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Abstract—This paper outlines the changes necessary to convert the iterative guided spectral class rejection (IGSCR)
classification algorithm to a soft classification algorithm. IGSCR uses a hypothesis test to select clusters to use in
classification and iteratively refines clusters not yet selected for classification. Both steps assume that cluster and class
memberships are crisp (either zero or one). In order to make soft cluster and class assignments (between zero and one),
a new hypothesis test and iterative refinement technique areintroduced that are suitable for soft clusters. The new
hypothesis test, called the (class) association significance test, is based on the normal distribution, and a proof is supplied
to show that the assumption of normality is reasonable. Softclusters are iteratively refined by creating new clusters using
information contained in a targeted soft cluster. Soft cluster evaluation and refinement can then be combined to form a
soft classification algorithm, continuous iterative guided spectral class rejection (CIGSCR).

I. Introduction

The classification of remotely sensed imagery is essential for many remote sensing applications such as natural resource
management, change detection, species identification, etc. Crisp classifications assign each pixel or sample to one class in the
particular classification scheme, which can be interpretedas picking the class that has the highest probability of containing the
sample (when probability models are used for classification). Alternatively, soft classifications contain information on possible
memberships in multiple classes, not just the most likely class. Soft or subpixel classifications are of considerable interest in
the remote sensing community as this type of classification can effectively model geographic data whose natural boundaries
rarely coincide with pixel boundaries. Furthermore, pixels can also contain multiple species that are commingled, leading
to classification difficulty. Individual classes within theclassification scheme can have overlapping electromagnetic reflectance
spectra, making it difficult to discriminate between these classes. Scientists have successfully used soft classification for
applications such as land cover mapping [1], vegetation mapping [2], and the classification of snow [3], to name a few. Popular
methods for obtaining soft classifications of remotely sensed images include fuzzyc-means [4] and spectral unmixing [5].

Semisupervised classification has received a good deal of attention in the remote sensing community as remote sensing
datasets are characterized by a large number of dimensions (hyperspectral imagery) and limited training data. While training
data is expensive to obtain in any discipline, it is especially so in remote sensing as the labeling of image data typically
requires extensive knowledge of the study area, multiple data sources, and/or physically visiting the study area to identify
classes. Semisupervised learning can be used to supplementa labeled training set with unlabeled data to mitigate the Hughes
phenomenon (overfitting of a classification when the training data is insufficient for the number of dimensions present inthe
dataset to be classified) [6][7].

Semisupervised classification algorithms such as the iterative guided spectral class rejection (IGSCR) algorithm ([8],[9],[10])
have the additional benefit of providing a high level of automation compared to strictly supervised classification algorithms. In
remote sensing, informational class categories that make up a classification scheme are defined prior to classification and are
identified by humans, whereas spectral classes or clusters have mathematical properties (such as mathematically homogeneous
spectral waveforms) and are more difficult for humans to identify. For example, suppose a forest/nonforest classification is
desired, and forest and nonforest are the informational class categories. Each informational class is composed of multiple spectral
classes that can be used in supervised classification, and the individual spectral classes may not be spectrally similarto each
other despite all being part of one informational class. Consider the wide range of tree species that could potentially make up a
forest informational class in a particular image. An unsupervised technique such as clustering can identify individual classes that
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are mathematically homogeneous, and has the additional property of guaranteeing that all types of land cover present ina dataset
are represented in the spectral classes (clusters). Both tasks are nontrivial for humans to perform when identifying spectral
classes for supervised classification. Therefore semisupervised classification algorithms that involve clustering can automatically
identify and label spectral classes, providing significantautomation over supervised or unsupervised classificationalone.

The purpose of this work is to develop a semisupervised soft clustering framework, analogous to the framework in IGSCR,
that is capable of producing soft classifications of remotely sensed images. This framework will potentially affect semisupervised
classification algorithms that have labeled data and involve clustering. Soft clustering retains all information regarding the
proximity of data points to clusters, and will therefore directly produce a soft classification and will potentially provide better
training spectral classes for a supervised decision rule. The major challenges to converting the discrete IGSCR to a fully
continuous algorithm producing soft classification are in converting the underlying inherently discrete models and algorithms
to suitable continuous models and algorithms while preserving the automated spectral class identification propertiesof IGSCR.
More specifically, a hypothesis test that is fundamental to IGSCR is based on the discrete binomial probability distribution. A
hypothesis test based on a new continuous probability distribution is necessary in continuous IGSCR (CIGSCR). IGSCR uses an
iterative cluster refinement framework that breaks down under soft clustering, and therefore a new iterative cluster refinement
method is developed for CIGSCR. Furthermore, soft clustering allows for the magnification of distances using radial functions
that changes soft clusters but would have no effect on hard clusters.

The remainder of the paper is organized as follows. Section II reviews related literature on semisupervised learning and
semisupervised clustering. Section III describes IGSCR indetail, and Section IV describes CIGSCR. Section V introduces
the association significance test, a hypothesis test based on a new distribution that will be suitable for evaluating theclass
associations to soft clusters. Section VI discusses changes necessary for the iterative refinement of soft clusters. Section VII
concludes the paper.

II. Background

Semisupervised learning occurs when unlabeled data are used in addition to labeled data to produce a classification [11].
Semisupervised learning can be more accurate than supervised learning (for a given set of labeled data) if knowledge of the
underlying data distributionp(x) (gained through the unlabeled data) contributes to knowledge of the conditional distribution
p(c|x), wherec is the class label for data pointx [11]. When assumptions aboutp(c|x) are incorrect, using information about
p(x) can actually degrade classification accuracy [11].

An assumption commonly used in semisupervised learning is that if two particular points in a dense region are “close,”
their corresponding class labels should also be “close.” Inthe context of clustering, this indicates that two points contained in
the same cluster are likely to be in the same class, which is known as the “cluster assumption” [12]. Semisupervised learning
methods that invoke the cluster assumption include the method proposed in [13]. Unfortunately, this assumption is sometimes
not true as clusters are not necessarily composed of one class. Several clustering methods have been suggested that seekto
form clusters based on both traditional clustering criteria and secondary criteria that could include a correlation between clusters
and classes. Clustering methods that use additional information to influence clusters are known assemisupervised clustering

(distinct from semisupervised learning) methods.
One method that seeks to influence the formation of clusters is clustering with constraints. In these methods, constraints are

provided in the form of must-link constraints where two samples should appear in the same cluster and cannot-link constraints
where two samples should not appear in the same cluster. These constraints are used with a traditional clustering methodsuch
as k-means, and the constraints can be strictly enforced algorithmically [14] or by using a modified objective function [15].
When using an objective function, there is no guarantee thatall constraints will be satisfied. Basu et al. [16] suggesteda method
by which constraints that are informative can be selected and used in clustering, and Bilenko et al. [17] used constraints to
learn a distance metric that would provide a good clustering. Halkidi et al. [18] use constraints to measure the quality of a
clustering and tune Euclidean distance weight parameters to find the “best” clustering. Bouchachia and Pedryz [19] introduced
a soft semisupervised clustering method with an objective function that accounts for prior information in the form of class
labels. Having class labels can be viewed as a special case ofhaving constraints as must-link and cannot-link constraints can be
generated from the labeled data. Other methods that use additional information to form clusters include information bottleneck
([20], [21], [22]) and discriminative clustering [23]. These algorithms form a clustering objective function that measures
distortion of the auxiliary data due to clustering.

Semisupervised learning has been used in the remote sensingcommunity for some time to supplement limited training
samples in the classification of remotely sensed images. Theapplication of semisupervised learning to correct classification
overfitting was studied in [7]. Jeon and Landgrebe used semisupervised techniques (including clustering) to perform classifications
on entire images when only one class is of interest and labeled [24]. Multiple semisupervised methods based on support vector
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machines (SVM) have been developed for the classification ofhyperspectral imagery ([25], [26]), and Gòmez-Chova et al. used
clustering and SVMs to form a semisupervised classificationmethod [27]. IGSCR also utilizes clustering in a semisupervised
framework to classify remotely sensed images ([8], [9], [10]). Due to its high accuracy and automation, IGSCR is a frequently
used hybrid classification method in the remote sensing community ([28], [29], [30], [31]).

III. IGSCR

IGSCR is a classification method that uses clustering to generate a classification modelp(ci|x) wherex is a multivariate
sample to be classified andci, i = 1, . . ., C, is theith class where there areC classes in the classification scheme. IGSCR uses
clustering to estimatep(kj |x) in the expression

p(ci|x) =

K
∑

j=1

p(ci, kj |x) =

K
∑

j=1

p(ci|kj , x)p(kj |x), (1)

wherekj , j = 1, . . ., K, is the jth cluster out ofK total clusters. IGSCR also uses the clusters to train a decision rule using
Bayes’ theorem [32]

p(kj |x) =
p(x|kj)p(kj)
K

∑

i=1

p(x|ki)p(ki)
. (2)

The prior probabilities of the clustersp(kj) are assumed to be equal.
Clustering is performed using a discrete clustering methodsuch ask-means that minimizes the objective function

J(ρ) =

n
∑

i=1

K
∑

j=1

wijρij (3)

subject to
K

∑

j=1

wij = 1

wherewij ∈ {0, 1} is the value in theith row andjth column of the partition matrixW ∈ ℜn×K , U (j) ∈ ℜB is the prototype

for the jth clusterkj , x(i) ∈ ℜB is the ith data point, andρij = ||x(i) − U (j)||22. The clustersk1, . . ., kK form a partition of

{x(i)}ni=1. The algorithm fork-means requiresK initial cluster prototypes and iteratively assigns each sample to the closest
cluster using

wij =

{

1, if j = argmin
1≤j≤K

ρij ,

0, otherwise,

followed by the cluster prototype (mean) recalculation

U (j) =
n

∑

i=1

(wijx
(i))

/

n
∑

i=1

wij

onceW has been calculated [33]. This process, guaranteed to terminate in a finite number of iterations, continues until no
further improvement is possible, terminating at a local minimum point of (3).

IGSCR uses labeled data in a semisupervised clustering framework to locate clusters that map to classes in a given
classification scheme. IGSCR requires a labeled set of training data comprised of individual samples within the image tobe
classified and corresponding class labels. Rather than using the labeled data to train a decision rule directly, the entire image is
clustered, thereby capturing the inherent structure of allthe data and not just the labeled samples. The clusters represent spectral
classes, and in remote sensing, each spectral class ideallymaps to exactly one class in the final classification scheme. Once
clusters are generated, each cluster must be mapped to one class or rejected as impure. While theoretically each clustershould
contain samples belonging to only one informational class,in practice clusters (spectral classes) that contain predominantly
samples of one class can contain a few samples from other classes because of inherent errors. However, if a cluster contains too
many samples from different classes, the cluster itself is considered confused and should not be labeled with one class.Impure
clusters are rejected and can be further refined in the iterative part of the algorithm.
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The test for cluster purity is performed using the labeled training set. IGSCR produces a hard classification and uses
a discrete clustering method where each sample is assigned to exactly one cluster. LetVc,j be the binomial random variable
denoting the number of labeled samples assigned to thejth cluster that are labeled with a particularcth class. Letp be the
user-supplied cluster homogeneity threshold (p = .9 would indicate a cluster is 90% pure with respect to the majority class), and
let α be the user-supplied acceptable one-sided Type-I error fora statistical hypothesis test. Then ifc is the majority class
represented in thejth cluster, thejth cluster is rejected ifP (Z < ẑ) < 1 − α whereZ is a standard normal random variable,m
is the number of labeled samples in thejth cluster, and

ẑ =
vc,j −mp

√

mp(1 − p)
. (4)

(Typically a continuity correction of 0.5 is added in the numerator of (4).)
If a cluster is rejected, the samples making up that cluster can be reclustered in subsequent iterations. All samples belonging

to pure clusters are removed from the image being clustered,resulting in only samples belonging to impure clusters being
reclustered. Once more clusters are generated, those clusters are evaluated for purity, removed from the image, and clustering is
performed again until termination criteria are met. All samples can belong to pure clusters, leaving no remaining samples to be
clustered, no pure clusters could be found in the previous iteration, meaning that the clustering would continue to be performed
on the same data, resulting in the same impure clusters (assuming deterministic cluster seeding), or a set number of iterations
can be reached, resulting in termination of the iteration. Note that deterministic seeding ensures that the iteration will terminate,
even without specifying a maximum number of iterations.

Once the iterative clustering is complete, one or more classifications is performed. The first classification is called the
iterative stacked (IS) classification because it is the result of combining or “stacking” all cluster assignments over all iterations
(each sample will be assigned to at most one accepted cluster). Assume that all samples not assigned to an accepted cluster are
combined to form one clusterkK+1, and the class assignment for that cluster is “unclassified”or cC+1. Then the IS assignment
for a pixel using (1) is

IS(x) = argmax
1≤i≤C+1

p(ci|x) = argmax
1≤i≤C+1

K+1
∑

j=1

p(ci|kj , x)p(kj |x),

where

p(ci|kj , x) =

{

1, if kj is labeledci,
0, otherwise,

and

p(kj |x) =

{

1, if x ∈ kj ,
0, otherwise,

since cluster assignments are discrete.
The second possible classification, the decision rule (DR) classification, uses the pure clusters to form a decision rule.

Recall in (2) that

p(kj |x) =
p(x|kj)

∑K
i=1 p(x|ki)

when all thep(kj) are equal. Traditionally, the maximum likelihood decisionrule, assuming a multivariate normal distribution

p(x|kj) = 2π−B/2|Σj |−1/2e−
1
2 (x−U(j))T Σ−1

j
(x−U(j)),

is used whereΣj is the covariance matrix of thejth cluster [34]. Since IGSCR produces hard classifications,the full
probability need not be calculated as determining only the cluster associated with the maximum probability is necessary. The
DR classification function is

DR(x) = argmax
1≤i≤C

p(ci|x) = argmax
1≤i≤C

K
∑

j=1

p(ci|kj , x)p(kj |x), (5)

where

p(kj |x) =

{

1, if j = argmax
1≤j≤K

(

− ln |Σj | − (x− U (j))TΣ−1
j (x− U (j))

)

,

0, otherwise.
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A final classification, the iterative stacked plus (IS+) classification, combines the DR and IS classifications. If a sample is
labeled as unclassified in the IS classification, the DR classvalue is used for the IS+ classification, otherwise the IS class value
is used for that particular sample. The IS+ classification function is

IS+(x) =

{

IS(x), if x /∈ kK+1,
DR(x), otherwise.

IV. CIGSCR

Continuous IGSCR (CIGSCR) uses a similar semisupervised clustering framework to the one established in IGSCR to
produce a soft or probabilistic classification instead of a hard classification, and uses continuous algorithms and models instead
of discrete algorithms and models. Recall in (1) thatp(ci|kj , x) andp(kj |x) are either 0 or 1 (discrete) in practice in IGSCR.
p(ci|kj , x) is necessarily discrete because while several clusters cancomprise one class, only one class (theoretically) can label
the members of a particular cluster, but there are no similarrestrictions onp(kj |x). In fact, the clustering algorithm and the
maximum likelihood decision rule indicate positive probabilities that a sample is associated with each cluster, but IGSCR makes
an assignment only to the cluster with the highest probability.

Consider a soft clustering algorithm that minimizes the objective function [35]

J(ρ) =

n
∑

i=1

K
∑

j=1

wpijρij subject to

K
∑

j=1

wij = 1 for eachi

(6)

wherewij ∈ (0, 1) is the value in theith row andjth column of the weight matrixW ∈ ℜn×K (analogous to the partition matrix
W in (3)), U (j) ∈ ℜB is the jth cluster prototype,p > 1, andρij = ρ(x(i), U (j)) = ||x(i) − U (j)||22 is the Euclidean distance
squared. The algorithm that minimizes this objective function is similar to that ofk-means in that it first calculates

wij =
(1/ρij)

1/(p−1)

K
∑

k=1

(1/ρik)
1/(p−1)

for all i andj followed by calculating updated cluster prototypes

U (j) =
n

∑

i=1

wpijx
(i)

/

n
∑

i=1

wpij .

This iteration (recalculation of the weights followed by recalculation of cluster prototypes, following by recalculation of the
weights, etc.) is guaranteed to converge (with these definitions of ρij , U (j), andwij ) for p > 1 [36].

With a continuous alternative to the discrete hypothesis test and a continuous alternative to the IGSCR iterative cluster
refinement that follows in Sections 5 and 6, the classification function for IS classification is

IS(x) = p(ci|x) =

K
∑

j=1

p(ci|kj , x)p(kj |x), (7)

where p(kj |x) is estimated usingwij and p(ci|kj , x) does not change from IGSCR. The classification function for the DR
classification is

DR(x) = p(ci|x) =

K
∑

j=1

p(ci|kj , x)p(kj |x)

=

K
∑

j=1

p(ci|kj , x)
[

2e−
1
2 (x−U(j))T Σ−1

j
(x−U(j))

πB/2|Σj |1/2

]

K
∑

l=1

[

2e−
1
2 (x−U(l))T Σ−1

l
(x−U(l))

πB/2|Σl|1/2

] . (8)

An analog for the IS+ classification is unnecessary in CIGSCRas all samples will be part of pure clusters and will be classified.
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V. Association Significance Test

A key component in the IGSCR semisupervised clustering framework is the homogeneity test used to determine if a cluster
contains a statistically significant proportion of one class. This test provides a basis for rejecting a cluster for further refinement,
the second phase of the semisupervised clustering.

A cluster might be composed of more than one class because thecluster itself is in fact composed of more than one cluster.
A cluster might also contain more than one class because the initial clusters were determined in such a way as to prevent a
cluster from moving toward a particular class. It would be useful to determine which clusters are not spectrally pure (contain
more than one class with high probability) so that the cluster can be further refined, and if no refinement is possible (any number
of iteration ending criteria are met), the cluster should not be used in the classification model. Statistical hypothesis tests provide
a mechanism for determining class purity once an appropriate statistical model is selected for the data.

In hard IGSCR with hard clustering, the notion of a pure cluster is clear. Each sample will belong to one and only one
cluster. A cluster can be 100% homogeneous when all labeled samples contained within that cluster belong to only one class.
Although this is possible, it is unlikely that one cluster contains only one class because of inherent error in the labeling process
and because two different informational class categories can contain spectrally similar samples. Once a homogeneity level is
determined, a rigorous hypothesis test can be applied to select clusters that contain a certain percentage of one class,with that
percentage unlikely to be observed in a particular cluster randomly.

Using soft clusters introduces complications to assessingand determining cluster purity. The first question might be whether
a soft cluster can be spectrally pure, because being soft might indicate that clusters are naturally comprised of multiple classes.
However, just as the goal in IGSCR is to determine clusters that are representative of just one predominant class, that goal
holds in CIGSCR with soft clusters. Soft clusters are composed of different portions of each sample or pixel within an image,
meaning that each sample has a positive probability of beingin different individual classes or clusters. When samples labeled
with different classes have a positive probability of belonging to the same cluster, that does not indicate that the cluster really
contains two different classes, but rather perhaps that while the pixels have strong associations with different classes, there is
also a positive (although possibly small) probability thateach pixel actually belongs to or partially belongs to the majority class
within the cluster. Both cases (the cluster is confused or the cluster is not confused but the pixels labeled with different classes
still have small associations with the same class) are possible in soft clustering. The appropriate test for soft clusters is not which
pixels “belong” to a particular cluster (they all “belong” to some degree), rather how strongly pixels from different classes belong
to a particular cluster. If pixels from only one class have strong associations with a cluster when compared to pixels labeled with
other classes, then the cluster should be labeled with that most strongly associated class. In this manner, each pixel/sample is
associated by varying degrees with multiple spectrally pure clusters that are mapped to individual classes, ultimately producing a
soft classification output when each sample is then mapped todifferent individual classes with varying probabilities.

A. Distribution

Developing a hypothesis test to assess purity of clusters requires a random variable and knowledge of the distribution of
that random variable. In IGSCR, a cluster can be considered pure and labeled with a class if the number of labeled samples
belonging to the class is high compared to the number of labeled samples not belonging to the class. The random variable of

interest,Vc,j =
∑

i∈Ij

Vic, is the count of the number of labeled samples belonging to the cth class for a particularjth cluster

where i is the pixel index,Ij is the index set of labeled pixels in thejth cluster, andVic is the Bernoulli random variable
corresponding to theith pixel being associated with thecth class. A hypothesis test can be developed using the binomial
distribution, or the less computationally intensive normal distribution, which approximates the binomial distribution well when
the number of labeled samples is large.

In CIGSCR, the random variable and distribution are more complicated as there are class memberships (either 0 or 1) and
cluster memberships (between 0 and 1). Building a test on only the class memberships is not useful as each labeled sample will
have some positive probability of belonging to a particularcluster, making the results of the test the same for each cluster unless
memberships are also considered. In this case, the association of a sample to a particular class (the majority class, forexample)
is still a Bernoulli trial. Each pixel also has a weight vector, wi·, indicating the probability of membership to each cluster.The
random variable of interest is the sum of the memberships forthe cth class and weights to thejth cluster,

Yc,j = V1cW1j + V2cW2j + · · · + VncWnj ,
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Fig. 1. Histogram of cluster weights in one cluster,K=2
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Fig. 2. Histogram of cluster weights in one cluster,K=5

wheren is the total number of labeled samples. The labels of the classified pixels are independent of cluster assignment, making
an assumption thatVic andWij are independent reasonable. Furthermore, the training samples are labeled prior to clustering,
making the random variable of interest

Yc,j|(V1c, V2c, . . . , Vnc) =

n
∑

i=1

Wijδφ(i),c,

whereφ(i) is the label of theith pixel, and

δφ(i),c =

{

0 if φ(i) 6= c,
1 if φ(i) = c,

is the Kronecker delta. The probability density function (pdf) of Yc,j |(Vic, i = 1, . . . , n) =
∑n

i=1Wijδφ(i),c is the pdf of a sum

of individual cluster weights.
Figs. 1 and 2 contain experimental frequency histograms of weightswij for two clusters (K = 2) of a satellite image.

The distribution of the cluster weights appears to be multimodal, which is consistent with the data having multiple inherent
classes, indicating thatWij , i = 1, . . ., n, j = 1, . . ., K would not be identically distributed. A closed form distribution is
not readily available forWij , but a closed form distribution, or at least a reasonable approximate closed form distribution, for

W+j =
∑n

i=1Wij exists.

B. Normal Approximation to Yc,j

Suppose an imagex containsn pixelsx(i) ∈ ℜB, i = 1, . . ., n. ForK fixed cluster centersU (k) ∈ ℜB, k = 1, . . ., K, the
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assigned weight of theith pixel to thejth cluster is

wij =
1/||x(i) − U (j)||22

1
/

K
∑

k=1

||x(i) − U (k)||22

,

which is the inverse of the distance squared over the sum of the inverse squared distances. (Such inverse distance weights are
widely used, e.g., by Shepard’s algorithm for sparse data interpolation.) Note this is the specific case in the soft clustering
algorithm described above whenp = 2. In this case where a remotely sensed image is to be clustered, it is reasonable to assume
that x(i), i = 1, . . ., n are generated from a finite number of multivariate normal distributions. The act of clustering assumes
that the data are generated from a finite number of distributions, and remotely sensed earth data are assumed to be generated
from normal distributions. The following proof demonstrates that under these assumptions (pixels are generated from afinite
number of normal distributions), the Lindeberg condition is satisfied and therefore the central limit theorem applies to the sum of
a sequence of cluster weight random variables

∑n
i=1Wij . Let q = ψ(i) denote the distribution from whichX(i) was sampled.

Theorem: Let X(i) , i = 1, 2, . . ., beB-dimensional random vectors having one ofQ distinct multivariate normal distributions.
For i = 1, 2, . . . andj = 1, . . ., K define the random variables

Wij = Wj(X
(i)) =

1/||X(i) − U (j)||22
∑K

k=1 1/||X(i) − U (k)||22
,

whereK is the number of clusters andU (k) ∈ ℜB is thekth cluster center (and is considered fixed for weight calculation). Then
for any j = 1, . . ., K,

P

{

1

Bnj

n
∑

i=1

(Wij − aij) < x

}

→ 1√
2π

∫ x

−∞
e−

z2

2 dz

asn→ ∞, whereaij = E[Wij ], b2ij = Var[Wij ], andB2
nj =

∑n
i=1 b

2
ij .

Proof. Wij is a bounded(0 ≤ Wij ≤ 1) measurable function of a normal random variable, and is therefore a random variable

with finite mean and variance. Fixj for the remainder of the proof, and letq = ψ(i) denote which of theQ distributionsX(i) is
from. In order to prove

P

{

1

Bnj

n
∑

i=1

(Wij − aij) < x

}

→ 1√
2π

∫ x

−∞
e−

z2

2 dz,

it is sufficient to verify the Lindeberg condition [32]:

lim
n→∞

1

B2
nj

n
∑

i=1

∫

|x−aij|>τBnj

(x− aij)
2dFψ(i),j(x) = 0,

for any constantτ > 0 whereFψ(i),j(x) is the cumulative distribution function forWij .

For eachq, 1 ≤ q ≤ Q, defineIq = ψ−1(q) = {i | ψ(i) = q, 1 ≤ i ≤ n}, nq = |Iq |, and fori ∈ Iq let E[Wij ] = aij = αqj
and Var[Wij ] = b2ij = β2

qj . Now considering only the independent and identically distributed random variablesWij , i ∈ Iq, the
Lindeberg condition holds:

lim
nq→∞

1

nqβ2
qj

∑

i∈Iq

∫

|x−αqj |>τ√nqβqj

(x− αqj)
2dFqj(x)

= lim
nq→∞

1

β2
qj

∫

|x−αqj |>τ√nqβqj

(x− αqj)
2dFqj(x) = 0.

Sinceβqj is positive and finite, and the integral is finite, the limit ofthe integral is zero as
√
nqβqj → ∞.

Wij , i = 1, 2, . . . , are random variables fromQ iid distributions,Fqj , q = 1, . . . , Q, where the mean of theqth distribution is

αqj , the variance isβ2
qj , and the number of random variables from that distribution is nq, where

∑Q
q=1 nq = n. As n→ ∞ there
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Fig. 3. Pdf ofY (with sample mean subtracted and divided by the standard deviation) compared to a standard normal distribution.

is at least oneq for which nq → ∞. For this sequence of independent random variables fromQ distributions, the Lindeberg
condition is

lim
n→∞

1

B2
nj

n
∑

i=1

∫

|x−aij |>τBnj

(x− aij)
2dFψ(i),j(x)

= lim
n→∞

1
Q

∑

k=1

nkβ
2
kj

Q
∑

q=1

nq

·
∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x)

= lim
n→∞

Q
∑

q=1

nq
∑Q

k=1 nkβ
2
kj

·
∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x)

≤ lim
n→∞

Q
∑

q=1

1

β2
qj

∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x) = 0.

Since each varianceβ2
qj is positive and finite, andBnj =

√

n1β2
1j + · · · ,+nQβ2

Qj → ∞ as at least onenq → ∞, each integral

converges to zero asn→ ∞, and the Lindeberg condition is verified. Q.E.D.

Remark: The assumption that theX(i), i = 1, 2, . . ., are generated from a finite number of normal distributions is stronger than
necessary. This proof holds ifX(i), i = 1, 2, . . ., are generated from a finite number of arbitrary distributions.

Experimental results match this theoretical result, as illustrated by one experiment in Fig. 3.

C. Association Significance Test

The hypothesis test used in IGSCR to assess the significance of a cluster association to a class is based on the normal
approximation to the binomial distribution (4). The null hypothesis is that the true probability of a pixel belonging tothe
majority class (for the cluster of interest) is less thanp0, a user supplied value. IfP (Z > ẑ) < α, whereα is the user provided
Type-I error, then the null hypothesis is rejected. The nullhypothesis corresponds to the case when the cluster is impure, and
rejecting the null hypothesis equates with labeling the cluster pure; if the null hypothesis isnot rejected, the cluster is impure
and the cluster is “rejected.”

The hypothesis test for pure clusters in CIGSCR is differentas the Bernoulli trials are fixed and testing the probabilityp of
a success is no longer relevant. A pure soft cluster should have large weights for the majority class and comparatively small

9



weights for other classes. One possible hypothesis test compares the average weight for one particularcth class with the overall
average weight for all classes in thejth cluster. Starting with the normal approximation for the sum of the cluster weights, the
standard normal test statistic would be

ẑ =

∑

i∈Jc

(

wij − E[Wij ]
)

√

∑

i∈Jc

Var[Wij ]

,

whereJc is the index set of pixels prelabeled with thecth class. E[Wij ] and Var[Wij ] are unknown, but can be reasonably
approximated using the sample mean

wj =
1

n

n
∑

i=1

wij

and sample standard deviation

Swj
=

√

√

√

√

1

n− 1

n
∑

i=1

(wij − wj)
2.

The Wald statistic is then

ẑ =

√
nc(wc,j − wj)

Swj

, (9)

wherenc = |Jc| and

wc,j =
1

nc

∑

i∈Jc

wij .

Since ẑ is generated (approximately) by the standard normal distribution, a hypothesis test can be formed where the null
hypothesis is that the average cluster weights corresponding to thecth classare not significantly different from the average
cluster weights corresponding to all classes, and the alternate hypothesis is that the average cluster weights corresponding
to the cth classare significantly different from the average cluster weights corresponding to all classes. Again, since class
memberships are known a priori and all pixels have some positive membership with all clusters, testing for class memberships
is not meaningful, but testing for significantly different cluster weights is meaningful. IfP (Z > ẑ) < α, the probability of
observing the difference in the average cluster weights associated withc and the average cluster weights associated with all
classes in thejth cluster is significant, and the null hypothesis is rejected. If the null hypothesis isnot rejected, the cluster itself
is rejected as impure, and further refinement is necessary.

One potential issue with the above test is that the sample mean and standard deviation calculations assume the sample
is identically distributed, which is specificallynot the assumption in this case. A better hypothesis test acknowledges
that the data are not identically distributed, but are generated from a finite number of distributions. Since the number of
distributions and the distributions are unknown, the number of classes and the individual class labels, which are assumed to
correspond to inherent structure of the data, are used to approximate the true mean and variance of multiple clusters. Precisely,
assume that all labeled pixel indicesi with distribution indexψ(i) = q correspond to the same class labelφ(i) = c. If
i ∈ ψ−1(q), theni ∈ φ−1(c), but i ∈ φ−1(c) does not implyi ∈ ψ−1(q) (more than one distribution can map to one class), and
Jc = φ−1(c) = {i | φ(i) = c, 1 ≤ i ≤ n}. The above hypothesis test requires modification to use class information. In the
previous test,

∑

i∈Jc

wij =

n
∑

i=1

wijδφ(i),c,

ẑ =

n
∑

i=1

(

wijδφ(i),c − E[Wijδφ(i),c]
)

√

√

√

√

n
∑

i=1

Var[Wijδφ(i),c]

,
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n
∑

i=1

(wijδφ(i),c − E[Wijδφ(i),c])

=
n

∑

i=1

(wijδφ(i),c − aijδφ(i),c)

=
n

∑

i=1

(wijδφ(i),c − αqjδφ(i),c),

recalling that E[Wij ] = aij = αqj for i ∈ Iq. Assume whenφ(i) = c, and distribution indexq = ψ(i) corresponds toc = φ(i),
thenαqj can be approximated byγcj, the mean of classc = φ(i). Ideally αqj should be approximated directly, but there is no

way to knowψ−1(q), so essentiallyψ−1(q) ⊂ φ−1(c) is being approximated byφ−1(c). Unfortunately, using the sample mean
of the cth class and thejth cluster to approximateγcj and thereforeαqj breaks down because the sample mean of thecth class
and thejth cluster is both the random variable on the left side and theapproximation of the expected value on the right side of
the minus sign. This is illustrated below. Approximatingγcj (andαqj) with the sample mean for thecth class,

γcj ≈ wc,j =

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

,

the numerator of the test statistiĉz becomes
n

∑

i=1

(

wijδφ(i),c − wc,jδφ(i),c

)

=
n

∑

i=1

wijδφ(i),c −

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

n
∑

i=1

δφ(i),c

=
n

∑

i=1

wijδφ(i),c −
n

∑

k=1

wkjδφ(k),c = 0.

Thus this test statistic does not work because the value being tested is the same as the estimated mean for thecth class when
using the Kronecker delta instead of Bernoulli random variables. Recall thatYc,j =

∑n
i=1 VicWij , whereVic, i = 1, . . ., n are

known prior to classification/clustering. Consider now thetest statistic

ẑ =
yc,j − E[Yc,j ]
√

Var[Yc,j]
.

Fixing j andc, and recalling thatnq = |Iq|, the number of indicesi for whichX(i) has theqth distribution,

E[Yc,j] = E

[

n
∑

i=1

WijVic

]

=
n

∑

i=1

E[WijVic]

=

n
∑

i=1

E[Wij ]E[Vic] =

Q
∑

q=1

nqαqjpc

= pc

Q
∑

q=1

nqαqj ,
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wherepc is the probability thatVic = 1. Assuming all the pixels are independent and recalling that Var[Wij ] = b2ij = β2
qj where

i ∈ Iq,

Var[Yc,j ] = Var

[

n
∑

i=1

WijVic

]

=

n
∑

i=1

Var[WijVic]

=

n
∑

i=1

(

E[W 2
ijV

2
ic] − E[WijVic]

2
)

=

n
∑

i=1

(pcE[W 2
ij ] − p2

ca
2
ij)

=
n

∑

i=1

(pc(b
2
ij + a2

ij) − p2
ca

2
ij)

=

Q
∑

q=1

nq
(

pc(β
2
qj + α2

qj) − p2
cα

2
qj

)

= pc

Q
∑

q=1

nq(β
2
qj + (1 − pc)α

2
qj).

In the above formula,pc would be approximated by its maximum likelihood estimatenc/n = |Jc|/n. In order to estimateαqj ,

assume that theqth distribution corresponds to thecth class,ψ−1(q) ⊂ φ−1(c), and

αqj ≈ wc,j =
1

nc

∑

i∈Jc

wij , c = 1, . . . , C,

whereC is the number of classes. Then

E[Yc,j ] = pc

Q
∑

q=1

nqαqj ≈ pc

C
∑

d=1

nd ·
1

nd

∑

i∈Jd

wij

=
nc
n

n
∑

i=1

wij = ncwj ,

and

Var[Yc,j] = pc

Q
∑

q=1

nq(β
2
qj + (1 − pc)α

2
qj)

≈ pc

C
∑

d=1

nd(S
2
wd,j

+ (1 − pc)w
2
d,j),

where

S2
wd,j

=
1

nd − 1

∑

i∈Jd

(wij − wd,j)
2.

Using these expressions for the mean and variance ofYc,j , the Wald statistic is

ẑ =
yc,j − ncwj

√

√

√

√pc

C
∑

d=1

nd
(

S2
wd,j

+ (1 − pc)w
2
d,j

)

, (10)

and the null hypothesis is rejected ifP (Z > ẑ) < α.
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VI. Iteration

Together with the cluster association significance test, the iteration forms the semisupervised clustering frameworkin
CIGSCR. The application of a hypothesis test determines which clusters should be used for classification, and an iteration works
to produce a set of associated clusters with each class beingrepresented by at least one associated cluster. This is accomplished
by introducing new clusters that are likely to be associated, and when necessary, are associated with a class not already
represented by a cluster.

In IGSCR, pure hard clusters are removed from the image that is clustered in subsequent iterations, focusing further
refinement on clusters that failed to pass the purity test.K clusters are used for each iteration, presumably producingsmaller
clusters as less data is divided into the same number of clusters. The underlying assumption is that clusters that fail topass
the purity test could actually be composed of multiple clusters that would pass the purity test individually, and clustering the
remaining data intoK more clusters will reveal these smaller clusters. This method will not directly work on soft clusters as
soft clusters cannot be removed simply by removing any sample associated with a pure cluster—all samples have a positive
probability of belonging to any particular cluster.

In CIGSCR, unassociated clusters are targeted for refinement by using their information to create new clusters that will
likely be associated. IGSCR is effectively locating smaller clusters that when combined to form a larger cluster would have been
rejected. IGSCR accomplishes this by finding the same numberof clusters (K) in the original dataset and then in successively
smaller subsets of that original dataset. A similar approach that would locate smaller pure clusters in rejected clusters is
“splitting” a cluster, employed by Ball and Hall [37] in ISODATA. Clusters are split by partitioning a cluster into two new
clusters and recalculating new means. Soft clusters are represented by cluster means, and splitting a soft cluster would equate
with replacing one cluster mean with two cluster means (calculated based on data associated with a cluster).

A cleaner algorithmic solution is to add one new cluster using information contained in the target cluster (the cluster that
would be split), which effectively splits the cluster into two clusters. When using a clustering algorithm based on objective
function (6), adding a new cluster guarantees a smaller function value (shown below) whenp = 2. Using only the labeled
samples belonging to the majority class (as determined in the cluster association significance test) to seed a new cluster would
have the effect of pulling the new cluster toward those samples. Once another clustering iteration is completed, the targeted
cluster would produce one cluster that is likely to be associated with the majority class and another cluster that retains relatively
strong associations with all other classes. In CIGSCR, oncethe association significance test is performed, if at least one cluster
is unassociated (and there are no unassociated classes), the cluster with the lowest value of̂z is used to generate a new cluster.
The new cluster mean is determined using

U (K+1) =

∑

i∈φ−1(ck)

wikX
(i)

∑

i∈φ−1(ck)

wik
, (11)

wherek is the cluster with the lowest value of̂z, ck is the majority class in clusterk, and recall thatφ−1(c) is the index set of
labeled samples whose label isc. This formula also works when a class other than the majorityclass is used to seed a new
cluster mean.

A shortcoming in IGSCR is that there is no guarantee that any clusters will be created and labeled with any particular class,
and if a particular class is not represented by a cluster, thedesired classification cannot be performed. In CIGSCR, thisissue
is addressed by adding a new cluster using information from aparticular class if that class is not represented in the associated
clusters. If a classc is not represented in the associated clusters, the cluster that is closest to being associated withc is used to
generate a new cluster using (11) withck = c. The “closest” cluster is determined to be the cluster with the highest ratio of the
average membership of classc to the average membership of the majority class.

When there are classes not represented by associated clusters and there are unassociated clusters, only one method can be
used to determine the creation of a new cluster. If a cluster is unassociated, it is simply not used in classification. It ismore
important to have each class represented by the associated clusters than to refine an unassociated cluster, because the desired
classification cannot be applied unless all classes are represented by associated clusters. Therefore adding a new cluster so that
all classes will be represented takes precedence over adding a new cluster because an existing cluster is unassociated.

Finally, the theorem proving that adding one cluster mean will result in a smaller value of (6) is presented below.

Theorem: Given an integerK > 0, positive real numbersρij , i = 1, . . ., n; j = 1, . . ., K + 1, defining a pointρ ∈ ℜn×K+1,
and the objective function

J (K)(ρ) =

n
∑

i=1

K
∑

j=1

w2
ijρij ,
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for K clusters where

wij =
1/ρij
K

∑

k=1

1/ρik

,

the objective function

J (K+1)(ρ) =

n
∑

i=1

K+1
∑

j=1

ŵ2
ijρij ,

for K + 1 clusters where

ŵij =
1/ρij

K+1
∑

k=1

1/ρik

,

satisfies
J (K+1)(ρ) < J (K)(ρ).

Proof: Note that theρij do not change with the addition of the(K + 1)st cluster prototype, however̂wij < wij for j < K + 1

because the denominator of̂wij has an additional term. LetJ (K)
i =

∑K
j=1 w

2
ijρij andJ (K+1)

i =
∑K+1

j=1 ŵ2
ijρij . It is sufficient

to show thatJ (K+1)
i < J

(K)
i for eachi to prove thatJ (K+1) < J (K).

Let

S1 =
K

∑

k=1

1/ρik and S2 =
K+1
∑

k=1

1/ρik.

Then

w2
ij =

(1/ρij)
2

S2
1

and ŵ2
ij =

(1/ρij)
2

S2
2

.

J
(K)
i − J

(K+1)
i =

K
∑

j=1

(1/ρij)

S2
1

−
K+1
∑

j=1

(1/ρij)

S2
2

=
S2

2

∑K
j=1(1/ρij) − S2

1

∑K+1
j=1 (1/ρij)

S2
1S

2
2

.

Examining only the numerator in the previous term,

(S1+(1/ρi,K+1))
2
K

∑

j=1

(1/ρij)

− S2
1





K
∑

j=1

(1/ρij) + (1/ρi,K+1)





= (S1 + (1/ρi,K+1))
2S1 − S2

1(S1 + (1/ρi,K+1))

= S3
1 + 2S2

1(1/ρi,K+1) + S1(1/ρi,K+1)
2

− S3
1 − S2

1(1/ρi,K+1)

= S2
1(1/ρi,K+1) + S1(1/ρi,K+1)

2

> 0

yielding

J
(K+1)
i < J

(K)
i .

Q.E.D.
Assuming that the clustering algorithm locates a local minimum point of the objective function, the combination of the

clustering algorithm and this cluster prototype addition are guaranteed to move toward a smaller objective function value. If
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left unchecked, infinitely many clusters could be added, andthe algorithm would continue to find smaller objective function
values. The association significance test plays a crucial role in the termination of this iterative process. Once all clusters pass
the association significance test and each class has at leastone associated cluster, the iteration stops because the higher level
objective has been met: clusters that significantly correspond to all classes have been located. The iteration also terminates
when a maximum number of clusters is reached, and only those clusters that pass the association significance test are usedfor
classification.

VII. Conclusions

This paper introduced a hypothesis test that can be used to evaluate the suitability of soft clusters for classification and
suggested an iteration scheme that can be used to refine soft clusters. This hypothesis test was based on a normal approximation
to a sum of random variables, and this approximation was proved reasonable under certain assumptions. This paper also provided
a proof that the proposed soft cluster iterative refinement scheme will improve an objective function value when the softk-means
clustering algorithm is used. This association significance test and iteration will be necessary to convert IGSCR to usesoft
clustering to produce soft classifications. CIGSCR, the classification algorithm that incorporates the soft cluster evaluation and
refinement presented here, is described in detail in Part 2. Part 2 also provides experimental results for IGSCR and CIGSCR.
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