9 research outputs found

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    CLOUD-BASED PATIENT PROFILE ANALYTICS SYSTEM FOR MONITORING DIABETES MELLITUS

    Get PDF
    Healthcare systems are facing the challenge of information overload in caring for patients in a safe, affordable and high quality manner in a system with limited healthcare resources . To alleviate this problem, we develop a cloud-based patient profile analytics system for monitoring diabetes patient's data. Data analytics is nothing but drawing the conclusion about that information by examining the raw data. This healthcare system extracts the data from various sources and stores the information in a patient profile graph. The data consist of both structured and unstructured data. The patient profile graph provides a holistic view of the patient's information. The system can infer implicit information useful for clinical purposes and administration and also extracting the relevant information for performing predictive analytics. The predictive analysis can predict the risk of unplanned patient readmission and also the chances of getting the diabetes based on dietary plans and family history

    Semantics-Empowered Big Data Processing with Applications

    Get PDF
    We discuss the nature of Big Data and address the role of semantics in analyzing and processing Big Data that arises in the context of Physical-Cyber-Social Systems. We organize our research around the Five Vs of Big Data, where four of the Vs are harnessed to produce the fifth V - value. To handle the challenge of Volume, we advocate semantic perception that can convert low-level observational data to higher-level abstractions more suitable for decision-making. To handle the challenge of Variety, we resort to the use of semantic models and annotations of data so that much of the intelligent processing can be done at a level independent of heterogeneity of data formats and media. To handle the challenge of Velocity, we seek to use continuous semantics capability to dynamically create event or situation specific models and recognize relevant new concepts, entities and facts. To handle Veracity, we explore the formalization of trust models and approaches to glean trustworthiness. The above four Vs of Big Data are harnessed by the semantics-empowered analytics to derive value for supporting practical applications transcending physical-cyber-social continuum

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Novel Natural Language Processing Models for Medical Terms and Symptoms Detection in Twitter

    Get PDF
    This dissertation focuses on disambiguation of language use on Twitter about drug use, consumption types of drugs, drug legalization, ontology-enhanced approaches, and prediction analysis of data-driven by developing novel NLP models. Three technical aims comprise this work: (a) leveraging pattern recognition techniques to improve the quality and quantity of crawled Twitter posts related to drug abuse; (b) using an expert-curated, domain-specific DsOn ontology model that improve knowledge extraction in the form of drug-to-symptom and drug-to-side effect relations; and (c) modeling the prediction of public perception of the drug’s legalization and the sentiment analysis of drug consumption on Twitter. We collected 7.5 million data from August 2015 to March 2016. This work leveraged a longstanding, multidisciplinary collaboration between researchers at the Population & Center for Interventions, Treatment, and Addictions Research (CITAR) in the Boonshoft School of Medicine and the Department of Computer Science and Engineering. In addition, we aimed to develop and deploy an innovative prediction analysis algorithm for eDrugTrends, capable of semi-automated processing of Twitter data to identify emerging trends in cannabis and synthetic cannabinoid use in the U.S. In addition, the study included aim four, a use case study defined by tweets content analyzing PLWH, medication patterns, and identifying keyword trends via Twitter-based, user-generated content. This case study leveraged a multidisciplinary collaboration between researchers at the Departments of Family Medicine and Population and Public Health Sciences at Wright State University’s Boonshoft School of Medicine and the Department of Computer Science and Engineering. We collected 65K data from February 2022 to July 2022 with the U.S.-based HIV knowledge domain recruited via the Twitter API streaming platform. For knowledge discovery, domain knowledge plays a significant role in powering many intelligent frameworks, such as data analysis, information retrieval, and pattern recognition. Recent NLP and semantic web advances have contributed to extending the domain knowledge of medical terms. These techniques required a bag of seeds for medical knowledge discovery. Various initiate seeds create irrelevant data to the noise and negatively impact the prediction analysis performance. The methodology of aim one, PatRDis classifier, applied for noisy and ambiguous issues, and aim two, DsOn Ontology model, applied for semantic parsing and enriching the online medical to classify the data for HIV care medications engagement and symptom detection from Twitter. By applying the methodology of aims 2 and 3, we solved the challenges of ambiguity and explored more than 1500 cannabis and cannabinoid slang terms. Sentiments measured preceding the election, such as states with high levels of positive sentiment preceding the election who were engaged in enhancing their legalization status. we also used the same dataset for prediction analysis for marijuana legalization and consumption trend analysis (Ohio public polling data). In Aim 4, we applied three experiments, ensemble-learning, the RNN-LSM, the NNBERT-CNN models, and five techniques to determine the tweets associated with medication adherence and HIV symptoms. The long short-term memory (LSTM) model and the CNN for sentence classification produce accurate results and have been recently used in NLP tasks. CNN models use convolutional layers and maximum pooling or max-overtime pooling layers to extract higher-level features, while LSTM models can capture long-term dependencies between word sequences hence are better used for text classification. We propose attention-based RNN, MLP, and CNN deep learning models that capitalize on the advantages of LSTM and BERT techniques with an additional attention mechanism. We trained the model using NNBERT to evaluate the proposed model\u27s performance. The test results showed that the proposed models produce more accurate classification results, and BERT obtained higher recall and F1 scores than MLP or LSTM models. In addition, We developed an intelligent tool capable of automated processing of Twitter data to identify emerging trends in HIV disease, HIV symptoms, and medication adherence

    Acquiring Guideline-enabled data driven clinical knowledge model using formally verified refined knowledge acquisition method

    Get PDF
    Background and Objective: Validation and verification are the critical requirements for the knowledge acquisition method of the clinical decision support system (CDSS). After acquiring the medical knowledge from diverse sources, the rigorous validation and formal verification process are required before creating the final knowledge model. Previously, we have proposed a hybrid knowledge acquisition method with the support of a rigorous validation process for acquiring medical knowledge from clinical practice guidelines (CPGs) and patient data for the treatment of oral cavity cancer. However, due to lack of formal verification process, it involves various inconsistencies in knowledge relevant to the formalism of knowledge, conformance to CPGs, quality of knowledge, and complexities of knowledge acquisition artifacts.Methods: This paper presents the refined knowledge acquisition (ReKA) method, which uses the Z formal verification process. The ReKA method adopts the verification method and explores the mechanism of theorem proving using the Z notation. It enhances a hybrid knowledge acquisition method to thwart the inconsistencies using formal verification.Results: ReKA adds a set of nine additional criteria to be used to have a final valid refined clinical knowledge model. These criteria ensure the validity of the final knowledge model concerning formalism of knowledge, conformance to GPGs, quality of the knowledge, usage of stringent conditions and treatment plans, and inconsistencies possibly resulting from the complexities. Evaluation, using four medical knowledge acquisition scenarios, shows that newly added knowledge in CDSS due to the additional criteria by the ReKA method always produces a valid knowledge model. The final knowledge model was also evaluated with 1229 oral cavity patient cases, which outperformed with an accuracy of 72.57% compared to a similar approach with an accuracy of 69.7%. Furthermore, the ReKA method identified a set of decision paths (about 47.8%) in the existing approach, which results in a final knowledge model with low quality, non-conformed from standard CPGs.Conclusion: ReKA refined the hybrid knowledge acquisition method by discovering the missing steps in the current validation process at the acquisition stage. As a formally proven method, it always yields a valid knowledge model having high quality, supporting local practices, and influenced by standard CPGs. Furthermore, the final knowledge model obtained from ReKA also preserves the performance such as the accuracy of the individual source knowledge models.N/

    Aquisição e Interrogação de Conhecimento de Prática Clínica usando Linguagem Natural

    Get PDF
    The scientific concepts, methodologies and tools in the Knowledge Representation (KR) sub- domain of applied Artificial Intelligence (AI) came a long way with enormous strides in recent years. The usage of domain conceptualizations that are Ontologies is now powerful enough to aim at computable reasoning over complex realities. One of the most challenging scientific and technical human endeavors is the daily Clinical Prac- tice (CP) of Cardiovascular (CV) specialty healthcare providers. Such a complex domain can benefit largely from the possibility of clinical reasoning aids that are now at the edge of being available. We research into a complete end-to-end solid ontological infrastructure for CP knowledge represen- tation as well as the associated processes to automatically acquire knowledge from clinical texts and reason over it

    Clinical practice knowledge acquisition and interrogation using natural language: aquisição e interrogação de conhecimento de prática clínica usando linguagem natural

    Get PDF
    Os conceitos científicos, metodologias e ferramentas no sub-dominio da Representação de Conhecimento da área da Inteligência Artificial Aplicada têm sofrido avanços muito significativos nos anos recentes. A utilização de Ontologias como conceptualizações de domínios é agora suficientemente poderosa para aspirar ao raciocínio computacional sobre realidades complexas. Uma das tarefas científica e tecnicamente mais desafiante é prestação de cuidados pelos profissionais de saúde na especialidade cardiovascular. Um domínio de tal forma complexo pode beneficiar largamente da possibilidade de ajudas ao raciocínio clínico que estão neste momento a beira de ficarem disponíveis. Investigamos no sentido de desenvolver uma infraestrutura sólida e completa para a representação de conhecimento na prática clínica bem como os processes associados para adquirir o conhecimento a partir de textos clínicos e raciocinar automaticamente sobre esse conhecimento; ABSTRACT: The scientific concepts, methodologies and tools in the Knowledge Representation (KR) subdomain of applied Artificial Intelligence (AI) came a long way with enormous strides in recent years. The usage of domain conceptualizations that are Ontologies is now powerful enough to aim at computable reasoning over complex realities. One of the most challenging scientific and technical human endeavors is the daily Clinical Practice (CP) of Cardiovascular (C V) specialty healthcare providers. Such a complex domain can benefit largely from the possibility of clinical reasoning aids that are now at the edge of being available. We research into al complete end-to-end solid ontological infrastructure for CP knowledge representation as well as the associated processes to automatically acquire knowledge from clinical texts and reason over it

    Semantics Driven Approach for Knowledge Acquisition From EMRs

    No full text
    Semantic computing technologies have matured to be applicable to many critical domains such as national security, life sciences, and health care. However, the key to their success is the availability of a rich domain knowledge base. The creation and refinement of domain knowledge bases pose difficult challenges. The existing knowledge bases in the health care domain are rich in taxonomic relationships, but they lack non-taxonomic (domain) relationships. In this paper, we describe a semiautomatic technique for enriching existing domain knowledge bases with causal relationships gleaned from Electronic Medical Records (EMR) data. We determine missing causal relationships between domain concepts by validating domain knowledge against EMR data sources and leveraging semantic-based techniques to derive plausible relationships that can rectify knowledge gaps. Our evaluation demonstrates that semantic techniques can be employed to improve the efficiency of knowledge acquisition
    corecore