and separate 

the objects of cluster i from the rest of the data. It reflects the relative density, size, 

and position of this cluster with respect to the other clusters. 

To the best of our knowledge, LSL and FLeCK are the first algorithms that 

learn the Gaussian scaling parameter in an unsupervised way. This is a major contri­

butions to Gaussian based clustering approaches such as kernel and spectral clustering 

methods that suffer from their sensitivity to this parameter. 
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We have illustrated the clustering performance of LSL and FLeCK on synthetic 

2D datasets and on high dimensional real data. Our experimental results on 2-D 

datasets have demonstrated the effectiveness of LSL and FLeCK. In addition, we 

showed that the learned scaling parameters and the fuzzy memberships returned by 

LSL and FLeCK are meaningful and reflect the geometric characteristic of the data. 

We have showed that the scaling parameters leaned by FLeCK are not only influenced 

by the intra-cluster distances, but also by the relative cluster positions, densities and 

sizes. This allows a better description of the data and consequently, a better partition 

of the data. 

Our experiments on real and high dimensional data have indicated that LSL 

may not perform well on high dimensional data. One reason for this suboptimal 

behavior is the difficulty in specifying the parameter K. Another reason is related 

to the inherit limitation of all clustering algorithms that minimize the intra-cluster 

distances without considering the inter-cluster distances. FLeCK was designed to 

overcome these limitation and has proved to outperform other algorithms. In addition, 

FLeCK presents the advantage of auto-learning of the scaling parameter. 

Both the LSL and FLeCK algorithms minimize complex objective functions 

that are prone to several local minima and sensitive to initialization. This problem 

is more acute for high dimensional datasets. Thus, if a small amount of prior knowl­

edge is available, it can be used to guide the clustering algorithms to avoid most 

local minima and obtain a better partition. In the second part of this thesis, we 

presented two semi-supervised clustering approaches: the Semi-Supervised clustering 

and Local Scale Learning algorithm (SS-LSL), and the Semi-Supervised Fuzzy clus­

tering with Learnable Cluster dependent Kernels (SS-FLeCK). We assume that for 

both algorithms we have a set of pairwise "Should-Link" constraints (pairs of points 

that should belong to the same cluster) and a set of "Should not-Link" constraints 

(pairs of points that should belong to different clusters). 

We have illustrated the clustering performance of SS-LSL and SS-FLeCK on 

synthetic 2D datasets and on high dimensional real data. We have shown that SS­

LSL and SS-FLeCK outperform other related semi-supervised clustering algorithms. 
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In particular, we have shown that using a small subset of constraints can guide the 

algorithm towards a more optimal partition, and thus, improving the categorization 

of many more samples. We have also shown that the partial supervision can make 

the algorithm less sensitive to initialization and local minima. 

B Potential future work 

1 Feature weighting and kernel Learning 

Since the influence of the features is generally not equally important in the 

definition of the category to which similar patterns belong and application dependent, 

the problem of selecting the best subset of features or attributes constitutes a way of 

integrating domain expertise in the clustering algorithms. Most feature weighting and 

selection methods assume that feature relevance is invariant over the task's domain. 

As a result, they learn a single set of weights for the entire dataset. This assumption 

can degrade the performance of the learning system when the dataset is made of 

different categories or classes. One possible solution is to perform clustering and 

feature discrimination simultaneously. This can be achieved by integrating feature 

weighting in the process of learning Gaussian kernels. The resulting algorithm would 

partition the data into clusters, and learns a scaling parameter simultaneously. The 

learned scaled parameter would be feature dependent with respect to each cluster. 

2 Prototype based classifier 

The k-Nearest neighbor classifier (kNN) is used for many pattern recognition 

applications where the underlying probability distribution of the data is unknown a 

priori. Traditional kNN stores all the known data points as labeled prototypes. This 

makes the algorithm computationally prohibitive for very large database, due to the 

limitation of computer storage and the cost of searching for the nearest neighbors 

of an input vector. To overcome the above challenges several techniques have been 

proposed. Most of them can reduce the searching time for the nearest neighbors 

but do not decrease the storage requirements. One way of reducing both the search 
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time and the storage requirements is by using clustering algorithm to summarize 

the data and identify a subset of prototypes. This task is not trivial, especially 

when dealing with high dimensional datasets. In fa~t, Euclidean distance measures 

in high dimensional space are measured across volume. However, volume increases 

exponentially as dimensionality increases, and points tend to become equidistant. One 

way to overcome this limitation is to use simultaneous clustering and kernel learning 

to summarize the large set of training samples by few representative prototypes. Each 

prototype is a cluster that is identified by the clustering approach and would have its 

own learned distance measure. This region dependent distances would be explored 

by the classifier to retrieve more relevant neighbors and improve its accuracy. 
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