
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) 

11-2013 

Semantics-Empowered Big Data Processing with Applications Semantics-Empowered Big Data Processing with Applications 

Krishnaprasad Thirunarayan 
Wright State University - Main Campus, t.k.prasad@wright.edu 

Amit P. Sheth 
Wright State University - Main Campus, amit@sc.edu 

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Thirunarayan, K., & Sheth, A. P. (2013). Semantics-Empowered Big Data Processing with Applications. AI 
Magazine, 35 (3). 
https://corescholar.libraries.wright.edu/knoesis/1026 

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in 
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis 
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80832953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu


 

 

Semantics-empowered Big Data Processing with Applications  

Krishnaprasad Thirunarayan and Amit Sheth 
Kno.e.sis : Ohio Center of Excellence in Knowledge-enabled Computing  

Department of Computer Science and Engineering, Wright State University, Dayton, OH-45435. 
{tkprasad, amit}@knoesis.org 

 
 
 
 

Abstract 
We discuss the nature of Big Data and address the role of 
semantics in analyzing and processing Big Data that arises in the 
context of Physical-Cyber-Social Systems. We organize our 
research around the Five Vs of Big Data, where four of the Vs are 
harnessed to produce the fifth V - value.  To handle the challenge 
of Volume, we advocate semantic perception that can convert 
low-level observational data to higher-level abstractions more 
suitable for decision-making.  To handle the challenge of Variety, 
we resort to the use of semantic models and annotations of data so 
that much of the intelligent processing can be done at a level 
independent of heterogeneity of data formats and media. To 
handle the challenge of Velocity, we seek to use continuous 
semantics capability to dynamically create event or situation 
specific models and recognize relevant new concepts, entities and 
facts.  To handle Veracity, we explore the formalization of trust 
models and approaches to glean trustworthiness. The above four 
Vs of Big Data are harnessed by the semantics-empowered 
analytics to derive Value for supporting practical applications 
transcending physical-cyber-social continuum.  

 Introduction   

Physical-Cyber-Social Systems (PCSS) (Sheth et al, 2013) 
are a revolution in sensing, computing and communication 
that brings together a variety of resources. The resources 
can range from networked embedded computers and 
mobile devices to multimodal data sources such as sensors 
and social media. The applications can span multiple 
domains such as medical, geographical, environmental, 
traffic, behavioral, disaster response, and system health 
monitoring. The modeling and computing challenges 
arising in the context of PCSS can be organized around the 
Five Vs of Big Data (volume, variety, velocity, veracity 
and value), which align well with our research efforts that 
exploit semantics, network and statistics-empowered Web 
3.0. 

                                                 
Copyright © 2013, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

 
Characteristics of the Big Data Problem 

 
We discuss the primary characteristics of the Big Data 
problem as it pertains to the Five Vs. (The first three were 
originally introduced by Doug Laney of Gartner.) 
 
Volume 
The sheer number of sensors and the amount of data 
reported by sensors is enormous and growing rapidly. For 
example, 25+ billion sensors have been deployed and 
about 250TB of sensor data are generated for a NY-LA 
flight on Boeing 7371. Parkinson’s disease dataset2 that 
tracked 16 people (9 patients + 7 control) with mobile 
phone containing 7 sensors over 8 weeks is 12 GB in size. 
However, availability of fine-grained raw data is not 
sufficient unless we can analyze, summarize or abstract 
them in actionable ways. For example, from a pilot’s 
perspective, the sensors data processing should yield 
insights about whether the jet engine and the flight control 
surfaces are behaving normally or is there cause for 
concern?   Similarly, we should be able to measure the 
symptoms of Parkinson’s disease using sensors on a 
smartphone, monitor its progression, and synthesize 
actionable suggestions to improve the quality of life of the 
patient? Cloud computing infrastructure can be deployed 
for raw processing of massive social and sensor data. 
However, we still need to investigate how to effectively 
translate large amounts of machine-sensed data into a few 
human comprehensible nuggets of information necessary 
for decision-making. Furthermore, privacy and locality 
considerations require moving computations closer to the 
data source, leading to powerful applications on resource-
constrained devices. In the latter situation, even though the 
amount of data is not large by normal standards, the 

                                                 
1 http://gigaom.com/2010/09/13/sensor-networks-top-social-networks-for-
big-data-2/ 
2 https://www.michaeljfox.org/page.html?parkinsons-data-challenge 



resource constraints negate the use of conventional data 
formats and algorithms, and instead necessitate the 
development of novel encoding, indexing, and reasoning 
techniques (Henson et al, 2012a).  
 The volume of data challenges our ability to process 
them. First, it is difficult to abstract fine-grained machine-
accessible data into coarse-grained human comprehensible 
form that summarizes the situation and is actionable. 
Second, it is difficult to scale computations to take 
advantage of distributed processing infrastructure and, 
where appropriate, exploit reasoning on mobile devices. 

 

Variety 
PCSS generate and process a variety of multimodal data 
using heterogeneous background knowledge to interpret 
the data. For example, traffic data (such as from 511.org) 
contains numeric information about vehicular traffic on 
roads (e.g., speed, volume, and travel times), as well as 
textual information about active events (e.g., accidents, 
vehicle breakdowns) and scheduled events (e.g., sporting 
events, music events) (Anantharam et al, 2013). Weather 
datasets (such as from Mesowest) provide numeric 
information about primitive phenomena (e.g., temperature, 
precipitation, wind speed)  that are required to be 
combined and abstracted into human comprehensible 
weather features in textual form. In medical domains (e.g., 
cardiology, asthma, and Parkinson’s disease), various 
physiological, physical and chemical measurements 
(obtained through on-body sensors, blood tests, and 
environmental sensors) and patients’ feedback and self-
appraisal (obtained by interviewing them) can be combined 
and abstracted to determine their health and well-being. 
The available knowledge captures both qualitative and 
quantitative aspects. Such diverse knowledge when 
integrated can provide complementary and corroborative 
information (Sheth and Thirunarayan, 2012). Geoscience 
datasets, and materials and process specifications used for 
realizing Integrated Computational Materials Engineering3 
(ICME) and Materials Genome Initiative4 (MGI), exhibit 
lot of syntactic and semantic variety5 (Thirunarayan et al, 
2005). 

 The variety in data formats and the nature of available 
knowledge challenges our ability to integrate and 
interoperate with heterogeneous data.  

 

 

                                                 
3 http://www.nap.edu/catalog.php?record_id=12199  
4 http://www.whitehouse.gov/mgi 
5 http://earthcube.ning.com/ 

Velocity 
Handling of sensor and social data streams in PCSS 
requires online (as opposed to offline) algorithms to (1) 
efficiently crawl and filter relevant data sources, (2) detect 
and track events and anomalies, and (3) collect and update 
relevant background knowledge.  For instance, Wikipedia 
event pages can be harnessed for relevance ranking of 
Twitter hashtags. The semantic similarity of a hashtag to 
an event can be determined by leveraging the background 
knowledge in the corresponding event page on Wikipedia. 
Specifically, we have used the entities that co-occur with 
the tweets containing the hashtag and the entities present in 
the Wikipedia event page to determine the relevance 
ranking (Kapanipathi et al, 2013).   Similarly, entities can 
be tracked in the context of a natural disaster or a terror 
attack. For example, during Hurricane Sandy, tweets 
indicated possible flooding of a subway station, whose 
location obtained using open data6 helped identify sensors 
for real-time updates. On the other hand, raw speed of 
interaction is critical for financial market transactions. 

 The rapid change in data and trends challenges our 
ability to process them. First, it is difficult to filter and rank 
the relevant data incrementally and in real-time. Second, it 
is difficult to cull and evolve the relevant background 
knowledge. 

 

Veracity 
PCSS receive data from sensors subject to the vagaries of 
nature (some sensors may even be compromised), or from 
crowds with incomplete information (some sources may 
even be deceitful). Statistical methods can be brought to 
bear to improve trustworthiness of data in the context of 
homogeneous sensor networks, while semantic models can 
be used for heterogeneous sensor networks (Thirunarayan 
et al, 2013). For instance, for applications that involve both 
humans and sensors systems, it is crucial to have 
trustworthy aggregation of all data and control actions. The 
2002 Überlingen mid-air collision7 occurred because the 
pilot of one of the planes trusted the human air traffic 
controller (who was ill-informed about the unfolding 
situation), instead of the electronic TCAS system (which 
was providing conflicting but correct course of action to 
avoid collision). Similarly, we were unable to identify and 
resolve inconsistencies, disagreements and changes in 
assertions in the aftermath of the rumor about Sunil 
Tripathi being a potential match for the grainy surveillance 
photographs of Boston Marathon bomber8.  These 
examples illustrate the difficulties we face while making 
decisions based on conflicting data from different sources. 

                                                 
6 https://nycopendata.socrata.com 
7 http://en.wikipedia.org/wiki/uberlingen_mid-air_collision 
8http://bit.ly/1dFi5b3  



 The determination of veracity of data challenges our 
ability to detect anomalies and inconsistencies in social and 
sensor data. Reasoning about trustworthiness of data is also 
difficult. Fortunately, the latter can exploit temporal 
history, collective evidence, and context for conflict 
resolution. 

 

Value 
Semantics-empowered analytics of big data can be 
harnessed to deal with the challenges posed by volume, 
velocity, variety and veracity to derive value. A key aspect 
in transforming PCSS to provide actionable information is 
the construction and application of relevant background 
knowledge needed for data analytics and prediction. For 
example, a hybrid of statistical techniques and declarative 
knowledge can benefit leveraging sensor data streams in a 
variety of applications ranging from personalized 
healthcare, to reducing readmission rates among cardiac 
patients, to improving quality of life among asthmatic 
patients. Ultimately, the analysis of environmental, 
medical, system health, and social data enables situational 
awareness, and derivation of nuggets of wisdom for action.   

 Extracting value using data analytics on sensor and 
social data streams challenges our ability to acquire and 
apply knowledge from data and integrate it with 
declarative domain knowledge for classification, 
prediction, decision making, and personalization. 

 
Role of Semantics in Big Data Processing 

 
We discuss examples of our early research in developing 
semantics-empowered techniques to address the Big Data 
problem organized around the 5Vs from Kno.e.sis’ active 
multidisciplinary projects9 (Thirunarayan and Sheth, 2013), 
while realizing that it will require a longer survey paper to 
review research being pursued by our community at large.  
 
Addressing Volume: Semantic Scalability 
Semantics-based models address the volume challenge by 
relating how high-level human-sensible abstractions can 
manifest in terms of low-level sensor observations. This 
enables filtering of data by determining what to focus on 
and what to ignore, promoting scalability. Thus, the key to 
handling volume is to change the level of abstraction for 
data processing to information that is meaningful to human 
activity, actions, and decision making. We have called this 
semantic perception (Henson et al, 2013) (Sheth, 2011), 
which involves semantic integration of large amounts of 
heterogeneous data and application of perceptual inference 
using background knowledge to abstract data and derive 

                                                 
9 http://knoesis.org/projects/multidisciplinary   

actionable information. Our work involving Semantic 
Sensor Web (SSW) and IntellegO (Henson et al, 2012), 
which is a model of machine perception, integrates both 
deductive and abductive reasoning into a unified semantic 
framework. This approach not only combines and abstracts 
multimodal data but also seeks relevant information that 
can reduce ambiguity and minimize incompleteness, a 
necessary precursor to decision and action. Specifically, 
our approach uses background knowledge, expressed via 
cause-effect relationships, to convert low-level data into 
high-level actionable abstractions, using cyclical 
perceptual reasoning involving predictions, discrimination, 
and explanation. For instance, in the medical context, 
symptoms can be monitored using sensors, and plausible 
disorders that can account for them can be abduced. 
However, what heart failure patients will benefit from are 
suggestions such as whether the condition is as normally 
expected, or requires a call/visit to a nurse/doctor, or 
hospitalization. The first example below can be formalized 
using our approach with demonstrable benefits, while the 
subsequent examples require research into high-fidelity 
models and human mediation for fruition. 

(1) Weather use case:  This application involves 
determining and tracking weather features from weather 
phenomenon, with potential for tasking sensors if 
additional information is necessary. We have developed 
Semantically-enabled Sensor Observation Service 
(SemSOS) that leverages semantic technologies to model 
the domain of sensors and sensor observations in a suite of 
ontologies, adding semantic annotations to the sensor data, 
and reasoning over them (Henson et al, 2009). Specifically, 
we have extended an open source SOS implementation, 
52North, with our semantic knowledge base. For weather 
use case, we have used rules provided by NOAA to map 
primitive machine-sensed weather data (e.g., wind speed, 
temperature, precipitation) to human comprehensible 
weather features (e.g., blizzard, flurry). SemSOS, provides 
the ability to query high-level knowledge of the 
environment as well as low-level raw sensor data using 
SPARQL. The task of abstracting low-level sensor data to 
high-level features as explanation is abductive in nature, 
while disambiguation among multiple explanations 
requires deduction and selectively seeking additional data. 

(2) Health care use case (Diagnosis, Prevention and 
Cure):  These applications involve determining disorders 
afflicting a patient -- their degree of severity and 
progression -- by monitoring symptoms via sensors and 
mobile devices. They can also be augmented with patient 
reported observations (e.g., about feeling giddy or tired or 
depressed that cannot always be ascertained through 
physical/chemical means), and/or laboratory test results.  

 Semantic perception involves abstracting machine-
sensed data into coarse-grained form (e.g., using average, 



peak, rate of change, duration), and extracting human 
comprehensible features by integrating them. This 
approach requires construction of suitable domain models 
and hybrid abductive/deductive reasoning framework, 
which is our current research focus. Abduction generates 
abstractions of sensor data as explanations. Deduction can 
be used to discriminate among multiple explanations by 
predicting and seeking confirmation by tasking appropriate 
sensors. In general, this iterative and interleaved use of 
abduction and deduction can be used to eventually generate 
the minimum explanation that can be used to determine 
action. For example, abduction can be applied to weather 
phenomena data (e.g., precipitation and temperature) to 
determine weather features (e.g., flurry and blizzard) that 
can be further disambiguated by making additional 
observations (e.g., wind speed), before taking action. 
Similarly, abduction can be applied to observed symptoms 
to determine candidate diseases that can then be 
disambiguated using the results of additional tests, before 
one can determine medications and regimen. For 
Parkinson’s disease, data from accelerometer, GPS, 
compass, and microphone, etc. are converted into human 
perceived features such as tremors, walking style, balance, 
and slurred speech, to diagnose and monitor disease 
progression, and recommend control options. For heart 
failure patients, weight change, heart rate, blood pressure, 
oxygen level, etc. are combined and translated into risk-
level for hospital readmission (to minimize preventable 
readmissions). For asthma patients, data from 
environmental and physiological sensors, and personal 
feedback about wheezing, coughing, and sleeplessness, etc. 
can be used to recommend prevention strategies, treatment 
levels, and control options. The continuous monitoring of a 
patient and their surroundings, and the associated domain 
models can be used to determine actionable causes for the 
symptoms rather than just educated guesses. In general,   
patients suffering from chronic diseases can benefit from 
suggestions for avoiding aggravating factors to improve 
the quality of life, and for enhancing adherence/compliance 
to prescribed treatment or control options. 

 Some specific research goals to be pursued to realize 
semantics-based analytics (that also overlap with 
approaches to meet the variety challenge) include: (1) 
Development and codification of high-fidelity background 
knowledge for processing sensor data streams using 
expressive semantic representations.   For example, in the 
realm of health care, symptoms and disorders are complex 
entities with complicated interactions. The acceptable and 
desirable thresholds for various monitored parameters 
depend on co-morbidity, especially due to chronic 
conditions. Any representation must provide the necessary 
expressivity to accurately formalize the reality of the 
situation. (2) Using contextual information and 

personalization. An accurate interpretation of data is based 
on spatio-temporal-thematic contextual knowledge. In 
medical scenarios, effective treatment also requires 
personalization on patient’s historical data and clinician 
prescribed current protocol (e.g., maintain BP at higher 
than what is normal for NIH specific guidelines) such as 
what is in Electronic Medical Records (EMR). (3) Effective 
summarization and justification of recommended action. 
One of the problems resulting from indiscriminate sensing 
and logging of observed data due to ubiquity of mobile 
computing, wireless networking and communication 
technologies is that we are drowned in the noise10. The 
ability to determine the nature and severity of a situation 
from a glut of data, and to issue an informative alert or 
summary that is accessible to and actionable by the end 
users is a critical challenge we are addressing in the 
kHealth project. (4) Efficient perceptual reasoning on 
resource-constrained devices. In order to provide 
“intelligent computing at the edge”, we need techniques to 
collect the data at the edge, intelligently reason with them 
using background knowledge, and return the essence. For 
example, this is required to address privacy concerns, need 
for timely and ubiquitous access to data, using wireless 
mobile devices. Its realization will also spur use of 
innovative and specialized inference techniques on 
resource-constrained devices as described in the next 
section (Henson et al, 2012a).  
 

An Efficient Approach to Semantics-based Machine 
Perception in Resource-Constrained Devices 

 We employed OWL to formally define the two inference 
tasks needed for machine perception – explanation and 
discrimination (Henson, et al, 2011). Unfortunately, this 
declarative specification does not run as is on extant 
mobile devices using a standard reasoner as its memory 
and time requirements far exceed the capacity provided by 
the popular configurations of the mobile devices. This 
hurdle has been overcome using bit-vector encoding based 
algorithms for explanation and discrimination tasks as 
summarized below (Henson, et al, 2012a). 

Semantic Sensor Ontology: The SSN ontology serves as a 
foundation to formalize the semantics of perception. An 
observation (ssn:Observation) is defined as a 
situation that describes an observed feature, an observed 
property, the sensor used, and a value resulting from the 
observation (note: prefix ssn is used to denote concepts 
from the SSN ontology).  A feature (ssn:Feature) is an 
object or event in an environment, and a property 
(ssn:Property) is an observable attribute of a feature. 
For example, in cardiology, elevated blood pressure is a 

                                                 
10http://www.cio.co.uk/insight/r-and-d/internet-of-everything-tweeting-
tweets/ 



property of the feature Hyperthyroidism. In SSN, 
knowledge of the environment is represented as a relation 
(ssn:isPropertyOf) between a property and a feature. 
To enable integration with other ontological knowledge on 
the Web, this knowledge is aligned with concepts in the 
DOLCE Ultra Lite ontology11. Figure 1 provides a simple 
example from the cardiology domain.  

 

 

 

 

 

 

 

 

 

Figure 1.  Bipartite graph representation of a simple 
cardiology knowledge base 

Semantics of Machine Perception: A feature is said to 
explain an observed property if the property is related to 
the feature through an ssn:isPropertyOf relation. In 
Figure 1, Hyperthyroidism explains the observed 
properties elevated blood pressure, clammy skin, and 
palpitations. Since several features may be capable of 
explaining a given set of observed properties, explanation 
is most accurately defined as an abductive process. For 
example, the observed properties, elevated blood pressure 
and palpitations, are explained by the features 
Hypertension and Hyperthyroidism. A property is said to 
discriminate between a set of features if its presence can 
reduce the set of explanatory features. In Figure 1, the 
property clammy skin discriminates between the features, 
Hypertension and Hyperthyroidism. For a detailed formal 
description of explanation and discrimination tasks in 
OWL, see (Henson, et al, 2012a). 

Efficient Algorithms for Machine Perception: To 
implement machine perception on resource-constrained 
devices, we developed bit-vector based algorithms for 
explanation and discrimination, satisfying a single-feature 
assumption (i.e., one feature is sufficient to account for all 
the observed properties).  
 To preserve the ability to share and integrate with 
knowledge on the Web, lifting and lowering mappings 
between the semantic representations (in RDF) and bit 
vector representations were developed. An environmental 
knowledge base is represented as a bit matrix KBBM, with 
rows representing properties and columns representing 
features. KBBM[i][j] is set to 1 (true) iff the property pi is a 
property of feature fj (i.e., there exists a 
ssn:isPropertyOf(pi,fj) relation). Observed 

                                                 
11 http://www.loa-cnr.it/ontologies/DUL.owl  

properties are represented as a bit vector OBSVBV, where 
OBSVBV[i] is set to 1 iff ObservedProperty(pi) 
holds (i.e., property pi has been observed). Explanatory 
features are represented as a bit vector EXPLBV. EXPLBV[j] 
is set to 1 iff ExplanatoryFeature(fj) holds (i.e., the 
feature fj explains the set of observed properties 
represented in OBSVBV). Discriminating properties are  
 

 
represented as a bit vector DISCBV where DISCBV[i] is set 
to 1 iff DiscriminatingProperty(pi) (i.e., the 
property pi discriminates between the set of explanatory 
features represented in EXPLBV).   
 Algorithm for Explanation: The strategy employed for 
efficient implementation of the explanation task relies on 
the use of the bit vector AND operation to discover and 
dismiss those features that cannot explain the set of 
observed properties. It begins with all the features as 
potentially explanatory, and iteratively dismisses those 
features that cannot explain an observed property. 
Eventually, for each index position in EXPLBV that is set to 
1, the corresponding feature explains all the observed 
properties.  

Algorithm for Discrimination: The strategy employed for 
efficient implementation of the discrimination task relies 
on the use of the bit vector AND operation to discover and 
indirectly assemble those properties that discriminate 
between a set of explanatory features. The discriminating 
properties are those that are determined to be neither  

 

 

 

 

expected for all feature nor not-applicable for any feature. 
Note that for a not-yet-observed property at index ki, and 



the bit vector PEXPLBV: (i) PEXPLBV = EXPLBV holds and 
the ki

th property is expected; (ii) PEXPLBV = ZEROBV 
holds and the ki

th property is not-applicable; or (iii) the ki
th 

property discriminates between the explanatory features. 
Eventually, properties in DISCBV are each capable of 
partitioning the set of explanatory features in EXPLBV.  

Illustrative Example: Figure 1 captures the knowledge base 
(causal relationship) associating observed properties 
(symptoms) and explanatory features (disorders). E.g., the 
observation palpitations is explained by both Hypertension 
and Hyperthyroidism. Similarly, the observations {elevated 
blood pressure, and palpitations can be explained by the 
three disorders Hypertension, Hyperthyroidism, and 
Pulmonary Edema. Viewing it another way, the observed 
properties elevated blood pressure and palpitations are both 
expected properties of the features Hypertension and 
Hyperthyroidism, and hence the former properties cannot 
be used to discriminate the latter features.  The observed 
property clammy skin is not applicable to the features 
Hypertension and Hyperthyroidism because the latter does 
not cause the former. Hence the former property cannot be 
used to discriminate the latter features. Discriminating 
properties are those that are neither expected nor not 
applicable. Thus, the observation clammy skin can be used 
to discriminate between Hypertension and 
Hyperthyroidism because clammy skin is caused by 
Hyperthyroidism but not by Hypertension. 
Evaluation: We compared the use of OWL reasoner for 
running our OWL specifications with the bit vector-based 
algorithms. (Recall that these algorithms have been shown 
to be formally correct with respect to the declarative 
specification in OWL (Henson et al, 2012).) Both 
implementations are coded in Java, compiled and run on a 
Dalvik VM for Android phone. The OWL implementation 
uses Androjena12, a port of the Jena Semantic Web 
Framework for Android OS. The Samsung Infuse13 phone 
had a 1.2 GHz processor, 16GB storage capacity, and 
512MB of internal memory.   

To test the efficiency of the two approaches, we timed 
and averaged 10 executions of each inference task. To test 
the scalability and evaluate worst-case complexity, the set 
of relations between properties and features in the KB form 
a complete bi-partite graph. In addition, for the explanation 
evaluations, every property is initialized as an observed 
property; for the discrimination evaluations, every feature 
is initialized as an explanatory feature. We varied the size 
of the KB along two dimensions – properties and features. 
In the OWL approach, as the number of observed 
properties increase, the ExplanatoryFeature class 
grows more complex (with more conjoined clauses in the 
complex class definition). As the number of features 

                                                 
12 http://code.google.com/p/androjena/  
13 http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT  

increase, the ExpectedProperty class and 
NotApplicableProperty class grows more complex. 
In the bit vector approach, as the number of properties 
increase, the number of rows in KBBM grows. As the 
number of features increase, the number of columns grows. 
 
Result of OWL evaluations: The results from the OWL 
implementations of explanation and discrimination are 
shown in Figures 2 and 3, respectively. With a KB of 14 
properties and 5 features, and 14 observed properties to be 
explained, explanation took 688.58 seconds to complete 
(11.48 min); discrimination took 2758.07 seconds (45.97 
min). With 5 properties and 14 features, and 5 observed 
properties, explanation took 1036.23 seconds to complete 
(17.27 min); discrimination took 2643.53 seconds (44.06 
min). In each of these experiments, the mobile device runs 
out of memory if the number of properties or features 
exceeds 14. The results of varying both properties and 
features show greater than cubic growth-rate (O(n3) or 
worse). For explanation, the effect of features dominates; 
for discrimination, we are unable to discern any significant 
difference in computation time between an increase in the 
number of properties vs. features. 

 
 

 
 
 
Figure 2. Evaluation: Explanation (OWL) with O(n3) growth.   
 

 
 

Figure 3. Evaluation: Discrimination (OWL) with O(n3) growth. 
 

Result of bit vector evaluations: The results from the bit 
vector implementations of explanation and discrimination 



are shown in Figures 4 and 5, respectively. With a KB of 
10,000 properties and 1,000 features, and 10,000 observed 
properties to be explained, explanation took 0.0125 
seconds to complete; discrimination took 0.1796 seconds. 
With 1,000 properties and 10,000 features, and 1,000 
observed properties, explanation took 0.002 seconds to 
complete; discrimination took 0.0898 seconds. The results 
of varying both properties and features show linear growth-
rate (O(n)); and the effect of properties dominates.  
 
Discussion of results: The evaluation demonstrates orders 
of magnitude improvement in both efficiency and 
scalability. The inference tasks implemented using an 
OWL reasoner both show greater than cubic growth-rate 
(O(n3) or worse), and take many minutes to complete with 
a small number of observed properties (up to 14) and small 
KB (up to 19 concepts; #properties + #features). On the 
other hand, the bit vector implementations show linear 
growth-rate (O(n)), and take milliseconds to complete with 
a large number of observed properties (up to 10,000) and 
large KB (up to 11,000 concepts). 
 
 

 
Figure 4. Evaluation: Explanation (bit vector) with O(n) growth.   
 
 

Figure 5. Evaluation: Discrimination (bit vector) with O(n) 
growth. 

 

Overall Summary:   
We first developed a declarative specification of the 

explanation and discrimination steps in first-order logic  
(Henson et al, 2011) and in OWL (Henson et al, 2012). We 
demonstrated that, under single-feature (single-disorder) 
assumption, the explanation generation (an abductive task) 
can be carried out by a (deductive) OWL reasoner. We 
then developed bit-vector encoding as (significantly more) 
efficient approach to computing the explanation. 
Specifically, the OWL language and reasoner is more 
expressive than our limited framework as far as deductive 
inferences are concerned. However, this reasoner is 
inadequate for efficiently carrying out the explanation and 
discrimination steps we need for our use cases on resource-
constrained devices as discussed. In fact, the (perception 
cycle) computation that yields minimum explanation 
(consisting of single entity/feature) is iterative and requires 
interleaved use of explanation (abduction) and 
discrimination (deduction) steps.   

For the explanation and discrimination inference tasks 
executed on a resource-constrained mobile device, the 
evaluation highlights both the limitations of OWL 
reasoning and the efficacy of specialized algorithms 
utilizing bit vector operations. The bit vector encodings 
and algorithms yield significant and necessary 
computational enhancements – including asymptotic order 
of magnitude improvement, with running times reduced 
from minutes to milliseconds, and problem size increased 
from 10’s to 1000’s. See Figures 2, 3, 4 and 5 for details. 
The prototyped approach holds promise for applications of 
contemporary relevance (e.g., healthcare/cardiology). 
 

Addressing Velocity: Continuous Semantics  
Velocity can be perceived as either (1) handling large 
amount of streaming information for real-time analysis 
(e.g., Superbowl generated 17000 tweets/second) or (2) 
analyzing and delivering “timely” information (e.g., detect 
people in trouble and respond via social media to help 
them out during disasters). In our work, we have focused 
more on dealing with the latter challenge. For real-time 
analysis of social-data (Twitter) during events, it is 
necessary to keep the data filter (crawler) abreast of the 
happenings of the event. For example, during “Hurricane 
Sandy”, the focus on changing locations (path of the 
hurricane) and happenings (power cut, flooding, fire) has 
to be adapted to keep the analysis up to date with the event.  



Figure 6: Pipeline for event descriptions using Continuous 
Semantics. 

 
As part of our Continuous Semantics agenda (Sheth et 

al, 2010) (Sheth, 2011a), we support dynamic creation and 
updating of semantic models from social-knowledge 
sources such as Wikipedia and LOD. These offer exciting 
new capabilities in making real-time social and sensor data 
more meaningful and useful for advanced situational-
awareness, analysis and decision making. Example 
applications can be as diverse as following election cycles 
to forecasting, tracking and monitoring the aftermath of 
disasters. In Figure 6, Twarql (Mendes et al, 2010) is a 
social data stream filtering application that utilizes domain 
models to determine the appropriate key terms to filtering 
topically relevant tweets. However, given that many events 
(e.g., disasters, unrests and social movements) change in 
unanticipated ways, having a static pre-defined model 
would reduce the recall and consequently miss temporally 
relevant information (tweets) of the event. In Continuous 
Semantics, the tweets themselves are used in conjunction 
with Wikipedia for dynamic model creation by Doozer 
(Sheth et al, 2010). Such a dynamic domain model is then 
leveraged for crawling temporally relevant tweets by 
Twarql. For example, during the Egypt revolt, when the 
term “million man march” appeared on January 29, 2011, 
the day before this suddenly planned event, we used the 
tweets to find frequently occurring terms to generate a 
temporally relevant domain model. The domain model 
consisted of “Heliopolis” as a concept relevant to the 
Egypt revolt. “Heliopolis” is a suburb in Egypt and was the 
destination of “million man march”. This helped to crawl 
more tweets that mentioned the term relevant to the event. 
A preliminary study of determining evolving key terms 
(hashtags) for events was done on US Presidential 
Elections and Hurricane Sandy. Our approach is able to 
improve recall and crawl for (on an average) 90% precise 
tweets using the top-5 relevant hashtags14.  

 

                                                 
14 http://j.mp/C-crawling  

Addressing Variety: Hybrid Representation and 
Reasoning 
Use of semantic metadata to describe, integrate, and 
interoperate between heterogeneous data and services can 
be very powerful in the big data context, especially if 
annotations can be generated automatically or with some 
manual guidance and disambiguation (Sheth and 
Thirunarayan, 2012). Continuous monitoring of PCSS is 
producing fine-grained sensor data streams, which is 
unprecedented. Hence, domain models capturing cause-
effect relationships and associations between features and 
data patterns gleaned from the recently available sensors 
and sensor modalities have not been uncovered and 
formalized hitherto. Such properly vetted domain models 
are, however, critical for prediction, explanation, and 
ultimately, decision making in real-time from the sensed 
data. Further, objective physical sensors (e.g., weather 
sensors, structural integrity sensors) provide quantitative 
observations. In contrast, subjective citizen sensors (e.g., 
Tweets) provide qualitative “high-level” interpretation of a 
situation. For example, a sensed slow moving traffic can 
result from rush hour, fallen trees, or icy conditions that 
can be determined from postings on social media. Thus 
physical and citizen sensors can provide complementary 
and corroborative information enabling disambiguation. 
Specifically, we have sought semantic integration of sensor 
and social data, using multiple domain ontologies and our 
IntellegO perceptual reasoning infrastructure, to improve 
situational awareness. 

 Learning domain models from data as well as specifying 
them declaratively has been widely studied (Domingo and 
Kersting, 2013). The former approach is “bottom-up”, 
machine driven, correlation-based and statistical in nature, 
while the latter approach is “top-down”, manual, causal 
and logical in nature. Significant benefit of using domain-
specific knowledge in addition to machine learning 
techniques is now well appreciated (e.g., (Hammond et al, 
2002)). The data-driven approach (e.g., exemplified by 
probabilistic graphical models (Koller and Friedman, 
2009)) can be further divided into two levels: (i) structure 
learning that derives qualitative dependencies and (ii) 
parameter learning that quantifies dependencies. We have 
investigated how to combine these approaches to obtain 
more complete and reliable situational awareness 
exploiting mutually corroborative as well as 
disambiguation information. Specifically, correlational 
structure gleaned from data provides the right-level of 
abstraction for refinement and enhancement using 
declarative knowledge, prior to parameter estimation in 
order to learn reliable probabilistic graphical models 
(Anantharam et al, 2013).  

 Statistical and machine learning techniques can be 
brought to bear to discover correlations among various 



sensor modalities. Use of data to validate domain models 
has been the hallmark of modern physics and it is 
imperative for Data Science as well (Brooks, 2013): “Data 
can help compensate for our overconfidence in our own 
intuitions and can help reduce the extent to which our 
desires distort our perceptions.”  However, big data can be 
noisy, skewed, inaccurate, and incomplete. Technically 
speaking, this can confound probability estimates by 
implicitly conditioning it.  

 Correlations between two concepts can arise for 
different reasons. (i) Correlations may be causal in nature 
that is consistent with cause-effect declarative knowledge. 
For example, “anomalous” motion of Solar system planets 
w.r.t. earth can be satisfactorily explained by heliocentrism 
and theory of gravitation, and the “anomalous” precision of 
Mercury’s orbit can be clarified by General Theory of 
Relativity. C-peptide protein can be used to estimate 
insulin produced by a patient’s pancreas. (ii) Correlations 
may be coincidental due to data skew or 
misrepresentation. For example, “data-empowered” 
conflicting claims have been made with improper use of 
historical precedents (Klass, 2008) (Cayo, 2013) (Stauffer, 
2002) (Christensen, 1997). (iii) Correlations may be 
coincidental new discoveries. For example, Wal-Mart 
executives associated approaching hurricanes with people 
buying large quantities of Strawberry Pop-Tarts (Brooks, 
2013a). (iv) Correlations may be anomalous and 
accidental. For example, since the 1950s, both the 
atmospheric Carbon Dioxide level and obesity levels have 
increased sharply. (v) Pavlovian learning induced 
conditional reflex, and some of the financial market moves, 
are classic cases of correlation turning into causation!  

 Even though correlations can provide valuable insights, 
they can at best serve as valuable hypothesis or deserve 
explaining from a background semantic theory before we 
can have full faith in them. For example, consider 
controversies surrounding assertions such as ‘high debt 
causes low growth’, and ‘low growth causes high debt’. On 
the other hand, stress/spicy foods are correlated with peptic 
ulcers, but the latter are caused by Helicobacter Pyroli15.  

 In essence, all these anecdotal examples show possible 
pitfalls that can also befall big data analytics and 
predictions, and potential benefits that can accrue.  
 Combining a statistical approach with declarative logical 
approach has been a Holy Grail of Knowledge 
Representation and Reasoning (Domingo and Lowd, 
2009). Some specific research goals to be pursued here to 
improve the quality, generality, and dependability of 
background knowledge can include: (i) Gleaning of data 
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driven qualitative dependencies, and integration with 
qualitative declarative knowledge that are at the same level 
of granularity and abstraction. (ii) Use of these seed models 
to learn parameters for reliable fit with the data. For 
instance, 511.org data (for Bay Area road traffic network) 
can be analyzed to obtain progressively expressive models 
starting from gleaning undirected correlations among 
concepts, to updating (enhancing and correcting) it further 
using declarative knowledge from ConceptNet16 to orient 
the dependencies among concepts, to quantifying 
dependencies (Anantharam et al, 2013). Specifically, 
511.org data can enable us to determine correlation 
between a number of random variables  such as Travel 
Time, Volume, Speed, Delay, Active Event, Scheduled 
Event, Day of the Week, and Time of day, associated with 
every road link. A Bayesian network can be gleaned from 
511.org data and enhanced with explicitly provided 
declarative knowledge by humans or available in 
ConceptNet (Liu and Singh, 2004). These enhancements 
can be in the form of correcting edges, orienting undirected 
edges, and adding new edges. For instance, the enhanced 
Bayesian network includes edges such as ‘baseball-game 
→ traffic jam’, ‘traffic jam → slow traffic’, and ‘bad 
weather → slow traffic’ (from ConceptNet), and ‘Time of 
Event → Active Event’, ‘Volume’ → ‘Speed’, and ‘Speed 
→ Travel Time’, and ‘Scheduled Event → Event’ (from 
511.org). 

 We encourage principled ways to integrate declarative 
approach with progressively expressive probabilistic 
models for analyzing heterogeneous data (Domingo and 
Lowd, 2009): (1) Naive Bayes that treats all the features as 
independent; (2) Conditional Linear Gaussian that 
accommodates boolean random variables; (3) Linear 
Gaussian that learns both structure and parameters; and (4) 
Temporal enrichments to these models that can account for 
the evolution in PCSS. We have applied this approach to 
fine-grained analysis of Kinect data streams by building 
models to predict whether a pose belongs to a human or an 
alien (Koller, 2012). Such techniques can also be applied 
for activity recognition  ranging from monitoring 
Parkinson’s/Alzheimer’s patients to monitoring traffic and 
system health.  

 Orthogonal to these efforts are our research initiatives to 
deal with variety issue cropping up in formalizing 
materials and process specifications (specs). This can arise 
in the context of Integrated Computational Materials 
Engineering (ICME) and Materials Genome Initiative 
(MGI). We are developing a continuum of light-weight 
ontologies to annotate documents and embed data 
semantics to deal with heterogeneity. For example, a spec 
can be annotated to different levels of detail. The simplest 
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approach is to make explicit the source and nature of a 
spec (e.g., AMS 4967 Ti Alloy in the form of bar, wire, 
etc.). The next refinement can determine the names of the 
processing steps the spec describes (e.g., composition, heat 
treatment). A really detailed approach can aggregate all the 
required parameters for carrying out a process/test (e.g., 
annealing, tensile test). Our approaches present cost-
benefit trade-offs accommodating various application 
scenarios from indexing and semantic search, to content 
extraction, to data integration (Thirunarayan, et al, 2005). 
Further, tabular data are compact and highly irregular 
(Thirunarayan, 2005a) because they are meant for human 
consumption. Developing regular data structures with 
well-defined semantics as targets for table translation is an 
active area of research (Thirunarayan and Sheth, 2013). 

 
Addressing Veracity: Gleaning Trustworthiness 
A semantics-empowered integration of physical and citizen 
sensor data can improve assessing data trustworthiness by 
correlating data from different modalities.   For example, 
during disaster scenarios, physical sensing may be prone to 
vagaries of the environment, whereas citizen sensing can 
be prone to rumors and inaccuracies. So combining their 
complementary strengths can enable robust situational 
awareness.  

 Detection of anomalous (machine/human) sensor data is 
fundamental to determining the trustworthiness of a sensor. 
For densely populated sensor networks, one can expect 
spatio-temporal coherence among sensor data generated by 
sensors in spatio-temporal proximity. Similarly, domain 
models can be used to correlate sensor data from 
heterogeneous sensors. However, anomaly detection in 
both social and sensor data is complicated as it may also 
represent an abnormal situation. (As an aside, trending 
topic abuses are common during disasters and political 
events/upheavals as illustrated by the infamous Kenneth 
Cole tweet (Anantharam et al, 2012).) It may not be 
possible to distinguish an abnormal situation from a sensor 
fault or plausible rumor purely on the basis of 
observational data (e.g., freezing temperature in April vs. 
stuck-at-zero fault). This may require exploring robust 
domain models for PCSS that can distinguish data reported 
by compromised sensors (resp. malicious agents) from 
legitimate data signaling abnormal situation (resp. unlikely 
event) or erroneous data from faulty sensors (resp. 
uninformed public).   
 Reputation-based approaches can be adapted to deal 
with data from multiple sources (including human-in-the-
loop) and over time, to compute the trustworthiness of 
aggregated data and their sources. Provenance tracking and 
representation can be the basis for gleaning trustworthiness 
(Perez, 2010) (Gil, 2012). We have developed upper-level 
trust ontology and a comparative analysis of several 

approaches to binary and multi-valued trust, and analyzed 
their robustness to various attacks (Thirunarayan et al, 
2013). Specifically, we have used Bayesian foundation in 
the form of Beta-distribution to formalize binary trust and 
Dirichlet-distribution to formalize multi-valued trust. For 
example, for the binary case, the dynamic trustworthiness 
of an agent (e.g., sensor, vendor) can be characterized 
using Beta-PDF Beta(a,b), whose parameters can be 
gleaned from total number of correct observations r = (a - 
1) and total number of erroneous observations s = (b -1) so 
far. The overall trustworthiness (reputation) can then be 
equated to its mean: a/(a+b). We have also analyzed the 
pros and the cons of several approaches to computing 
direct trust and (inferred) indirect trust. The indirect trust is 
computed using trust propagation rules for sequential 
chaining of edges and parallel aggregation of paths. We 
have also developed algorithms for computing K-level trust 
metric based on Dirichlet-distribution incorporating 
temporal decay, to make it robust with respect to various 
well-known attacks in trust networks (Thirunarayan et al, 
2013). Unfortunately, there is neither a universal notion of 
trust that is applicable to all domains nor a clear 
explication of its semantics or computation in many 
situations (Josang, 2009) (Thirunarayan, 2012).  

 Trust issues are crucial to big data analytics where we 
aggregate and integrate data from multiple sources, and in 
different contexts. The Holy Grail of trust research is to 
develop expressive trust frameworks that have both 
declarative/axiomatic and computational specification. 
Furthermore, we need to devise methodologies for 
instantiating them for practical use by justifying automatic 
trust inference in terms of application-oriented semantics 
of trust (i.e., vulnerabilities and risk tolerance).  

 
Deriving Value: Evolving Background Knowledge, 
Actionable Intelligence and Decision Making 
The aforementioned research should yield new background 
knowledge applicable to big data instances and that can 
benefit end users decision-making (Sheth, 2013). For 
specificity, here are some concrete examples of 
applications impacted by our line of research.  

 Our first example is the Health and wellbeing of patients 
afflicted with chronic conditions that can be improved by 
empowering patients to be more proactive and 
participatory in their own health-care. Development of 
such mobile applications requires: 

 (i) Building background knowledge/ontology involving 
disorders, causative triggers, symptoms and medications. 

 (ii) Using environmental and on-body sensors, 
background knowledge, and patient health history to 
prescribe a regimen to avoid triggers, improve resistance, 
and treat symptoms.  



 As a second example, consider the acquisition of new 
background knowledge to improve coverage by exploiting 
EMR data (e.g., in the cardiology context). Specifically, 
our research elicits missing knowledge by leveraging EMR 
data to hypothesize plausible relationships, gleaned 
through statistical correlations. These can be validated by 
domain experts with reduced manual effort (Perera et al, 
2012).   

 As a third example, our research leveraged massive 
amounts of user generated content to build high-quality 
prediction models. For example, Twitter and author-
provided emotion hashtags can be harnessed for 
sentiment/emotion identification in tweets (Wang et al, 
2012). 
 The observations and interactions in PCSS are 
characterized by three attributes. They are incomplete due 
to partial observation from the real world. There is 
uncertainty due to inherent randomness involved in the 
sensing process (noise in machine sensors and bias in 
citizen sensors). It is dynamic because of the ever changing 
and non-deterministic conditions of the physical world. 
Graphical models can be used to deal with incompleteness, 
uncertainty, and dynamism in many diverse domains. 
Unfortunately, extracting structure is very challenging due 
to data sparseness and difficulty in detecting causal links 
(Anantharam et al, 2013). Declarative domain knowledge 
can obviate the need to learn everything from data. In 
addition, correlations derivable from data can be further 
consolidated if the declarative knowledge base provides 
evidence for it. Similarly to the traffic use case discussed 
before, we believe that leveraging domain ontologies and 
data sets published on the LOD cloud and integrating it 
with data-driven correlations will increase the fidelity of 
graphical models, improving their predictive and analytical 
power.  
  

Conclusions 
We have outlined how semantic models and technologies 
can be, and in many cases are being, used to address 
various problems associated with big data. We overcome 
volume by enabling abstraction to achieve semantic 
scalability for decision making. We defined two operations 
– explanation and discrimination – that underlie the 
semantics of machine perception, and showed how they 
can be implemented efficiently on resourced-constrained 
devices. Variety challenges can be overcome using a 
continuum of light-weight semantics to achieve semantic 
integration and interoperability. We benefitted from 
combining statistical as well as declarative knowledge, to 
improve coverage, reliability, and semantic scalability. We 
employed dynamically constructed domain models for 
semantic filtering to deal with velocity. To improve 
veracity, we have used Bayesian foundation to deal with 
homogeneous sensor networks, and semantics for cross 

checking multimodal data against constraints. We achieved 
value by enriching background knowledge to make them 
comprehensive for better decision making. Given 
Kno.e.sis’ empirically driven multidisciplinary research, 
we seek to harness semantics for big data that can impact a 
wide variety of application areas including medicine, 
health and wellbeing, disaster and crisis management, 
environment and weather, Internet of Things, sustainability 
and smart city infrastructure. 
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