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Abstract—This paper outlines the changes necessary to coest the iterative guided spectral class rejection (IGSCR)
classification algorithm to a soft classification algorithm IGSCR uses a hypothesis test to select clusters to use in
classification and iteratively refines clusters not yet setgded for classification. Both steps assume that cluster andass
memberships are crisp (either zero or one). In order to make aft cluster and class assignments (between zero and one),
a new hypothesis test and iterative refinement technique arentroduced that are suitable for soft clusters. The new
hypothesis test, called the (class) association signifiaantest, is based on the normal distribution, and a proof is soplied
to show that the assumption of normality is reasonable. Softlusters are iteratively refined by creating new clusters usg
information contained in a targeted soft cluster. Soft cluser evaluation and refinement can then be combined to form a
soft classification algorithm, continuous iterative guidel spectral class rejection (CIGSCR).

I. INTRODUCTION

The classification of remotely sensed imagery is essergiahfany remote sensing applications such as natural resourc
management, change detection, species identification,@&tisp classifications assign each pixel or sample to ongsdla the
particular classification scheme, which can be interpretegicking the class that has the highest probability of aiairtg the
sample (when probability models are used for classificatigdternatively, soft classifications contain information possible
memberships in multiple classes, not just the most likehssl Soft or subpixel classifications are of consideralireast in
the remote sensing community as this type of classificatam effectively model geographic data whose natural boueslar
rarely coincide with pixel boundaries. Furthermore, pixehn also contain multiple species that are commingledliriga
to classification difficulty. Individual classes within tldassification scheme can have overlapping electromagreftectance
spectra, making it difficult to discriminate between thedesses. Scientists have successfully used soft claswficéor
applications such as land cover mapping [1], vegetationpimgp[2], and the classification of snow [3], to hame a few. Hap
methods for obtaining soft classifications of remotely senisnages include fuzzy-means [4] and spectral unmixing [5].

Semisupervised classification has received a good dealt@itan in the remote sensing community as remote sensing
datasets are characterized by a large number of dimengiyperspectral imagery) and limited training data. Whilairting
data is expensive to obtain in any discipline, it is espéciab in remote sensing as the labeling of image data typicall
requires extensive knowledge of the study area, multipka daurces, and/or physically visiting the study area ttifle
classes. Semisupervised learning can be used to supplemaheled training set with unlabeled data to mitigate thghdés
phenomenon (overfitting of a classification when the trgjnilata is insufficient for the number of dimensions presenthin
dataset to be classified) [6][7].

Semisupervised classification algorithms such as thetiiterguided spectral class rejection (IGSCR) algorithn},[$3,[10])
have the additional benefit of providing a high level of austion compared to strictly supervised classification atgors. In
remote sensing, informational class categories that maka ulassification scheme are defined prior to classificatioh are
identified by humans, whereas spectral classes or clustees mathematical properties (such as mathematically heremus
spectral waveforms) and are more difficult for humans to tifien For example, suppose a forest/nonforest classiticats
desired, and forest and nonforest are the informationakatategories. Each informational class is composed ofpteuttpectral
classes that can be used in supervised classification, @thdividual spectral classes may not be spectrally sinmidaeach
other despite all being part of one informational class. <ier the wide range of tree species that could potentialikerup a
forest informational class in a particular image. An unsujzed technique such as clustering can identify individlasses that
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are mathematically homogeneous, and has the additionpépyoof guaranteeing that all types of land cover preseat dtataset
are represented in the spectral classes (clusters). Bskis tae nontrivial for humans to perform when identifyingecpal
classes for supervised classification. Therefore semigigeel classification algorithms that involve clusterirap@utomatically
identify and label spectral classes, providing significamiomation over supervised or unsupervised classificatiome.

The purpose of this work is to develop a semisupervised softering framework, analogous to the framework in IGSCR,
that is capable of producing soft classifications of renyo$einsed images. This framework will potentially affect sarpervised
classification algorithms that have labeled data and imvalstering. Soft clustering retains all information netjag the
proximity of data points to clusters, and will thereforeeditly produce a soft classification and will potentially yide better
training spectral classes for a supervised decision rulée major challenges to converting the discrete IGSCR to ly ful
continuous algorithm producing soft classification are amwerting the underlying inherently discrete models argb@athms
to suitable continuous models and algorithms while presgrthe automated spectral class identification propedfed§&SCR.
More specifically, a hypothesis test that is fundamentalG8CR is based on the discrete binomial probability distidou A
hypothesis test based on a new continuous probabilityilolision is necessary in continuous IGSCR (CIGSCR). IGSCé&s i
iterative cluster refinement framework that breaks downeursbft clustering, and therefore a new iterative clusténeenent
method is developed for CIGSCR. Furthermore, soft clusgeallows for the magnification of distances using radialctions
that changes soft clusters but would have no effect on haistearis.

The remainder of the paper is organized as follows. Sectigrviews related literature on semisupervised learning an
semisupervised clustering. Section Il describes IGSCRiateil, and Section IV describes CIGSCR. Section V intreduc
the association significance test, a hypothesis test baseal wew distribution that will be suitable for evaluating tblass
associations to soft clusters. Section VI discusses clsangeessary for the iterative refinement of soft clustersti&e VI
concludes the paper.

II. BACKGROUND

Semisupervised learning occurs when unlabeled data arkinsaddition to labeled data to produce a classification.[11]
Semisupervised learning can be more accurate than supérigarning (for a given set of labeled data) if knowledge haf t
underlying data distributiop(z) (gained through the unlabeled data) contributes to knaydeof the conditional distribution
p(c|z), wherec is the class label for data point[11]. When assumptions aboptc|z) are incorrect, using information about
p(z) can actually degrade classification accuracy [11].

An assumption commonly used in semisupervised learningas if two particular points in a dense region are “close,”
their corresponding class labels should also be “close.théncontext of clustering, this indicates that two pointatamed in
the same cluster are likely to be in the same class, which dsvkras the “cluster assumption” [12]. Semisupervised legrn
methods that invoke the cluster assumption include the adeglioposed in [13]. Unfortunately, this assumption is stmes
not true as clusters are not necessarily composed of ons. clasveral clustering methods have been suggested thatseek
form clusters based on both traditional clustering créitend secondary criteria that could include a correlatidwéen clusters
and classes. Clustering methods that use additional irdtom to influence clusters are known asnisupervised clustering
(distinct from semisupervised learning) methods.

One method that seeks to influence the formation of clussectustering with constraints. In these methods, congaire
provided in the form of must-link constraints where two sésshould appear in the same cluster and cannot-link Gntsr
where two samples should not appear in the same cluster.eTdwesstraints are used with a traditional clustering methach
as k-means, and the constraints can be strictly enforced #tgoidally [14] or by using a modified objective function [15]
When using an objective function, there is no guaranteeatabnstraints will be satisfied. Basu et al. [16] suggestedethod
by which constraints that are informative can be selectadl wsed in clustering, and Bilenko et al. [17] used constsatot
learn a distance metric that would provide a good clusteririglkidi et al. [18] use constraints to measure the qualityao
clustering and tune Euclidean distance weight parametefiand the “best” clustering. Bouchachia and Pedryz [19]ddtrced
a soft semisupervised clustering method with an objectivection that accounts for prior information in the form obs$
labels. Having class labels can be viewed as a special casaviofg constraints as must-link and cannot-link constsagan be
generated from the labeled data. Other methods that usécaddiinformation to form clusters include informationtdeneck
([20], [21], [22]) and discriminative clustering [23]. The algorithms form a clustering objective function that suras
distortion of the auxiliary data due to clustering.

Semisupervised learning has been used in the remote secsmgunity for some time to supplement limited training
samples in the classification of remotely sensed images. appdication of semisupervised learning to correct clasatifbn
overfitting was studied in [7]. Jeon and Landgrebe used sgraisised techniques (including clustering) to perforassifications
on entire images when only one class is of interest and ldjek]. Multiple semisupervised methods based on suppatove
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machines (SVM) have been developed for the classificatiomyperspectral imagery ([25], [26]), ando@ez-Chova et al. used
clustering and SVMs to form a semisupervised classificatimthod [27]. IGSCR also utilizes clustering in a semisuse

framework to classify remotely sensed images ([8], [9],]]1®ue to its high accuracy and automation, IGSCR is a fratjye
used hybrid classification method in the remote sensing aamitgn([28], [29], [30], [31]).

III. IGSCR

IGSCR is a classification method that uses clustering to rgéme classification model(c;|x) wherex is a multivariate
sample to be classified ang, i =1, ..., C, is theith class where there ar@ classes in the classification scheme. IGSCR uses
clustering to estimatg(k;|x) in the expression

K K

pleile) = plei, kjle) = > pleilk;, 2)p(k;|z), (1)
j=1 j=1
wherek;, j =1, ..., K, is thejth cluster out ofK total clusters. IGSCR also uses the clusters to train a idecisile using

Bayes’ theorem [32]

pliyl) = LEEIPS) )

> " p(alki)p(ks)
=1

The prior probabilities of the clustefgk;) are assumed to be equal.
Clustering is performed using a discrete clustering methath ask-means that minimizes the objective function

subject to

wherew;; € {0,1} is the value in theth row and;jth column of the partition matri¥¥ € R**X, U() € R is the prototype
for the jth clusterk;, () € RB is theith data point, angh;; = ||z — U ||3. The clustersk,, ..., kx form a partition of
{z(}n_ . The algorithm fork-means requiregs initial cluster prototypes and iteratively assigns eacima to the closest
cluster using
1, if j = argminp,;,
Wi = 1<j<K
0, otherwise,

followed by the cluster prototype (mean) recalculation

n n
U9 =3 (wija) / 3wy
i=1 =1
once W has been calculated [33]. This process, guaranteed tortatenin a finite nhumber of iterations, continues until no

further improvement is possible, terminating at a localimim point of (3).

IGSCR uses labeled data in a semisupervised clusteringefrank to locate clusters that map to classes in a given
classification scheme. IGSCR requires a labeled set ofitighidata comprised of individual samples within the imagebéo
classified and corresponding class labels. Rather tham tisenlabeled data to train a decision rule directly, thererithage is
clustered, thereby capturing the inherent structure afhalldata and not just the labeled samples. The clusterssexprspectral
classes, and in remote sensing, each spectral class ideaflg to exactly one class in the final classification schemeceO
clusters are generated, each cluster must be mapped to asseal rejected as impure. While theoretically each clugteuld
contain samples belonging to only one informational clagspractice clusters (spectral classes) that contain pnétmtly
samples of one class can contain a few samples from othesesldmcause of inherent errors. However, if a cluster amtab
many samples from different classes, the cluster itselbissitlered confused and should not be labeled with one clagsure
clusters are rejected and can be further refined in theiiterptirt of the algorithm.
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The test for cluster purity is performed using the labelaning set. IGSCR produces a hard classification and uses
a discrete clustering method where each sample is assigneractly one cluster. Let. ; be the binomial random variable
denoting the number of labeled samples assigned tgjtthecluster that are labeled with a particukgh class. Letp be the
user-supplied cluster homogeneity threshald=(.9 would indicate a cluster is 90% pure with respect to the nitgjetass), and
let o be the user-supplied acceptable one-sided Type-l erromfstatistical hypothesis test. Thendfis the majority class
represented in thgth cluster, thejth cluster is rejected iP(Z < 2) < 1 — a whereZ is a standard normal random variabie,
is the number of labeled samples in tfté cluster, and

Ve,j — MP

Vmp(L—p)

(Typically a continuity correction of 0.5 is added in the renator of (4).)

If a cluster is rejected, the samples making up that clustarbe reclustered in subsequent iterations. All samplesbgaig
to pure clusters are removed from the image being clusteesijiting in only samples belonging to impure clusters gein
reclustered. Once more clusters are generated, thosersl@st evaluated for purity, removed from the image, ansteting is
performed again until termination criteria are met. All gdes can belong to pure clusters, leaving no remaining sgsrpl be
clustered, no pure clusters could be found in the previaration, meaning that the clustering would continue to bfopmed
on the same data, resulting in the same impure clustersnf@sgueterministic cluster seeding), or a set number ofitens
can be reached, resulting in termination of the iterationteNthat deterministic seeding ensures that the iteratidirtesminate,
even without specifying a maximum number of iterations.

Once the iterative clustering is complete, one or more ifiea8ons is performed. The first classification is calle@ th
iterative stacked (IS) classification because it is theltrafucombining or “stacking” all cluster assignments ovdrigerations
(each sample will be assigned to at most one accepted glustesume that all samples not assigned to an accepted rchrste
combined to form one clustéry 1, and the class assignment for that cluster is “unclassified’-, ;. Then the IS assignment
for a pixel using (1) is

2:

(4)

K+1
IS(z) = argmaxp(¢;|z) = argmax Z p(cilkj, x)p(k;|z),
1<i<C+1 1<+
where
|1, if k; is labeledc;,
pleilky, z) = {O, otherwise,
and

p(kjlz) = {o, otherwise,

since cluster assignments are discrete.
The second possible classification, the decision rule (DBR3sdication, uses the pure clusters to form a decision. rule
Recall in (2) that

p(x|k))
Sicy p(alks)

when all thep(k;) are equal. Traditionally, the maximum likelihood decisime, assuming a multivariate normal distribution

p(kjlz) =

plalks) = 2m B/ 5|72 30 VIIR U,

is used whereX; is the covariance matrix of thgth cluster [34]. Since IGSCR produces hard classificatidhs, full
probability need not be calculated as determining only tluster associated with the maximum probability is necgssahe

DR classification function is
K

DR(z) = argmaxp(c;|z) = argmaxd _ p(ci|k;, x)p(k;|z), (5)
1<i<C 1<i<c T
where

1, if j =argmaX—In|Z;| — (z = UD)TS (2 — UW)),
p(kjlz) = 1<j<K :
0, otherwise.



A final classification, the iterative stacked plus (IS+) slfisation, combines the DR and IS classifications. If a sanipl
labeled as unclassified in the IS classification, the DR claige is used for the IS+ classification, otherwise the ISshalue
is used for that particular sample. The IS+ classificatiancfion is

IS(x), if x ¢ ki1,
IS+(w) = {DR( ), otherwigg1

IV. CIGSCR

Continuous IGSCR (CIGSCR) uses a similar semisupervisastaring framework to the one established in IGSCR to
produce a soft or probabilistic classification instead ofaadhclassification, and uses continuous algorithms and Imadstead
of discrete algorithms and models. Recall in (1) théat;|k;, z) andp(k;|z) are either O or 1 (discrete) in practice in IGSCR.
p(cilkj, ) is necessarily discrete because while several clustere@aprise one class, only one class (theoretically) canl labe
the members of a particular cluster, but there are no simdatrictions onp(k;|x). In fact, the clustering algorithm and the
maximum likelihood decision rule indicate positive proliitibs that a sample is associated with each cluster, bG8 makes
an assignment only to the cluster with the highest prokigbili

Consider a soft clustering algorithm that minimizes theeoti]'/e function [35]

n
=> Z w?.pi;  subject to
i=1j

K (6)
> wi; = 1 for eachi
j=1

wherew;; € (0,1) is the value in theth row and;jth column of the weight matri¥¥’ € R®"*¥ (analogous to the partition matrix

W in (3)), UY) € RF is the jth cluster prototypep > 1, and p;; = p(z?, UW) = ||z() — UV |3 is the Euclidean distance

squared. The algorithm that minimizes this objective figrcis similar to that ofk-means in that it first calculates

(1/pi) /Y
ij =
Z(l/pik)l/(pfl)
k=1
for all + andj followed by calculating updated cluster prototypes

Ul — iw%x(i) / iwfj
=1 i=1

This iteration (recalculation of the weights followed bycaéculation of cluster prototypes, following by recaldida of the
weights, etc.) is guaranteed to converge (with these defisitof p;;, Uo), andw;;) for p > 1 [36].

With a continuous alternative to the discrete hypothesis &md a continuous alternative to the IGSCR iterative efust
refinement that follows in Sections 5 and 6, the classificatimction for IS classification is

IS(x) = p(eilx) = Zp (cilkj, z)p(k;|z), (7)

j=1
where p(k;|z) is estimated usingu;; and p(c;|k;,«) does not change from IGSCR. The classification function fer DR
classification is

K
DR(z) = p(ci|z) = Zp(ci|kj,x)p(kj|x)
Jj=1

K % —1(z U(J))T Ha—UW)
j;p(ci“fjax) [ 7T_B/2|Ej|1/2 ]
= i [2eé(IU(l))T211(IU(l))] . (8)

B/2 1/2
=1 BT Y

An analog for the IS+ classification is unnecessary in CIGSGRII samples will be part of pure clusters and will be cfassi
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V. ASSOCIATION SIGNIFICANCE TEST

A key component in the IGSCR semisupervised clustering éwonk is the homogeneity test used to determine if a cluster
contains a statistically significant proportion of one slaghis test provides a basis for rejecting a cluster fohntrefinement,
the second phase of the semisupervised clustering.

A cluster might be composed of more than one class becausgutter itself is in fact composed of more than one cluster.
A cluster might also contain more than one class becausenttial iclusters were determined in such a way as to prevent a
cluster from moving toward a particular class. It would befukto determine which clusters are not spectrally pureni@io
more than one class with high probability) so that the cluséa be further refined, and if no refinement is possible (amalrer
of iteration ending criteria are met), the cluster shoultl®used in the classification model. Statistical hypothtesits provide
a mechanism for determining class purity once an apprapsiatistical model is selected for the data.

In hard IGSCR with hard clustering, the notion of a pure @duss clear. Each sample will belong to one and only one
cluster. A cluster can be 100% homogeneous when all labalegbles contained within that cluster belong to only onesclas
Although this is possible, it is unlikely that one clustemtains only one class because of inherent error in the ladpgiiocess
and because two different informational class categorés aontain spectrally similar samples. Once a homogeneitsl lis
determined, a rigorous hypothesis test can be applied &xtselusters that contain a certain percentage of one cha#s that
percentage unlikely to be observed in a particular clustedomly.

Using soft clusters introduces complications to assesamigdetermining cluster purity. The first question might bether
a soft cluster can be spectrally pure, because being sofitriridicate that clusters are naturally comprised of mldtiglasses.
However, just as the goal in IGSCR is to determine clusteas #ne representative of just one predominant class, thalt go
holds in CIGSCR with soft clusters. Soft clusters are coredasf different portions of each sample or pixel within an gaa
meaning that each sample has a positive probability of beirgjfferent individual classes or clusters. When sampédeled
with different classes have a positive probability of bejimig to the same cluster, that does not indicate that theeczlusally
contains two different classes, but rather perhaps thatewhe pixels have strong associations with different @asshere is
also a positive (although possibly small) probability tkath pixel actually belongs to or partially belongs to thgamity class
within the cluster. Both cases (the cluster is confused erclaster is not confused but the pixels labeled with difi¢rdasses
still have small associations with the same class) are Iplessi soft clustering. The appropriate test for soft cltsis not which
pixels “belong” to a particular cluster (they all “belongd some degree), rather how strongly pixels from differeassks belong
to a particular cluster. If pixels from only one class haversyj associations with a cluster when compared to pixelsléabwith
other classes, then the cluster should be labeled with tloat strongly associated class. In this manner, each paxeplke is
associated by varying degrees with multiple spectrallyeprlusters that are mapped to individual classes, ultimgedducing a
soft classification output when each sample is then mappédferent individual classes with varying probabilities.

A. Distribution

Developing a hypothesis test to assess purity of clusteygines a random variable and knowledge of the distributibn o
that random variable. In IGSCR, a cluster can be consideuved and labeled with a class if the number of labeled samples
belonging to the class is high compared to the number of éabshmples not belonging to the class. The random variable of
interest, V.. ; = Z Vie, 1S the count of the number of labeled samples belonging ¢octi class for a particulagjth cluster

icl;
where is the pixel index,/; is the index set of labeled pixels in thih cluster, andVj. is the Bernoulli random variable
corresponding to théth pixel being associated with theh class. A hypothesis test can be developed using the batomi
distribution, or the less computationally intensive normiigtribution, which approximates the binomial distrilout well when
the number of labeled samples is large.

In CIGSCR, the random variable and distribution are more garated as there are class memberships (either 0 or 1) and
cluster memberships (between 0 and 1). Building a test oy thel class memberships is not useful as each labeled saniple w
have some positive probability of belonging to a particalaister, making the results of the test the same for eacleclusless
memberships are also considered. In this case, the assnaidita sample to a particular class (the majority class.ef@ample)
is still a Bernoulli trial. Each pixel also has a weight vacte,., indicating the probability of membership to each clusiine
random variable of interest is the sum of the membershipsh®cth class and weights to thigh cluster,

}/C.,j = VchIj + ‘/QCWQj + -+ Vnanj,
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Fig. 2. Histogram of cluster weights in one clustar=5

wheren is the total number of labeled samples. The labels of thesiflad pixels are independent of cluster assignment, making
an assumption thal;. and W;; are independent reasonable. Furthermore, the traininglsarare labeled prior to clustering,
making the random variable of interest

Yol (Vie, Vaes -+ Vie) = > Wijb(ay e
i=1

whereg(i) is the label of theith pixel, and

5 :{OWMU#Q
e T 1if ¢(i) =,
is the Kronecker delta. The probability density functiomlfjpof Y. ;|(Vie,i = 1,...,n) = 31", Wi;jd4(;),c is the pdf of a sum
of individual cluster weights.

Figs. 1 and 2 contain experimental frequency histograms eifjlns w;; for two clusters {{ = 2) of a satellite image.
The distribution of the cluster weights appears to be muateai, which is consistent with the data having multiple irgms
classes, indicating thdt’;;, i =1, ..., n, j =1, ..., K would not be identically distributed. A closed form distrilon is
not readily available folV;;, but a closed form distribution, or at least a reasonablemmate closed form distribution, for
Wi = > Wi; exists.

B. Normal Approximation to Y, ;
Suppose an image containsn pixels z() € RE, i =1, ..., n. For K fixed cluster center&¥) ¢ R5, k=1, ..., K, the
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assigned weight of théh pixel to thejth cluster is
|l® - U3

iy — K )
1/ 110 - U8
k=1

which is the inverse of the distance squared over the sumeofriferse squared distances. (Such inverse distance weight
widely used, e.g., by Shepard’s algorithm for sparse datrpolation.) Note this is the specific case in the soft elsy
algorithm described above when= 2. In this case where a remotely sensed image is to be clusiéisdeasonable to assume
thatz(?), s = 1, ..., n are generated from a finite number of multivariate normatrithstions. The act of clustering assumes
that the data are generated from a finite number of distobstiand remotely sensed earth data are assumed to be gdnerat
from normal distributions. The following proof demonstatthat under these assumptions (pixels are generated friomtea
number of normal distributions), the Lindeberg conditiersatisfied and therefore the central limit theorem apptiegbhe sum of

a sequence of cluster weight random varialfé , W;;. Let ¢ = (i) denote the distribution from whick () was sampled.

Theorem: Let X | i =1, 2, ..., be B-dimensional random vectors having one@fdistinct multivariate normal distributions.
Fori=1,2,...andj =1, ..., K define the random variables

i 1/]|X® - UY3
Wiy = Wi(X0) = ¢ RIS
Dk VIXW = UW[3

whereK is the number of clusters arid®) € R7 is thekth cluster center (and is considered fixed for weight catai. Then

foranyj =1, ..., K,
R Y .
P{— Wii —a;;) <x — e 2dz
{an Z( 2 } NGr /_OO

=1
asn — oo, wherea;; = E[Wj;], b; = Var[Wi;], and B, ; = >, b7,
Proof. W;; is a bounded0 < W;; < 1) measurable function of a normal random variable, and isetbez a random variable

with finite mean and variance. Fixfor the remainder of the proof, and lgt= (i) denote which of the) distributionsX ) is
from. In order to prove

1 — 1 z L2
P M/l_ i - d7
{anZf aﬂ)”}*m/_ooe n

nlirrgo BLQ Z/ (x — aij)Qde(i)J(:c) =0,
nj ;—1 J|x—aij|>7By;
for any constant > 0 whereF, ;) ;(z) is the cumulative distribution function fdi’;;.
For eachy, 1 < ¢ < Q, definel, = v~ (q) ={i | v(i) = ¢,1 <i < n}, ng = |I,|, and fori € I, let EW;;] = a;; = ay;
and VafW;;] = b?; = 32;. Now considering only the independent and identicallyritisted random variable®’;;, i € I,, the
Lindeberg condition holds:

. 1
hin 7 / (z — aqj)zquj (z)
1a 00 Mgy iel, ¥ [e—aai|>7\/MqBqj
1
= lim —- (x — ag;)?dF,j(x) = 0.

na—o0 |z —aq; |>7/MqBaj
Sinceg,; is positive and finite, and the integral is finite, the limittoe integral is zero ag/m,3,; — oo.
Wij;,i=1,2,..., are random variables froif iid distributions,F,;,q = 1,. .., Q, where the mean of thgth distribution is
agj, the variance is32;, and the number of random variables from that distribution,j, whereZ?:1 ng =n. Asn — oo there
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Fig. 3. Pdf ofY" (with sample mean subtracted and divided by the standardtitay) compared to a standard normal distribution.

is at least oney for which n, — co. For this sequence of independent random variables fpufistributions, the Lindeberg
condition is

1 n
lim Z/ (x — aij)zde(i)J(:z:)

n—oo Bn; i—1 “lz—aij|>TBn;

(z — O‘qj)zquj (z)

|t—aq;|>TBnj

. n
= lim 4

Q 2
nee = D oy By

(z — O‘qj)2quj (z)

‘I*th]“>TBn]‘

nh_)rrgo Z / (x — agj)?dF,(x) = 0.

—0qj|>TBnj

Since each variance?; is positive and finite, and,,; = \/nlﬂlzj + -+, +n@fh,; — oo as at least one, — oo, each integral
converges to zero as — oo, and the Lindeberg condition is verified. Q.E.D.

Remark: The assumption that th& (), ; = 1, 2, ..., are generated from a finite number of normal distributi@nstionger than
necessary. This proof holds X9, s =1, 2, ..., are generated from a finite number of arbitrary distritngio
Experimental results match this theoretical result, asstithted by one experiment in Fig. 3.

C. Association Significance Test

The hypothesis test used in IGSCR to assess the significénaecluster association to a class is based on the normal
approximation to the binomial distribution (4). The null gothesis is that the true probability of a pixel belongingthe
majority class (for the cluster of interest) is less thgna user supplied value. P(Z > %) < «, wherea« is the user provided
Type-l error, then the null hypothesis is rejected. The hylbothesis corresponds to the case when the cluster is @npod
rejecting the null hypothesis equates with labeling thestelu pure; if the null hypothesis igot rejected, the cluster is impure
and the cluster is “rejected.”

The hypothesis test for pure clusters in CIGSCR is diffeemnthe Bernoulli trials are fixed and testing the probabityf
a success is no longer relevant. A pure soft cluster showé kage weights for the majority class and comparativelalsm
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weights for other classes. One possible hypothesis tespams the average weight for one particutdr class with the overall
average weight for all classes in thth cluster. Starting with the normal approximation for thensof the cluster weights, the
standard normal test statistic would be

> (wiy — EWy))

i€Je

Z Var[Wl-j] 7
v i€Je

where J,. is the index set of pixels prelabeled with thth class. BW¥V;;] and VafiW;;] are unknown, but can be reasonably
approximated using the sample mean

2:

n
_ 1
W; = — E Wi
J n 4 )
i=1

and sample standard deviation

The Wald statistic is then

wheren,. = |J.| and

Since % is generated (approximately) by the standard normal Higion, a hypothesis test can be formed where the null
hypothesis is that the average cluster weights correspgridi the cth classare not significantly different from the average
cluster weights corresponding to all classes, and thenalterhypothesis is that the average cluster weights camnelépg

to the cth classare significantly different from the average cluster weightsresponding to all classes. Again, since class
memberships are known a priori and all pixels have some ipesitembership with all clusters, testing for class memnipss

is not meaningful, but testing for significantly differentuster weights is meaningful. IP(Z > %) < «, the probability of
observing the difference in the average cluster weightecést®d withc and the average cluster weights associated with all
classes in thath cluster is significant, and the null hypothesis is rejécté the null hypothesis isiot rejected, the cluster itself

is rejected as impure, and further refinement is necessary.

One potential issue with the above test is that the samplenmaed standard deviation calculations assume the sample
is identically distributed, which is specificallyot the assumption in this case. A better hypothesis test adkdges
that the data are not identically distributed, but are gateer from a finite number of distributions. Since the numbfer o
distributions and the distributions are unknown, the numdfeclasses and the individual class labels, which are asdurm
correspond to inherent structure of the data, are used tmxipmpate the true mean and variance of multiple clustergciBely,
assume that all labeled pixel indicéswith distribution index (i) = ¢ correspond to the same class lakgl) = c. If
i € ¥~ 1(q), theni € $=*(c), buti € ¢~!(c) does not implyi € »~!(g) (more than one distribution can map to one class), and
Jo=¢"e)={i| ¢(i) = ¢,1 <i < n}. The above hypothesis test requires modification to uses dtefsrmation. In the
previous test,

Z wij = Z Wij0p(i),c5
i€de 1=1
D (wijbsiy.c — EWijdg.c))

~ i=1
z =

Z Var[Wij 6(;5(1-)76]
=1
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recalling that EW;;] = a;; = ay; for i € I,. Assume whenp(i) = ¢, and distribution index; = (i) corresponds te = ¢(i),
thena,; can be approximated by.;, the mean of class = ¢(). ldeally o,; should be approximated directly, but there is no
(¢) is being approximated by~

way to know~1(q), so essentially)~

the numerator of the test statistichecomes

n

> (wigb(i.c

=1

Yg) c o™t

D (wigbgiy.c —
i=1
Z(wm 5¢> (4),c

1=

—

|

—

(Wi 0g(i),c

7=

Vej = We,j =

E[Wij043i),c])

aij5¢(i),c)

— QgjO4(i).c)s

— We,j0(i).c)

Zwka% ke b,

= Z WijOg(i),c —

= wijbsi).c
=1

Thus this test statistic does not work because the valugliested is the same as the estimated mean fortthelass when
using the Kronecker delta instead of Bernoulli random \#es. Recall thal. ; = Z?:l VieWsj, whereVi., i =1, ...

Z Op(k),c
- Z WO (k)
k=1

) W ITOP

=1

known prior to classification/clustering. Consider now tbst statistic

Ye,j
Var]

2:

=E [Z Wzy‘/;c

=1
Q
= DPc § NgQgj,
q=1
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 — E[Ye]

S EW, EY,

3

Yo,

Fixing j and¢, and recalling that, = |1,|, the number of indices for which X () has thegth distribution,

= 2”: E[Wi; Vie]

i=1

Q
o= Z NgQqjPe
q=1

L(c). Unfortunately, using the sample mean
of the cth class and thgth cluster to approximate.; and thereforey,; breaks down because the sample mean ottheclass
and thejth cluster is both the random variable on the left side andaffhy@oximation of the expected value on the right side of
the minus sign. This is illustrated below. Approximating (andcag;) with the sample mean for theh class,

D WGk e
k=1
> Sot.e
k=1



wherep, is the probability thal;. = 1. Assuming all the pixels are independent and recalling theai¥;;] = bfj = ﬁgj where
1€ Iy,

n

Z Wi Vie

=1

= i Var[Wl-j ‘/zc]

=1

VarY. ;] = Var

(EW5Vie] — E[Wi;Vie]?)

17 Vic

|

@
Il
A

(ch[szj] - pga?j)

I

@
Il
A

(pc(bfj + a?j) - pza?j)

I

N
Il
-

nq(pe(By; + ag;) — p2ag;)

Il
Mo

=]
Il
A

Q
= pCan(ﬁgj +(1- pc)agj).

q=1

In the above formulap. would be approximated by its maximum likelihood estimatgn = |J.|/n. In order to estimatey,;,
assume that theth distribution corresponds to th¢h class,y~1(q) € ¢~ *(c), and

1
aqj%ww:n— E Wij c:l,...,C,
¢iel.

whereC is the number of classes. Then

Q c
1
EYej] = pe ) ngaq pey na- P > wy
q=1 d=1

1€Jyg
Ne i _
_ e Wi — )
n 4 1] ncw_]a
=1
and
Q
VarlYe ] = pe Y nq(Bg; + (1= pe)ag;)
q=1
c
~pe Y na(S3,, + (1 - po)a?).
d=1
where

1

2 E w2

Sﬁd,j - ng — 1 < (wlj wd-,]) .
3 d

Using these expressions for the mean and variandé gf the Wald statistic is

Ye,j — MWy

2:

and the null hypothesis is rejectedf{(Z > %) < «.
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VI. ITERATION

Together with the cluster association significance test, ithration forms the semisupervised clustering framewiark
CIGSCR. The application of a hypothesis test determinestwbiusters should be used for classification, and an itaratiorks
to produce a set of associated clusters with each class begimgsented by at least one associated cluster. This isnatished
by introducing new clusters that are likely to be associatmid when necessary, are associated with a class not already
represented by a cluster.

In IGSCR, pure hard clusters are removed from the image thaflustered in subsequent iterations, focusing further
refinement on clusters that failed to pass the purity téstclusters are used for each iteration, presumably produsimgiler
clusters as less data is divided into the same number ofectustThe underlying assumption is that clusters that fapdes
the purity test could actually be composed of multiple dustthat would pass the purity test individually, and cltiste the
remaining data intdX more clusters will reveal these smaller clusters. This omatwill not directly work on soft clusters as
soft clusters cannot be removed simply by removing any sarapkociated with a pure cluster—all samples have a positive
probability of belonging to any particular cluster.

In CIGSCR, unassociated clusters are targeted for refinetmemising their information to create new clusters that will
likely be associated. IGSCR is effectively locating snradieisters that when combined to form a larger cluster woaldehbeen
rejected. IGSCR accomplishes this by finding the same numibelusters ) in the original dataset and then in successively
smaller subsets of that original dataset. A similar appnotmat would locate smaller pure clusters in rejected ctasie
“splitting” a cluster, employed by Ball and Hall [37] in IS@DA. Clusters are split by partitioning a cluster into twowne
clusters and recalculating new means. Soft clusters amesepted by cluster means, and splitting a soft cluster dveglate
with replacing one cluster mean with two cluster means (dated based on data associated with a cluster).

A cleaner algorithmic solution is to add one new cluster gigiformation contained in the target cluster (the clusket t
would be split), which effectively splits the cluster intowd clusters. When using a clustering algorithm based onctitage
function (6), adding a new cluster guarantees a smallertfomaalue (shown below) whep = 2. Using only the labeled
samples belonging to the majority class (as determinedeancthster association significance test) to seed a new clusteld
have the effect of pulling the new cluster toward those samplOnce another clustering iteration is completed, thgetad
cluster would produce one cluster that is likely to be asged with the majority class and another cluster that retegfatively
strong associations with all other classes. In CIGSCR, dneeassociation significance test is performed, if at least duster
is unassociated (and there are no unassociated classesg)usiter with the lowest value df is used to generate a new cluster.
The new cluster mean is determined using

Z wip X

U(K+1) — 7;6(1771(0,6) (11)

)
E Wik

i€p~1(ck)

wherek is the cluster with the lowest value 6f ¢, is the majority class in clustet, and recall thaty—!(c) is the index set of
labeled samples whose labelds This formula also works when a class other than the majaligs is used to seed a new
cluster mean.

A shortcoming in IGSCR s that there is no guarantee that &umsters will be created and labeled with any particularglas
and if a particular class is not represented by a clusterddsired classification cannot be performed. In CIGSCR, isise
is addressed by adding a new cluster using information fromaréicular class if that class is not represented in the ciestsul
clusters. If a class is not represented in the associated clusters, the clusieis closest to being associated witlis used to
generate a new cluster using (11) with= c¢. The “closest” cluster is determined to be the cluster wlith highest ratio of the
average membership of clasdo the average membership of the majority class.

When there are classes not represented by associatedrslastethere are unassociated clusters, only one methodecan b
used to determine the creation of a new cluster. If a clustamiassociated, it is simply not used in classification. iniwre
important to have each class represented by the associatgers than to refine an unassociated cluster, becauseettiedl
classification cannot be applied unless all classes aresepted by associated clusters. Therefore adding a neterches that
all classes will be represented takes precedence overgddiew cluster because an existing cluster is unassociated.

Finally, the theorem proving that adding one cluster medhregult in a smaller value of (6) is presented below.

Theorem: Given an integek’ > 0, positive real numberg;;, i =1, ..., n; j =1, ..., K + 1, defining a pointp € R7*&+1,
and the objective function
n K
TEp) =" "wiipis,
i=1 j=1
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for K clusters where

the objective function

for K + 1 clusters where

satisfies
JED (p) < 75 (p).

Proof: Note that thep;; do not change with the addition of tHg + 1)st cluster prototype, howevel;; < w;; for j < K +1
because the denominator f; has an additional term. Let™) = % w? p;; and J" Y = S K4 w2 . Itis sufficient
to show that/ ") < 7% for eachi to prove that/+1) < JU),

Let
K K+1
51221/pik and SQZ Zl/pik.
k=1 k=1
Then ,
o (1/pij) o (1/pis)
2 _ /P d 2 _ \2/Fig)
wi; & an B 52
K K+1
JIO e 3 (A/piy) (A pig)
7 7 / 512 / S%
j=1 j=1
53 S (1 pij) — S2 2“1(1/%)
a 5183

Examining only the numerator in the previous term,

K
(S1+(1/pic1)” > _(1/pij)

J=1

_Sl 1/9%] (1/pi.rc+1)

HMN

= (51 + (1/pi,K+l)) S1 = S(S1+ (1/pixc+1))
= S} +257(1/pix 1) + S1(1/pik1)?

- Sf - Sf(l/m,fﬁl)
= ST (1/pir+1) + 511/ pi1)°

yielding
Ji(KJrl) < Ji(K).

Q.E.D.
Assuming that the clustering algorithm locates a local minn point of the objective function, the combination of the
clustering algorithm and this cluster prototype additioe guaranteed to move toward a smaller objective functidnevalf
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left unchecked, infinitely many clusters could be added, @redalgorithm would continue to find smaller objective fuont
values. The association significance test plays a cruclalinothe termination of this iterative process. Once allstdus pass
the association significance test and each class has atdeasidssociated cluster, the iteration stops because therhigvel
objective has been met: clusters that significantly coordpto all classes have been located. The iteration alsoirtates
when a maximum number of clusters is reached, and only thosgéecs that pass the association significance test arefased
classification.

VII. CONCLUSIONS

This paper introduced a hypothesis test that can be usedalaate the suitability of soft clusters for classificatiomda
suggested an iteration scheme that can be used to refindwssifirs. This hypothesis test was based on a normal appatigim
to a sum of random variables, and this approximation wasgatogasonable under certain assumptions. This paper alsmed
a proof that the proposed soft cluster iterative refinemeinéme will improve an objective function value when the gofheans
clustering algorithm is used. This association signifieatest and iteration will be necessary to convert IGSCR to agde
clustering to produce soft classifications. CIGSCR, thasifecation algorithm that incorporates the soft clusteal@ation and
refinement presented here, is described in detail in Para@&. 2Palso provides experimental results for IGSCR and CIRSC
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