1,234 research outputs found

    The Effect of Distinct Geometric Semantic Crossover Operators in Regression Problems

    Get PDF
    This paper investigates the impact of geometric semantic crossover operators in a wide range of symbolic regression problems. First, it analyses the impact of using Manhattan and Euclidean distance geometric semantic crossovers in the learning process. Then, it proposes two strategies to numerically optimize the crossover mask based on mathematical properties of these operators, instead of simply generating them randomly. An experimental analysis comparing geometric semantic crossovers using Euclidean and Manhattan distances and the proposed strategies is performed in a test bed of twenty datasets. The results show that the use of different distance functions in the semantic geometric crossover has little impact on the test error, and that our optimized crossover masks yield slightly better results. For SGP practitioners, we suggest the use of the semantic crossover based on the Euclidean distance, as it achieved similar results to those obtained by more complex operators

    Semantically-based crossover in genetic programming: application to real-valued symbolic regression

    Get PDF
    We investigate the effects of semantically-based crossover operators in genetic programming, applied to real-valued symbolic regression problems. We propose two new relations derived from the semantic distance between subtrees, known as semantic equivalence and semantic similarity. These relations are used to guide variants of the crossover operator, resulting in two new crossover operators—semantics aware crossover (SAC) and semantic similarity-based crossover (SSC). SAC, was introduced and previously studied, is added here for the purpose of comparison and analysis. SSC extends SAC by more closely controlling the semantic distance between subtrees to which crossover may be applied. The new operators were tested on some real-valued symbolic regression problems and compared with standard crossover (SC), context aware crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) selection. The experimental results show on the problems examined that, with computational effort measured by the number of function node evaluations, only SSC and SBS were significantly better than SC, and SSC was often better than SBS. Further experiments were also conducted to analyse the perfomance sensitivity to the parameter settings for SSC. This analysis leads to a conclusion that SSC is more constructive and has higher locality than SAC, NSM and SC; we believe these are the main reasons for the improved performance of SSC

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Geometric Semantic Grammatical Evolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Programming (GP), based on a geometric theory of evolutionary algorithms, which directly searches the semantic space of programs. In this chapter, we extend this framework to Grammatical Evolution (GE) and refer to the new method as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new mutation and crossover operators for GE which are guaranteed to see a simple unimodal fitness landscape. This surprising result shows that the GE genotypephenotype mapping does not necessarily imply low genotype-fitness locality. To complement the theory, we present extensive experimental results on three standard domains (Boolean, Arithmetic and Classifier)

    A Study of Geometric Semantic Genetic Programming with Linear Scaling

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine Learning (ML) is a scientific discipline that endeavors to enable computers to learn without the need for explicit programming. Evolutionary Algorithms (EAs), a subset of ML algorithms, mimic Darwin’s Theory of Evolution by using natural selection mechanisms (i.e., survival of the fittest) to evolve a group of individuals (i.e., possible solutions to a given problem). Genetic Programming (GP) is the most recent type of EA and it evolves computer programs (i.e., individuals) to map a set of input data into known expected outputs. Geometric Semantic Genetic Programming (GSGP) extends this concept by allowing individuals to evolve and vary in the semantic space, where the output vectors are located, rather than being constrained by syntaxbased structures. Linear Scaling (LS) is a method that was introduced to facilitate the task of GP of searching for the best function matching a set of known data. GSGP and LS have both, independently, shown the ability to outperform standard GP for symbolic regression. GSGP uses Geometric Semantic Operators (GSOs), different from the standard ones, without altering the fitness, while LS modifies the fitness without altering the genetic operators. To the best of our knowledge, there has been no prior utilization of the combined methodology of GSGP and LS for classification problems. Furthermore, despite the fact that they have been used together in one practical regression application, a methodological evaluation of the advantages and disadvantages of integrating these methods for regression or classification problems has never been performed. In this dissertation, a study of a system that integrates both GSGP and LS (GSGP-LS) is presented. The performance of the proposed method, GSGPLS, was tested on six hand-tailored regression benchmarks, nine real-life regression problems and three real-life classification problems. The obtained results indicate that GSGP-LS outperforms GSGP in the majority of the cases, confirming the expected benefit of this integration. However, for some particularly hard regression datasets, GSGP-LS overfits training data, being outperformed by GSGP on unseen data. This contradicts the idea that LS is always beneficial for GP, warning the practitioners about its risk of overfitting in some specific cases.A Aprendizagem Automática (AA) é uma disciplina científica que se esforça por permitir que os computadores aprendam sem a necessidade de programação explícita. Algoritmos Evolutivos (AE),um subconjunto de algoritmos de ML, mimetizam a Teoria da Evolução de Darwin, usando a seleção natural e mecanismos de "sobrevivência dos mais aptos"para evoluir um grupo de indivíduos (ou seja, possíveis soluções para um problema dado). A Programação Genética (PG) é um processo algorítmico que evolui programas de computador (ou indivíduos) para ligar características de entrada e saída. A Programação Genética em Geometria Semântica (PGGS) estende esse conceito permitindo que os indivíduos evoluam e variem no espaço semântico, onde os vetores de saída estão localizados, em vez de serem limitados por estruturas baseadas em sintaxe. A Escala Linear (EL) é um método introduzido para facilitar a tarefa da PG de procurar a melhor função que corresponda a um conjunto de dados conhecidos. Tanto a PGGS quanto a EL demonstraram, independentemente, a capacidade de superar a PG padrão para regressão simbólica. A PGGS usa Operadores Semânticos Geométricos (OSGs), diferentes dos padrões, sem alterar o fitness, enquanto a EL modifica o fitness sem alterar os operadores genéticos. Até onde sabemos, não houve utilização prévia da metodologia combinada de PGGS e EL para problemas de classificação. Além disso, apesar de terem sido usados juntos em uma aplicação prática de regressão, nunca foi realizada uma avaliação metodológica das vantagens e desvantagens da integração desses métodos para problemas de regressão ou classificação. Nesta dissertação, é apresentado um estudo de um sistema que integra tanto a PGGS quanto a EL (PGGSEL). O desempenho do método proposto, PGGS-EL, foi testado em seis benchmarks de regressão personalizados, nove problemas de regressão da vida real e três problemas de classificação da vida real. Os resultados obtidos indicam que o PGGS-EL supera o PGGS na maioria dos casos, confirmando o benefício esperado desta integração. No entanto, para alguns conjuntos de dados de regressão particularmente difíceis, o PGGS-EL faz overfit aos dados de treino, obtendo piores resultados em comparação com PGGS em dados não vistos. Isso contradiz a ideia de que a EL é sempre benéfica para a PG, alertando os praticantes sobre o risco de overfitting em alguns casos específicos

    Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit Design

    Full text link
    Despite many successful applications, Cartesian Genetic Programming (CGP) suffers from limited scalability, especially when used for evolutionary circuit design. Considering the multiplier design problem, for example, the 5x5-bit multiplier represents the most complex circuit evolved from a randomly generated initial population. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in Genetic Programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (SOMO) suitable for the evolutionary design of combinational circuits. SOMO uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants as well as the recent versions of Semantic GP, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10+10-bit adder and 5x5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.Comment: Accepted for Genetic and Evolutionary Computation Conference (GECCO '20), July 8--12, 2020, Canc\'un, Mexic
    corecore