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Abstract

Machine Learning (ML) is a scientific discipline that endeavors to enable computers
to learn without the need for explicit programming. Evolutionary Algorithms (EAs),
a subset of ML algorithms, mimic Darwin’s Theory of Evolution by using natural
selection mechanisms (i.e., survival of the fittest) to evolve a group of individuals
(i.e., possible solutions to a given problem). Genetic Programming (GP) is the most
recent type of EA and it evolves computer programs (i.e., individuals) to map a set of
input data into known expected outputs. Geometric Semantic Genetic Programming
(GSGP) extends this concept by allowing individuals to evolve and vary in the semantic
space, where the output vectors are located, rather than being constrained by syntax-
based structures. Linear Scaling (LS) is a method that was introduced to facilitate the
task of GP of searching for the best function matching a set of known data. GSGP
and LS have both, independently, shown the ability to outperform standard GP for
symbolic regression. GSGP uses Geometric Semantic Operators (GSOs), different
from the standard ones, without altering the fitness, while LS modifies the fitness
without altering the genetic operators. To the best of our knowledge, there has been
no prior utilization of the combined methodology of GSGP and LS for classification
problems. Furthermore, despite the fact that they have been used together in one
practical regression application, a methodological evaluation of the advantages and
disadvantages of integrating these methods for regression or classification problems
has never been performed. In this dissertation, a study of a system that integrates both
GSGP and LS (GSGP-LS) is presented. The performance of the proposed method, GSGP-
LS, was tested on six hand-tailored regression benchmarks, nine real-life regression
problems and three real-life classification problems. The obtained results indicate that
GSGP-LS outperforms GSGP in the majority of the cases, confirming the expected
benefit of this integration. However, for some particularly hard regression datasets,
GSGP-LS overfits training data, being outperformed by GSGP on unseen data. This
contradicts the idea that LS is always beneficial for GP, warning the practitioners about
its risk of overfitting in some specific cases.
Keywords: Genetic Programming, Geometric Semantic Genetic Programming, Linear
Scaling, Evolutionary Algorithms, Machine Learning.
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Resumo
A Aprendizagem Automática (AA) é uma disciplina científica que se esforça por
permitir que os computadores aprendam sem a necessidade de programação explícita.
Algoritmos Evolutivos (AE), um subconjunto de algoritmos de ML, mimetizam a Teoria
da Evolução de Darwin, usando a seleção natural e mecanismos de "sobrevivência dos
mais aptos"para evoluir um grupo de indivíduos (ou seja, possíveis soluções para
um problema dado). A Programação Genética (PG) é um processo algorítmico que
evolui programas de computador (ou indivíduos) para ligar características de entrada e
saída. A Programação Genética em Geometria Semântica (PGGS) estende esse conceito
permitindo que os indivíduos evoluam e variem no espaço semântico, onde os vetores
de saída estão localizados, em vez de serem limitados por estruturas baseadas em
sintaxe. A Escala Linear (EL) é um método introduzido para facilitar a tarefa da PG de
procurar a melhor função que corresponda a um conjunto de dados conhecidos. Tanto
a PGGS quanto a EL demonstraram, independentemente, a capacidade de superar a
PG padrão para regressão simbólica. A PGGS usa Operadores Semânticos Geométricos
(OSGs), diferentes dos padrões, sem alterar o fitness, enquanto a EL modifica o fitness
sem alterar os operadores genéticos. Até onde sabemos, não houve utilização prévia
da metodologia combinada de PGGS e EL para problemas de classificação. Além disso,
apesar de terem sido usados juntos em uma aplicação prática de regressão, nunca foi
realizada uma avaliação metodológica das vantagens e desvantagens da integração
desses métodos para problemas de regressão ou classificação. Nesta dissertação, é
apresentado um estudo de um sistema que integra tanto a PGGS quanto a EL (PGGS-
EL). O desempenho do método proposto, PGGS-EL, foi testado em seis benchmarks de
regressão personalizados, nove problemas de regressão da vida real e três problemas
de classificação da vida real. Os resultados obtidos indicam que o PGGS-EL supera
o PGGS na maioria dos casos, confirmando o benefício esperado desta integração.
No entanto, para alguns conjuntos de dados de regressão particularmente difíceis, o
PGGS-EL faz overfit aos dados de treino, obtendo piores resultados em comparação com
PGGS em dados não vistos. Isso contradiz a ideia de que a EL é sempre benéfica para
a PG, alertando os praticantes sobre o risco de overfitting em alguns casos específicos.
Palavras-chave: Programação Genética, Programação Genética em Geometria Semân-
tica, Escala Linear, Algorítmos Evolutivos, Aprendizagem Automática
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1

Introduction

Genetic Programming (GP) is a general-purpose method to automatically breed com-
puter programs to solve a task [2]. In the last decade, the use of GP [2] to tackle symbolic
regression problems has gained popularity, possibly because of some qualities of GP,
such as its ability to deal with problems where little or no information is known about
the data, its ability to evolve models that do not have a previously fixed mathematical
shape, and to perform automatic feature selection while learning the model [3–5]. GP
is traditionally employed to tackle symbolic regression problems using well-known
loss measures, such as the root mean square error (RMSE), to quantify the fitness of
the evolving solutions. Even though this approach is still very popular, it has a draw-
back: some solutions may receive a bad fitness value, promising though they might
be. It is the case, for instance, of solutions that have a similar shape to the one of the
target function, but with different slope and/or location in the Cartesian space. Linear
scaling (LS) was thus introduced by Keĳzer [6] to tackle this issue and improve the
performance of GP on symbolic regression. LS modifies the fitness function rescaling
each individual by using their slope and intercept, two constants that can be easily
calculated with a cost that is linear in the size of the training set. In this way, the
burden of searching for these two constants is removed from the evolution, leaving GP
with the only task of searching for functions whose shape is most similar to that of the
target function. Since its introduction, the benefit of LS was demonstrated on many
theoretical benchmark functions [6] and real-life applications [7–10]. These studies
indicate that LS does not only improve standard GP on training data, but can also
bestow on GP a better generalization ability, often outperforming standard GP also on
unseen data. However, Costelloe and Ryan [11] pointed out that LS may not always
improve GP’s generalization ability.

Ten years after the introduction of LS, Moraglio et al. [12] introduced Geometric
Semantic GP (GSGP), a different variant of GP. GSGP uses specific genetic operators,
called Geometric Semantic Operators (GSOs), instead of the traditional crossover and
mutation of GP. Although acting directly on the syntax of the GP individuals, GSOs
have an indirect known effect on their semantics, and have the important property of
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CHAPTER 1. INTRODUCTION

inducing a unimodal error surface for any supervised learning problem [12]. Several
results were presented revealing the ability of GSGP to effectively fit training data [12,
13]. At the same time, GSGP was also shown to limit overfitting, often outperforming
standard GP on unseen data for several real-life symbolic regression problems [14].

Given that LS works by redefining the fitness and GSGP works by redefining the
genetic operators, which are in general two independent parts of the GP algorithm, it
is natural to imagine a system that joins these two methods, possibly capturing the
advantages of both GSGP and LS. Following this idea, in 2015 Vanneschi et al. [15]
combined GSGP and LS, achieving outstanding results on a challenging application
based on AIS (Automatic Identification System) for the prediction of the positions
of vessels at sea. The success of that system in that particular application domain,
together with the previous achievements of GSGP and LS used in isolation, may induce
researchers to think that the integration of GSGP and LS is always beneficial. However,
Costelloe’s and Ryan’s [11] observations made on standard GP sound like an important
warning and call for a methodological study aimed at investigating the pros and cons
of integrating GSGP and LS.

This dissertation presents a GSGP algorithm and an investigation of a system that
employs GSOs to explore the search space, guided by the LS fitness function, in a
manner similar to that of the approach proposed in [15]. The proposed system is
referred to as GSGP-LS. Furthermore, this work employs the GSGP and LS methods to
address classification problems where no prior utilization has been implemented.

The document is structured as follows. Chapter 2, Theoretical Background, provides
the reader with sufficient knowledge to comprehend the presented work, including
a general understanding of Machine Learning (ML), optimization, bioinspired and
Evolutionary Algorithms (EAs), as well as LS. Chapter 3, Literature Review, briefly
reviews previous works relevant to this study, including both semantics in GP and LS in
GP. Chapter 4, Methodology, presents a detailed description of the GSGP-LS algorithm
developed for this work. A discussion of the software implementing GSGP-LS has been
organized and developed. In Chapter 5, the experimental setup is described, starting
with the parameter settings, followed by presentation of the case studies, the obtained
experimental results and a discussion of the results. Finally, Chapter 6 concludes the
work with an overview containing the results of the work, limitations, and ideas for
future research.
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2

Theoretical Background

The objective of this chapter is to present algorithms, techniques and fundamental
concepts used within this work. More specifically, Section 2.1 introduces the field of
ML, Section 2.2 presents an overview of Optimization while Section 2.3 summarizes
Bioinspired and EAs, including GP in Subsection 2.3.1 and GSGP in Subsection 2.3.2.
Lastly, Section 2.4 expounds LS.

2.1 Machine Learning

“I PROPOSE to consider the question, ‘Can machines think?’ [16]

The question was posed by Alan Turing in 1950 [16]. Although the origins of ML
can be traced back to the 1950s, the question "Can machines think?" sparked a flurry
of discoveries in computer science and human history. This question is followed by
another: "How can we teach computers to learn like intelligent beings? How can a
system automatically improve with experience? What types of methods and procedures
can be followed to govern all learning processes?" [17]. The answers and research on
these questions form the foundation of the ML definition.

Mitchell defines ML as the study of computer algorithms that improve themselves
automatically through experience [18]. Instead of explicit programming, which can be
impossible for too complex problems, the goal is to design algorithms that learn new
behaviors and improve through experience. Because learning is ensured with data and
initial algorithm structure, ML is considered a field of Statistics and Computer Science.
However, it would be erroneous to suggest that ML is only related to these fields, as it
is a field that arose from the idea of mimicking the learning mechanisms of humans
or other animals. Furthermore, defining what thinking is and what is considered
intelligent opens up discussions in psychology, neuroscience, and related fields. ML,
which also aimes at defining systems that automatically adapt or optimize to their
environment, has a wide scope of research and application fields ranging from vision
systems to economics, exhibiting being a multi-disciplinary field [17].
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CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Data

The term experience refers to the past information that the ML model has access to. This
is usually in the form of electronic data that has been collected and made available
for analysis. Data are typically represented in a structured collection known as a
dataset [19]. This chapter will expand on the assumption of tabular data, emphasizing
that, while it is a structured method that is widely used in science, it is not the only
way to present data.

A datapoint or instance is a single observation from a dataset. This corresponds to
each row in the context of data frames or tabular data, and it is described as a single
experiment. Every instance has a value for an attribute known as a feature, which is
also referred to as an experiment observation. Data with n instances and m number of
features is represented as below.

𝑥11 , 𝑥12 , 𝑥13...𝑥1𝑚 , 𝑦1

𝑥21 , 𝑥22 , 𝑥23...𝑥2𝑚 , 𝑦2

...

𝑥𝑛1 , 𝑥𝑛2 , 𝑥𝑛3...𝑥𝑛𝑚 , 𝑦𝑛

The values of various features of a particular instance are represented by a vector as
[𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3...𝑥𝑖𝑚]. This vector can be interpreted as the input of the algorithm. Along
with features, data points can also have labels 𝑦𝑖 , which are also known as targets. These
are the expected outputs of a learning algorithm for each instance. The data type of
the target and set of values can differ, and the name of the problem is based on this
information as clarified in the following subsection.

2.1.2 Learning

According to Simon’s definition, learning refers to changes in a system that enable it to
perform the same task more efficiently the next time [20]. One of the primary practical
goals of ML is to generate accurate predictions for previously unseen data [19].

However, a model that performs well on previously given data may not perform
well on a new, unseen data. Learning is fundamentally about generalization. The
generalization ability is critical for prediction. If a model performs poorly in terms of
generalization, it indicates that the model only memorized the given data and did not
learn in principle. This is known as overfitting [19]. The data are partitioned to test
generalization in learning into the following sets.

Traning Set: A collection of data used to train a learning algorithm on the given
data.

Test Set: A collection of data used to assess the generalization capability of the
model and performance on previously unseen data.

4



2.1. MACHINE LEARNING

Validation Set: A set of data used to select appropriate values for the parameters
of the learning algorithm.

2.1.2.1 Learning Scenarios and Tasks

The learning scenarios vary depending on the type of data available to the learner.
Supervised Learning: The goal of supervised learning is to learn how to map feature

values to targets. They were previously defined as inputs and outputs, respectively.
It is called supervised because there is a given label/target for every instance by a
supervisor [21]. The learned relationship between input and output is used to create a
model that can predict on unseen data by leveraging its ability to generalize.

Unsupervised Learning: Unsupervised learning differs from this method in that
no target values are assigned by a supervisor; in this case, only the input data exists.
The goal is to find regularities in the input, which is known in statistics as density
estimation [21]. The emphasis is on pattern recognition or structure recognition. This
estimation is used in ML to find input clusters (clustering).

Some common machine learning tasks that have been studied in-depth and used
in this work fall under the category of supervised learning for having target values.

Regression: Regression problems use datasets with target values that are continu-
ous numbers. A real value for each item must be predicted to perform regression [19].

Classification: A classification problem is one where the target value is discrete (e.g.,
represents some groups). Each item is assigned to a category rather than predicting a
real value.

2.1.2.2 The Quality of Learning

To obtain a quantitative analysis of the predictions, performance metrics or error
measures are employed. This numerical value indicates the success of the algorithm.
The metric used can differ depending on the problem type or context. The emphasis in
this section is on error measures in supervised learning. Since the outputs of regression
are continuous and the outputs of classification are discrete, the methods used as
performance metrics vary between the two cases. Simply put, without knowing the
target values, the model is allowed to make predictions, which are then compared to
the actual values of the targets.

The number of actual and predicted outputs for each class is used to evaluate the
performance of a classification model. The True Positive, True Negative, False Positive,
and False Negative cases are counted in this comparison. Below, a confusion matrix
with visualizations of these values can be observed. Error measures exist not only in
computer science, but also as statistical tools used in many other disciplines. Accuracy,
sensitivity, precision, and F1 scores are some of the most commonly used measures [22].

The confusion matrix displays the numbers of True and False predictions made
using known data. The blue and gray backgrounds show cases that were predicted to
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Figure 2.1: Confusion Matrix andErrorMeasures forClassification (Reprinted from [22])

be positive (TP+FP) and negative (FN+TN), while the blue and gray circles show cases
that are known to be positive (TP + FN) and negative (FP + TN), respectively. FDR is
false discovery rate. Equations for calculating each metric are graphically encoded.

Although the general preference for these metrics changes over time, some of the
most commonly used metrics for regression problems are mean square error (MSE),
RMSE, mean absolute error (MAE), and mean absolute percentage error (MAPE) [23].
In the following chapters, RMSE is employed as the error measure for regression
problems. It is the standard deviation of the prediction errors. The differences between
predicted and actual values are referred to as errors. Assume that after obtaining a
specific model with a dataset of size n, n samples of unbiased model errors 𝜖 with
(𝑒𝑖 , 𝑖 = 1, 2, ..., 𝑛) are collected. The following formula is used to calculate the RMSE of
the predictions: [24].

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1

𝑒2
𝑖

where 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖 denotes each error with 𝑦𝑖 as the predicted target value by the model
and 𝑦𝑖 as the actual target value.

2.2 Optimization

The field of optimization is associated with the methods or algorithms that can be used
to solve complex problems by locating or approximating the optima [25]. Optima in
plural or optimum in singular can be defined as the best solution to a problem. What
is important to comprehend for this work is solving an optimization problem means,
out of a typically very large set of possible solutions, finding the best solution(s) [26].
An instance of an optimization problem is defined as:
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(𝑆, 𝑓 )

where:
𝑆 denotes the collection of all possible solutions, also known as the solutions space or
search space.
𝑓 is a function defined on all elements of 𝑆 that assigns each one a real number:

𝑓 : 𝑆→ 𝐼𝑅

𝑓 is known as fitness and it quantifies the quality of the solution which makes it possible
to interpret a solution good, bad or the best. Depending on the problem description,
the term "best" can mean either the minimum or maximum value. Optimization seeks
a solution that minimizes or maximizes 𝑓 across the problem domain.

2.2.1 Fitness Landscapes

Fitness landscapes depict the fitness of each potential solution in a search space. Only
having the solutions and their fitness does not connect these solutions. Having a sense
of connectedness among all possible solutions and their fitness is beneficial in gaining
an understanding of the problem and its characteristics [27]. The neighborhood concept
ensures that the solutions are linked. A fitness landscape is a plot in which all of the
solutions in 𝑆 are represented horizontally, consistently sorted by the neighborhood
structure 𝑁 , and the fitness value 𝑓 (𝑖) for each solution 𝑖 ∈ 𝑆 is indicated vertically [26].
It is represented as follows:

(𝑆, 𝑓 , 𝑁)

The extent to which solutions are considered neighbors depends on the particular
way in which possible solutions are represented and 𝑁 is defined differently for each
optimization problem. Hence, the triple (𝑆, 𝑓 , 𝑁) is defined differently for each problem
at the outset.

There are local and global optimum points on a fitness landscape. The global
optimum is the point at which the solution with the best fitness is observed, whereas
the local optimum is the point at which the solution with the best fitness for a specific
neighborhood is observed [27]. If there are no local optima in a fitness landscape,
and the global optimum is unique, then it is classified as a unimodal fitness landscape,
implying that there is only global optimum.

2.3 BioInspired and Evolutionary Algorithms

Heuristic Optimization is a subset of optimization methods named after the Greek
word for "discovery". Heuristic methods are desirable and advantageous for opti-
mization problems when a reliable exact method is unavailable, the exact method is
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computationally inefficient, or an approximate solution is sufficient [28]. It specifies a
computational practice that selects an optimal solution by iteratively trying to improve
a candidate solution with regard to a given quality measure [29].

As heuristic optimization methods, Bioinspired and EAs function by mimicking the
process of computation and solution finding of generations of biological organisms [30].
There are a variety of Bioinspired Algorithms in the literature. For instance, Artificial
Neural Networks are inspired by the structure of the human brain, EAs are inspired
by the Theory of Evolution of Darwin [31], Particle Swarm is inspired by the collective
intelligence of the animal groups [32]. There are also tens of animal-inspired algorithms
including ants, bees, bacteria, cuckoo, firefly, frog, bat etc. as well as plant-based
algorithms such as Flower Pollination Algorithm and Artificial Plant Optimization.
The ability to return an approximated, or imprecise, solution to problems whenever
they are unable to find a perfect one is a trait shared by the Bioinspired algorithms. The
capacity of the system for generalization is enhanced by this feature.

Figure 2.2: Briefly, optimization methods and the position of EAs in this context.

2.3.1 Genetic Programming

Turing proposed that a successful "learning machine" can be built by mimicking the
learning process of a child, where the child has hereditary material and an education
course. With this as a foundation, he proposed an accelerated evolution in which the
concept of the survival of the fittest applied. The concept is based on natural selection,
which is a mechanism in Charles Darwin’s Theory of Evolution [31].

GP is an ML technique that falls under the category of Bioinspired Algorithms,
more specifically Evolutionary Computation. The basic idea behind GP is to genetically
breed a population of potential solutions [33]. An individual is a possible solution, and
a population is made up of several individuals. Starting with a population in which
each individual represents a computer program on its own, the population is allowed

8



2.3. BIOINSPIRED AND EVOLUTIONARY ALGORITHMS

to evolve in order to find the most successful among them to solve a problem at hand.
With sexual recombination (crossover) of the parental computer programs, GP generates
a new population of offspring [2]. Because parental programs are chosen in proportion
to their fitness measures, the Darwinian principle of survival of the fittest is applied.
The goal of using natural selection and genetic operators to create a computer program
that solves or approximates a given problem is, in fact, the definition of optimization.
The concepts identifying natural selection are reproduction, ability of adaptation to the
environment, hereditariness, variation and competition. These are duplicated to an extent
in the algorithm [26]. Over many generations, GP algorithms may exhibit increasing
average fitness and effectively adapt to environmental changes [2].

Figure 2.3: A graphic depiction of the iterative work-flow of an evolutionary algorithm,
including GP, that is driven by the concepts of Darwin’s Theory of Evolution.(Reprinted
from [34])

At this point it is important to state that GP originated from Genetic Algorithms
(GA) introduced by Holland in 1975 [35] and Goldberg in 1989 [36]. Just like GP,
GAs are algorithms based on the mechanisms of natural selection and genetics. GAs
are used to perform optimization by mimicking the biological systems’ robustness,
efficiency and flexibility [36]. Despite the fact that the evolutionary process is very
similar to that of GPs, there is a critical difference between GAs and GPs, which is
representation. Individuals in GAs are not computer programs, but rather fixed-length
character strings that correspond to chromosomes in nature [36]. This representation,
when used with GPs, limits the internal states of the system due to its fixed-length and
cannot keep up with dynamically varying programs [2].
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2.3.1.1 Representation of the GP Individuals

Abstract syntax tree representation is widely used with GP where a tree represents a
computer program, a function that solves the given problem. The tree is constructed
using nodes. The node values can be either functions or terminals. The terminals are
specified as a constant value from a predefined set [37]. Node values are selected from
two sets: Function Set (𝐹) and Terminal Set (𝑇). The types of functions may vary, but for
the purposes of this thesis, examples of binary operations such as addition, subtraction,
multiplication, and division would suffice, as would examples of unary operations
such as 𝑠𝑖𝑛, 𝑐𝑜𝑠, and 𝑙𝑜𝑔. Because it corresponds to the structure of the tree, the
representation is considered the genotype of an individual. The fitness of individuals is
referred to as the phenotype of an individual. Having a tree-based representation may
appear as having an infinite search space but the trees are limited by restricting their
depth. In contrast to the fixed-length representation of GAs, tree representation of GP
allows trees to grow. This may increase the generalization and solution capacity of GP
compared to GAs.

Figure 2.4: Abstract syntax tree representation in GP of the function
𝑓 (𝑥1 , 𝑥2 , 𝑥3) = 𝑥1 − 𝑥2 + 𝑥3 ∗ 𝑥1. (Inspired from [38])

2.3.1.2 Initialization

Initialization is the process of creating the trees of the first population. This is the
first step for GP as it is for any evolutionary algorithm. The mechanisms of natural
selection depend heavily on diversity. In GP, this refers to the variation in the genotype
(representation) or phenotype (fitness) of the individuals within a population. Genetic
search will often be more robust if the population is made up of a wider variety of
individuals since it will encourage the exploratory stage of the search [39]. At this work,
three major initialization methods is implemented.

Grow: The grow algorithm begins by creating the root of the tree. A random
symbol from the Function Set (𝐹) is chosen with uniform probability, and the operand
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is chosen from the combination set of 𝐹 and Terminal Set (𝑇). If the node value is a
terminal, the node is a leaf, indicating that the branch stopped growing. This process
is repeated until either the maximum depth is reached or all of the nodes at depth 𝑑

have terminal values [40]. A pseudocode for the algorithm is below.

Figure 2.5: Grow Algorithm (Taken from [40])

Full: Full initialization begins in the same way that grow does. It chooses a random
symbol from 𝐹 to become the root of the tree. However, nodes from depth 2 to 𝑑 − 1
are only chosen using the function set 𝐹, and nodes at the maximum depth are chosen
from the terminal set 𝑇. Thus, full differentiates from grow only in the line marked
with ◦. It never selects a terminal at that stage, only a function [40].

The difference between these methods is that trees created with full initialization
have all of their branches the same length, whereas trees created with grow initialization
have branches with irregular shapes.

Ramped Half-and-Half: The most common and traditional method, and the one
used in this work, is the Ramped Half-And-Half (RHH) method defined by Koza [2].
It makes use of the full algorithm together with the grow algorithm. This method
is advantageous because it allows trees with a wide range of sizes and shapes to
be generated. When used independently, full initialization and grow initialization
produce less diverse populations since the generated trees may be too similar to one
another. RHH is used to increase the initial diversity of the population diversity. The
RHH method generates two groups of trees with depths ranging from 2 to 𝑑. As it
stated in its name, 50% of the trees are generated by full and 50% is generated by grow.

2.3.1.3 Fitness Evaluation

The success of individuals is measured by calculating their fitness. During the evo-
lutionary process, individuals with better fitness are more likely to be able to pass
on their genes to the future generations following the Darwinian principle [31]. This
phenomenon is ensured by the selection process.
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2.3.1.4 Selection

Selection defines the procedure to select parents from an existing population to produce
offspring that will form the new generations of evolution process. Even though different
selection methods such as fitness proportionate selection (roulette wheel) [35], ranking
selection [41] and tournament selection [42] can be used for the implementation of GP,
tournament selection is opted for this work. This choice is motivated in Chapter 5.

Tournament selection is a selection algorithm with two fragments, the first of which
is random and the second of which is deterministic. With a pre-defined tournament
size 𝑘, to select one of the parents from a population, a subset of the population with
size 𝑘 is created randomly [43]. Out of this smaller set, the fitness of every individual
is compared and the best one is chosen to become a parent. This step is entirely
deterministic. The tournament size establishes a variable called selection pressure.
Lower tournament sizes indicate a low selection pressure, while higher values indicate
a high selection pressure, which corresponds to how likely the best individuals are to
survive [26]. Always selecting the best individual of the whole population might sound
like a good idea at first but maintaining diversity is crucial. By keeping the tournament
size small, the selection pressure is reduced, and it is ensured that individuals with
lower fitness are occasionally chosen to maintain diversity.

2.3.1.5 Genetic Operators

There are mainly two types of genetic operators. Operators used in GP will be presented
without details since it differs from GSGP. But it is essential to comprehend the
purpose of these operators which are in fact analogous their biological definitions.
They introduce variation into the evolutionary process of the individual.

Crossover: This sexual recombination operation is carried out between two parents
to produce two offspring. Each offspring inherits a portion of the representation of one
parent and a portion of the representation of the other parent, just as the chromosomes
of living beings [2].

Mutation: Unlike crossover, to perform this operation, only one individual is
required. Mutation can occur by altering a part of a tree representation. This operation
also introduces diversity and has the potential to produce beneficial results [2].

2.3.2 Geometric Semantic Genetic Programming

The point of focus of this thesis is GSGP, a GP modification. It is distinct from the GP
due to its novel genetic operators. Traditional crossover and mutation algorithms are
replaced with special operators, which distinguishes this method from GP. In GSGP,
semantics is exploited by the genetic operators. Semantics is defined as the vector of
the output values of an individual on the input data [26]. Traditional GP, according to
Moraglio, ignores the "meaning" of the problems during the search process [12]. For
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example, in GP, the crossover is performed by swapping a subtree of parents without
taking into account the effect on semantics, making this procedure blind. Since the
success of the individuals is measured by fitness, it is coherent to consider the meaning,
the semantics of the individuals during evolutionary process. Geometric operators
which are used in GSGP are focalize on this meaning.

2.3.2.1 Semantics and Fitness Landscape

For a better understanding of GSGP, it is important to return to the context of optimiza-
tion problems. A population of the tree-based representations of individuals can be
defined as a genotypic space or syntactic space since this space contains the structures [26].
Since every individual has a semantic, it is also possible to define a space with seman-
tics. Individuals in semantic space are represented by their semantics rather than tree
structures. Due to the fact of semantics being a vector, this makes it possible for the
individuals to be represented by a point in this semantic space [12]. In supervised
learning, it is also possible to indicate the target, the global optimum in this space.
Since the objective of optimization is to find an individual with best fitness or at least to
have an approximated solution, fitness can be calculated as, using any metric, distance
(e.g. Euclidean distance) between semantics and the target.

Figure 2.6: Relationship between genotypic and semantic space. The semantic space is
depicted in 2D in the figure, which corresponds to the unrealistic case in which only
two training instances exist. (Reprinted from [40])

2.3.2.2 Operators in Semantic Space

It was suggested in the literature in 1950 that when using evolution, it is important to
find a method to prevent completely random mutations and to perform this operation
in a way that has the potential to improve the success of an individual [16]. Two oper-
ators, geometric crossover and geometric mutation were introduced by Moraglio and
Poli in 2004 [44]. As previously stated, the traditional crossover and mutation operators
function on the genotypic (syntactic) representations of individuals. They proposed
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a framework for crossover and mutation operators based on landscape topology and
geometry, which is associated with semantic space. This framework ensured an auto-
matic method of deriving mutation and crossover from the neighborhood structure of
a landscape. This clarified the connection between representation, genetic operators,
neighborhood structure and distance in the landscape [44].

Geometric crossover is performed with two parents to obtain a single offspring
located between its parents in space. It should be noted that this operation only creates
one offspring.

Figure 2.7: A graphical representation of the effect of geometric crossover, in the simple
bidimensional case. (Reprinted from [26])

Geometric mutation, also known as box mutation, mutates an individual by ran-
domly perturbing its coordinates within a certain range (box).

Figure 2.8: A graphical representation of the effect of geometric mutation (box mutation),
in the simple bi-dimensional case. (Reprinted from [26])

2.3.2.3 Geometric Semantic Crossover (GSC)

When an offspring is created with geometric crossover in semantic space, where fitness
is calculated as the distance of an individual to the global optimum, it will be located
on a linear line between the parents. The betweenness property of geometric crossover
ensures that offspring do not deviate further from the global optimum than the worst
parent already is. This ensures that the fitness of the offspring is never worse than the
fitness of the worst parent. Moraglio defined the GSC operator, which corresponds to
geometric crossover on the semantic space [12, 26].
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Geometric Semantic Crossover. Given two parent functions 𝑇1 , 𝑇2 : R𝑛 → R, GSC
returns the real function 𝑇𝑋𝑂 = (𝑇1 · 𝑇𝑅) + ((1 − 𝑇𝑅) · 𝑇2), where 𝑇𝑅 is a random real
function whose output values range in the interval [0, 1].

Figure 2.9: Tree representation of the GSC formula. (Inspired from [34])

2.3.2.4 Geometric Semantic Mutation (GSM).

Similarly, in semantic space, when an individual is mutated with geometric mutation,
mutation can always improve fitness by allowing the point to move closer to the global
optimum. Moraglio also defined the GSM operator, which corresponds to geometric
mutation (box mutation) on the semantic space [12, 26]

Geometric Semantic Mutation (GSM). Given a parent function 𝑇 : R𝑛 → R, GSM
with mutation step 𝑚𝑠 returns the real function 𝑇𝑀 = 𝑇 + 𝑚𝑠 · (𝑇𝑅1 − 𝑇𝑅2), where 𝑇𝑅1

and 𝑇𝑅2 are random real functions.

The ms is used to tune the proportion of the perturbation (i.e., the limits of the
box). Overall, GSGP have the ability to introduce a unimodal fitness landscape on the
training set since genetic operations can always produce offspring that are closer to
the target. This is phenomenon renders regression and classification problems easy to
solve on training set.

Figure 2.10: Tree representation of the GSM formula. (Inspired from [34])
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2.3.2.5 Real-Life Applications of GSGP

GSOs, in addition to presenting a unimodal fitness landscape, had some limitations
that rendered them useless in practice when they were first introduced. By their
definitions, GSOs were causing the representation of the offspring to become larger for
every generation. For future works, Moraglio suggested simplifying the syntax of the
individuals to obtain a simpler genotype while preserving their semantics. Vanneschi
et al. and Castelli et al. presented a novel implementation that made GSGP utilizable
for complex real-life applications, for the first time [13, 45].

2.3.3 GSGP Implementation

This novel implementation of Vanneschi et al. [45] is based on saving new generation
records that include operators and parents. As in standard GP, it begins by generating
a random initial population. The individuals’ representations and semantics are then
stored in two tables. A new table is created for each new generation of individuals
𝑇. The table contains information about the operator with which the individual was
created (crossover or mutation), as well as the ID. The ID is a memory pointer (reference)
of the parents and their semantics, which were calculated using geometric semantic
operators. Individuals from the new population are also saved in this manner.

An individual created by a crossover between parents𝑇1 and𝑇2 is represented by the
triplet 𝑇 =< 𝐼𝐷(𝑇1), 𝐼𝐷(𝑇2), 𝐼𝐷(𝑅) >, where R is the random tree used by the crossover.
With the same form, an individual created by a mutation operator on 𝑇2 is represented
as 𝑇 =< 𝐼𝐷(𝑇2), 𝐼𝐷(𝑅1), 𝐼𝐷(𝑅2) > where 𝑅1 and 𝑅2 are random trees. Random trees,
along with their representations and semantics, must also be stored on a table.

Figure 2.11: Illustration of the example described above. (a) The initial population 𝑃;
(b) The random trees used by crossover; (c) The representation in memory of the new
population 𝑃′. (Reprinted from [45])

Since the trees are stored with their semantics (evaluations), there is no need to
explicitly build the tree andevaluate the entire tree after the creation ofan offspring. Due
to memory constraints, individuals that are not used for the creation of any offspring
are deleted from the memory before passing on to the next generation because they
will never be used again.
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In terms of time complexity, this method is linear with respect to population size
and the number of generations since it requires 𝑂(𝑛) space to store the individuals
for g number of generations (𝑂(𝑛𝑔)). At the end, it is sufficient to reconstruct the
best individual making reconstruction a one-time process and it can be done offline
from the algorithm. Overall, this novel implementation ensures GSGP to be applied
efficiently on real-life data with high success rates.

2.4 Linear Scaling

While performing regression with GP, in cases where individuals that have a shape
which is very similar to the one of the target functions, many solutions may receive
a bad fitness value due to having different slope and/or being located in a distant
position of the Cartesian space. LS was introduced by Keĳzer to tackle this issue and
improve the performance of GP on symbolic regression [6]. It is a method introduced
to facilitate the task of GP of searching for the best function matching a set of known
data.

LS modifies the fitness function in a very simple way, rescaling each individual by
using their slope and intercept, two constants that can be easily calculated with a cost
that is linear in the size of the training set. Let 𝑃(𝑥𝑖) be the output of GP individual 𝑃
on the 𝑖th observation of the training set. A linear regression on the target values 𝑡 can
be performed using the equations:

𝑏 =

𝑛∑
𝑖=1

[(
𝑡𝑖 − 𝑡

) (
𝑃(𝑥𝑖) − 𝑃

)]
𝑛∑
𝑖=1

(
𝑃(𝑥𝑖) − 𝑃

)2

𝑎 = 𝑡 − 𝑏 𝑃

(2.1)

where 𝑛 is the number of training observations (fitness cases) and 𝑃 and 𝑡 denote the
average output and the average target value respectively. Values 𝑏 and 𝑎 respectively
calculate the slope and intercept of the set of outputs 𝑃(𝑥𝑖), such that the sum of the
squared errors between 𝑡 and 𝑎 + 𝑏𝑃 is minimized. After this, any error measure can
be calculated on the scaled formula 𝑎 + 𝑏𝑃, for instance the RMSE:

RMSE(𝑡 , 𝑎 + 𝑏 𝑃) =

√√√√√√ 𝑛∑
𝑖=1
(𝑎 + 𝑏 𝑃(𝑥𝑖) − 𝑡𝑖)2

𝑛
(2.2)
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If a is different from 0 and b is different from 1, the procedure outlined above is
guaranteed to reduce the RMSE for any formula [6].

By efficiently calculating the slope and intercept for each individual, the burden of
searching for these two constants is thus removed from the evolution. GP is then free
to search for the expression whose shape is most similar to that of the target function.
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3

Literature Review

In accordance with the objectives of this work, this chapter focuses on the literature
to capture the works on semantics in GP and "LS in GP" which inspired this thesis.
Section 3.1 presents semantics in GP and Section 3.2 presents LS in GP.

3.1 Semantics in GP

Several semantically aware methods existed in the literature prior to Moraglio’s [12]
definition and presentation of GSGP. Moraglio and Poli [46] worked on the question "Is
it possible to unify evolutionary algorithms within a general mathematical framework?"
from 2004 to 2007. They created a formal structure for this unification over time. By
introducing geometric crossover, they were able to unify fitness landscapes and genetic
operators [47]. They presented a representation-independent topological definition for
this operator and proved its independence using a variety of representation types as
permutation [48, 49], syntactic trees [50], biological sequences [51], and sets [46].

Beadle and Johnson [52] published a novel implementation that compared Koza’s [2]
traditional GP with their method and reported that their method significantly improved
GP performance. The technique is known as semantically driven crossover (SDC).
During SDC, if the offspring has semantics equal to its parent, the program does not
allow the offspring to be produced, which enhances the diversity in the population.
They added the same feature to the mutation operator as well [53]. Beadle and Johnson
also published a semantically driven initialization (SDI) algorithm, which performs
the task of creating semantically unique individuals in the initial population [54].

Jackson [55] worked on the initial population’s phenotypic (behavioral) diversity by
enforcing the algorithm to generate semantically unique individuals. Krawiec et al. [56,
57], proposed a crossover operator for GP with tree representations. The operator
is approximately geometric crossover in semantic space and presents perfect fitness-
distance correlation on the semantic space. It is important to state that their method
did not provide insight into the relationship between syntactic and semantic searches.

Nguyen et al. [58] applied a new form of semantic-aware crossover for GP that
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can be applied to both Boolean and continuous problems, extending on the ideas of
Beadle et al. [52]. Beadle et al.’s work was limited to a study of Boolean problems.
Nguyen et al. demonstrated that this method can improve GP performance. In a
subsequent paper [59], they proposed a new method called sampling semantics for
defining semantic distance between two subtrees. They performed mutation and
crossover operations using these semantic distances.

Overall, these methods lacked one feature: they were not direct. There was no
direct relationship between syntactic and semantic spaces in any of them. The offspring
that will be a part of the new generation were found in a trial-and-error based system
instead of having a guarantee that the offspring will respect the criterion needed by
its construction. In his paper called “Geometric Semantic Genetic Programming” [12],
Moraglio presented a novel form of GP by introducing geometric semantic operators.
The operators enabled GP to search directly the semantic space. He also stated the fact
that the representation of the offspring required simplification.

Vanneschi et al. [45], presented their novel method with a new efficient implementa-
tion of GSGP which made it possible to be used on complex real-life applications . They
demonstrated that their GSGP outperformed standard GP systems with experiments
on pharmacokinetics area. Castelli and Vanneschi et al., applied their method to sev-
eral complex real-life problems such as predictions of concrete strength [60], Unified
Parkinson’s Disease Rating Scale assessment [61], human oral bioavailability [62] which
continued to confirm the applicability and high performance of GSGP.

Castelli et al. [13] and Bakurov et al. [63] published works presenting GSGP frame-
works and libraries. The code of Castelli et al. is an open-source GSGP software
written in C++ with Moraglio’s [12] geometric semantic operators and Vanneschi et
al.’s [45] novel implementation. The software incorporates the entire GSGP process,
from initialization to prediction with unknown data. The RHH method is used for
initialization; GSC and GSM are used for genetic operators; and the program uses tree
representations. The software developed by Bakurov et al. is a general-purpose opti-
mization library that includes the GSGP algorithm. The multipurpose library includes
common optimization problems such as the Knapsack Problem and the Traveling
Salesperson Problem, as well as optimization algorithms such as Genetic Algorithms,
Swarm Intelligence, and GSGP. Python is used to create the library. Because the
GSGP code uses GPU-accelerated computing, the algorithm is faster than other GSGP
algorithms. Neither library includes a visualization or statistical output package, nor
does it support multiprocessing.
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3.2 LS in GP

Regression and LS have long been used in general practice. It has been studied how to
combine numerous expressions formed by GP using various types of multiple linear
regression.

Iba et al. [64, 65] investigated the integration of multiple regression analysis
method and GP-based search strategy. Multiple linear regression was also used to find
coefficients in polynomial regression models. They looked into improving GP systems
that search for polynomial models for non-linear dependencies. They used a set of
transfer polynomials to become more flexible when constructing models. Nikolaev et
al. [66] worked on the regularization of inductive GP tuned for learning polynomials.
They presented a general approach to polynomial models when searching for higher
order multivariate polynomial represented as tree structures.

Hiden et al. [67, 68] presented that GP can be used to extend partial least squares
(PLS) and principal components analysis (PCA) for the modeling of non-linear process
systems and stated that GP based systems outperformed standard GP and other non-
linear PLS and PCA algorithm. In order to use GP with non-linear models, McKay et
al. [69] have investigated the combination of GP with non-linear continuum regression.

However, multiple linear regression requires a matrix inversion, either over the
dataset or the covariance matrix, which makes it a fairly costly procedure. The necessity
to specify the number of coefficients to be used presents another issue with multiple
linear regression. The likelihood of overfitting also increases as this number rises.

On the other hand, Keĳzer’s work showed a dramatic improvement in the perfor-
mance of GP for symbolic regression by applying LS to the error measure [6]. In his first
contribution, Keĳzer demonstrated the benefits of LS on several synthetic test functions.
Shortly after, he published another article, where he gave theoretical corroboration
to the success of LS [70]. After Keĳzer’s contribution, LS has been used in several
benchmark problems and real-life applications.

For instance, Archetti et al. [7], reported using LS with GP to improve the per-
formance on several regression tasks related to the area of drug discovery. A few
years later, the same authors also successfully applied LS with GP on another problem
from the medical field, consisting in predicting the effect of an anticancer therapy on a
specific cohort of patients [71]. In the same year, Raja et al. [8] also combined LS with
their GP system for applications in the telecommunication area and concluded that the
system that used LS outperformed the system that did not use it.

A general trend has also been to integrate LS in GP systems that also contain other
novel methods. For instance, Pennachin et al. [72] used affine arithmetic to improve
both the performance and the robustness of GP for symbolic regression, and they also
performed LS of outputs before fitness evaluation. The presented results indicate that
the proposed system reduces the number of fitness evaluations during training and
improves generalization of GP, reducing overfitting. Similarly, Azad and Ryan [73]
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integrated LS and a method to maintain diversity in a GP system aimed at exploring
lifetime learning.

Few years later, Virgolin et al. [9] applied LS to their GP-based algorithm, called GP-
GOMEA, on a symbolic regression problem from the area of oncology. Later, in another
work where several other real-world datasets were employed [74], the same authors
confirmed the power of LS, successfully integrating LS in a semantic backpropagation-
based GP system. To the best of our knowledge, this is the first and only contribution
in which LS was integrated in a GP system that, although rather different from GSGP,
uses semantic awareness to improve the search.

Recently, Ruberto et al. [10] tackled dynamic target problems by integrating LS with
a GP system using hinge-loss function to evolve a set of discriminant functions for
multi-class classification. The authors reported on the advantage of the version that
uses LS. Later, these results were confirmed and extended, providing an upper bound
to the error in dynamic symbolic regression [10, 75] and classification [76].

It is also possible to come across works (e.g. Medernach et al. [77], Sambo et al. [78])
that compare the performance of their GP system to the GP system with LS and present
their superiority.

Despite the several successes on real-life applications, Costelloe and Ryan [11]
pointed out that several methods that improve GP’s training performance, including
LS, may not improve GP’s generalization ability as well. This consideration is important,
since it partially reflects some of the findings of this work.
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4

Methodology

This chapter outlines the methodology employed in this study, which seeks to in-
vestigate a system that combines the aforementioned benefits of both GSGP and LS.
Specifically, the system utilizes GSOs to explore the search space, while guided by the
LS fitness function. The system is referred to as GSGP-LS. The general layout of the
library is explained in Section 4.1, followed by a detailed discussion of the library’s
various classes. The chapter follows by defining the most comprehensive class, GSGP,
in Section 4.2. The Population class is discussed in Section 4.3, which includes rel-
evant processes such as initialization, offspring creation, and population scoring in
Subsections 4.3.1, 4.3.2, and 4.3.3, respectively. The Individual class is discussed in
Section 4.4, which includes a subsection on reconstruction in Subsection 4.4.1. The
chapter concludes with the presentation of the Node class in Section 4.5.

4.1 General Organization of the GSGP-LS Library

A GSGP algorithm is developed with the following system requirements:

• LS can be implemented.
• It is possible to solve both regression and classification problems.
• Hyperparameters are easily changeable for different datasets.
• Visualization of experiment results can be drawn.
• An acceptable runtime is ensured.

The extensibility of the library was a consideration during its design, with the
intention of facilitating future research and development. The following subsections
will elaborate on the library’s architecture and entities. The library was constructed
based on the theoretical knowledge that was previously presented. It can perform
training of GSGP models, reconstructing the representation of the best individual,
running trained models for predicting, obtaining statistical results and visualizations.

The code is written in Python programming language. Python has an active usage
among the data science community. It contains libraries for easy data reading as well
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as common statistical analysis tools. It also has a high prototyping speed, all in all
providing ease of development.

The library comprises a diverse set of classes and functions pertaining to the
GSGP algorithm. Moreover, it incorporates functions and helper classes that enable
the handling of dataset reading, basic statistical operations, graphing related code,
multiprocessing support, and other utility functionality that lacks scientific relevance.
The library’s design embodies an entity-based object-oriented approach, whereby
several modules listed herein implement a singular theoretical concept. The relevance
between the entities and the theoretical concepts is shown in the table presented
below. Commencing with the most comprehensive entity, the GSGP, the subsequent
subsections introduce the Population, Individual, and Node.

Table 4.1: GSGP Entities

Theory Library

An Optimization Problem GSGP
A Tiny Sample of the Solution Space Population
A Single Solution Individual
Tree Representation Node

4.2 GSGP

A GSGP problem is represented through the GSGP class, which encompasses the
training and prediction procedures and features real-time reporting during the training
process. The user-defined hyperparameters that are intrinsic to the GSGP algorithm
are incorporated in this class. The hyperparameters, their respective definitions, and
the ranges within which they are defined are comprehensively listed below. The
following chapter will present the specific values that have been selected for these
hyperparameters along with their corresponding justifications.

Table 4.2: GSGP Parameter Definitions

Parameter Definition Data Type and Range

max_iter Number of generations integer
pop_size Population size integer
f_selection Selection method string (’tournament’)

tournament.size: integer
elitism_size Number of elites integer
f_fitness Fitness function string (’rmse’ or ’fscore’)
prob_xo Crossover probability float [0, 1]
prob_mut Mutation probability float [0, 1]
mutation_step Mutation step float

for random_mutation_step: lower_range, upper_range: float
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To train the GSGP model, this class invokes the operation to initialize a population,
then continues the process by recording statistical information such as the training
fitness and test fitness of each generation (fitness over time) as well as predictions
made with the best individual. The general process differs depending on whether the
problem type is regression or classification. The following sections will explore these
differences in detail. The GSGP class uses the following modules to test and train the
GSGP model.

4.3 Population

Population class represents a group of individuals, and it manages operations asso-
ciated with the creation of initial and new generations. It invokes the initialization
function, performs the procedure of evolving a population by creating a new genera-
tion. Furthermore, the class scores a population by calculating its average fitness, also
keeping the record of the population’s fittest individual. Since the prediction requires
knowledge of the best individual in any given generation, user calls via GSGP are
routed to this class, which then computes the necessary predictions.

It is crucial to note a distinction between regression and classification problems
in this step. In classification problems, predictions are normalized using a sigmoid
function, which confines the predictions to a range of 0 to 1. After normalization,
a threshold value of 0.5 is utilized to classify the predictions, with those above 0.5
assigned to target class 1 and those below 0.5 assigned to target class 0.

4.3.1 Initialization

Initialization of a new population is performed by creating an initial population (rep-
resented as T population) with a given size for a population, pop_size. A simple pool of
random trees (represented as R population) of the same size is also created at this class.
The pseudo-code of initialization algorithm is presented below.

Algorithm 1 Initialize a new population
1: function rhh(𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒, 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠)
2: for all 𝑑𝑒𝑝𝑡ℎ𝑠 in 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠 do
3: 𝑖 ← 0
4: while 𝑖 ≤ 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 do
5: Append the population with an individual initialized with grow method
6: and having a current depth equals to 𝑑𝑒𝑝𝑡ℎ𝑠

7: Append the population with an individual initialized with full method
8: and having a current depth equals to 𝑑𝑒𝑝𝑡ℎ𝑠

9: 𝑖 += 2
10: end while
11: end for
12: end function
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1: function Initialize First Generation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑑𝑎𝑡𝑎)

2: Create an empty 𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
3: Create an empty 𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
4: 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠 ← [2, 3, 4, 5, 6]

5: 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← Half of the t_population_size divided by the
6: number of 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠
7: 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← Half of the r_population_size divided by the
8: number of 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠

9: Append 𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 with𝑅𝐻𝐻(𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠)
10: Append 𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 with𝑅𝐻𝐻(𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑟𝑒𝑒_𝑑𝑒𝑝𝑡ℎ𝑠)

11: for all individuals in 𝑡_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
12: Calculate initial semantics
13: end for

14: for all individuals in 𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
15: Calculate initial semantics
16: end for

17: end function

4.3.2 Offspring Creation

During the offspring creation process, the Population class also performs the calcula-
tion of the semantics for the T population and R population, which are then stored in
individuals. As shown in the pseudo-code of the evolution process below, the process
starts with the selection of two parents using a given selection method, f_selection.
Subsequently, a new individual is created probabilistically using one of three differ-
ent methods - mutation, crossover, or replication - based on an independent random
variable, with the probabilities determined by prob_xo and prob_mut. Finally, the
semantics of the offspring are computed using those of its parents.
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Algorithm 2 Generation of a new generation
1: function Create New Generation(population)

2: Create an empty list 𝑛𝑒𝑤_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
3: 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠_𝑡𝑜_𝑐𝑟𝑒𝑎𝑡𝑒 ← 𝑔𝑒𝑡_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
4: 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑒𝑙𝑖𝑡𝑒𝑠 ← 𝑔𝑒𝑡_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑒𝑙𝑖𝑡𝑒𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

5: if 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑒𝑙𝑖𝑡𝑒𝑠 ≥ 1 then
6: 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠_𝑡𝑜_𝑐𝑟𝑒𝑎𝑡𝑒− = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑒𝑙𝑖𝑡𝑒𝑠
7: Copy elites to the 𝑛𝑒𝑤_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
8: end if

9: for i in [0...number_of_individuals_to_create] do
10: Select parents 𝑇1 and 𝑇2 from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

11: 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)

12: if 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≤ 𝑔𝑒𝑡_𝑥𝑜_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) then
13: Get a random individual 𝑅 from 𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
14: 𝑛𝑒𝑤_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑥𝑜(𝑇1, 𝑇2, 𝑅)

15: else if 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≤ 𝑔𝑒𝑡_𝑥𝑜_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) +
𝑔𝑒𝑡_𝑚𝑢𝑡_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) then

16: Get random individuals 𝑅1 and 𝑅2 from 𝑟_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
17: 𝑛𝑒𝑤_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑅1, 𝑅2, 𝑇1)

18: else
19: 𝑛𝑒𝑤_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← 𝑇1

20: end if
21: Append 𝑛𝑒𝑤_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 with 𝑛𝑒𝑤_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

22: end for

23: return 𝑛𝑒𝑤_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

24: end function

4.3.3 Scoring a Population

As the Population class is responsible for all individuals in the system, it also scores
the current generation. The ordering of individuals varies based on the fitness function
being utilized. Values closer to 1 indicate superiorfitness forF1 score, while values closer
to 0 indicate superior fitness for RMSE. To ensure that the library remains extensible,
the fitness functions class must conform to the protocol of the fitness function. This is
accomplished by sub-classing the abstract class of fitness functions and implementing
the requisite methods. Any fitness function that adheres to this protocol can be utilized
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to generate scoring, as shown in the pseudo-code below. If the current individual is
very decisive on a particular output, a bad fitness (very low or very high depending
on the fitness function) score is assigned to that individual, as in Keĳzer’s paper [6].

The library is designed to operate with orwithout LS forcomparability. As presented
in the pseudocode, if the LS option is selected, a and b are calculated and the results
are scaled according to the method outlined in Chapter 2, Theoretical Background.

Algorithm 3 Fitness calculation
1: function Score Current Generation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑑𝑎𝑡𝑎)

2: for all individuals in population do

3: for all rows in data do
4: Get target value
5: Get evaluation using semantics
6: 𝑟𝑜𝑤_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑡𝑢𝑝𝑙𝑒(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛)
7: end for

8: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑟𝑜𝑤_𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
9: if 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≥ 107 or 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≤ 10−7 then

10: Assign a bad fitness value

11: else
12: if 𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 then
13: 𝑎, 𝑏 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑙𝑖𝑛𝑒𝑎𝑟_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠(𝑟𝑜𝑤_𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
14: 𝑟𝑜𝑤_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Scaled results
15: end if
16: Calculate average fitness

17: end if
18: Assign the fitness value to the individual
19: end for

20: Sort population with respect to the fitness values
21: return Individual with the best fitness

22: end function
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4.4 Individual

Individual class represents an individual (i.e., a single solution to the problem). The
class performs the mutation and crossover by taking an instance of an individual and
returning the mutated individual or an offspring. GSC and GSM formulas used in this
class are consistent with those outlined in the literature [12].

4.4.1 Reconstruction

It should be noted that a modified technique, distinct from the one presented in
Chapter 2, has been studied to ensure the reconstruction capability. This technique
leverages Python’s garbage collection mechanism, which functions by keeping track
of reference count - a counter that holds the number of references made for an object.
Essentially, a Python variable is a reference to an object stored in memory. When the
reference count of an object reaches zero, indicating that the object is no longer referred
to by any variable, the garbage collector promptly removes it.

In this algorithm, each individual is represented by a tree structure. When an
offspring is created in the Individual class, the crossover or mutation operation is
performed with the parent’s or a random tree’s representation. Consequently, the tree
representation of the offspring only contains references to the parent or the random
tree, rather than the entire tree structure. Python’s reference counting and garbage
collection mechanism ensure that memory is periodically cleaned up, and any unused
representations are erased from memory. In the creation of a new population, any
individuals that were not used are erased.

As the tree grows, each node contains a recursive method, which can make the
recursion memory-intensive, resulting in slower performance and limitations in terms
of the number of nodes. This approach was implemented to investigate its potential,
but it has its limitations. However, since the focus of this study is not on reconstruction,
and this method is not required for experimental purposes, exploring ways to address
these limitations is intriguing for future research.

4.5 Node

Node holds the data structure that objectifies a node in a tree representation. As
outlined in the theory, each tree is constructed by combining individual nodes, and the
Node structure is used to instantiate each node. To compute initial semantics for a tree,
the evaluate function is called on this data structure. Although the semantics of a node
can still be calculated with the evaluate function as the tree and data structure grow, it
is preferable for computation time reasons to use the semantics of the parents without
reevaluating them.

Values for the nodes are selected from a function set and a terminal set. The
function set comprises four binary operations: addition, subtraction, multiplication,
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and division, implemented in Node. Division is defined as a protected division to avoid
division by zero scenarios. Specifically, the division operation is performed only if the
denominator is not zero; otherwise, the result is 1.To introduce non-linearity to the
function set, several additional operations have been defined, including square root,
negative x, sine, cosine, absolute value, reciprocal (1/x), exponential, and logarithm.
These operations can be selected for use if needed. Terminal nodes are randomly
selected from the available columns in the dataset’s features. Additionally, terminal
nodes can be expanded to include random numbers if desired by the user.

In accordance with the theoretical details, the RHH initialization method is also
implemented in this section. The initialization process can be performed by RHH, full,
or grow methods.
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Experimental Study

This chapter presents the findings of the application of the methodology introduced
in the previous chapter, along with accompanying experimental studies. To facili-
tate reproducibility, the experimental setup is outlined in Section 5.1. Subsection 5.1.1
includes parameter setting and Subsection 5.1.2 outlines case studies on regression, syn-
thetic and classification datasets. The associated experimental results for all problems
are given in 5.2 with separate subsections for regression experiments 5.2.1, synthetic
dataset experiments 5.2.2 and classification experiments 5.2.3. Ultimately, the results
are discussed in Section 5.3.

5.1 Experimental Setup

The objective of this work is to assess the effectiveness of integrating the LS technique
with the GSGP algorithm. To this end, multiple experiments were conducted using
both regression and classification problems. For each problem, the experiments were
repeated using the GSGP alone and in combination with LS. Each configuration was
implemented using the library presented in the Chapter 4.

Given the non-deterministic nature of the GSGP algorithm, with elements of ran-
domness present in the initialization, evolution, mutation, crossover, and parent se-
lection steps, the outcome of a single run is not considered reliable for comparison
purposes. To obtain more accurate results, multiple independent runs of the algorithm
were performed. 60 independent runs were conducted for each configuration, with the
dataset randomly partitioned into 70% training and 30% test sets for each run.

5.1.1 Parameter Settings

It is worth noting that the primary focus of this work was not on optimizing hyper-
parameters but rather on making a fair comparison between the two approaches. In
addition, optimizing hyperparameters would probably give origin to a different hyper-
parameter set for every case, thus generating a disorder. As such, the hyperparameters
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Table 5.1: Parameter settings.

Parameter Value

Generations 500
Population size 100
Initialization RHH

Maximum initial depth: 6
Maximum tree depth: ∞

Function set {+,−,×,÷𝑝}
Terminal set { features}
Selection Tournament

Tournament size: 2
Number of elites 1
Crossover probability 0.3
Mutation probability 0.7
Mutation step 𝒰(0, 1]
Train/test split 70/30

used in the experiments were relatively standard and can be found in relevant literature.
The parameters used in the experiments are presented at the Table 5.1.

GSGP is recognized for its effectiveness when using smaller population sizes and
larger number of generations compared to GP [79]. The selection of the number of
generations and population size in the experiments was based on parameter settings
from the literature [45, 80, 81]. The RHH initialization technique was used in all
experiments as it is the most commonly employed method and effectively introduces
diversity in the initial population [2]. The maximum initial depth was set to 6, as per
the recommendations in the literature [2]. No constraints were placed on tree depths
during the GSGP execution. The function set for the experiments included basic arith-
metic operators such as addition, subtraction, multiplication, and protected division
that returns 1 for the cases where denominator is 0. The set of terminal values was
constructed using the features of the instances, as outlined in the theoretical framework.
Tournament selection, as used in the literature, was used for the experiments, with a
tournament size of 2 to decrease selection pressure and prevent premature convergence
[82]. The number of elites (best individual carried into the next generation) was main-
tained at 1 for the same reason. The genetic operator probabilities were in line with the
general guidelines for each method, without any particular tuning. As suggested in
the literature, the mutation step is a random number between 0 and 1, that is generated
independently of the previous ones at each mutation event [14]. The algorithm uses
the same parameters with and without LS. RMSE is employed as the evaluation metric
for regression problems, while F1 score is utilized for classification problems.
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5.1.2 Case Studies

Nine complex real-world symbolic regression problems, frequently utilized as bench-
mark problems for GP experiments, were considered and referred to as regression
datasets. Furthermore, six theoretical benchmarks were evaluated, directly taken from
the work that introduced LS and referred to as synthetic datasets [6]. Additionally, three
classification problems were included in the study to demonstrate the application of
LS on GSGP for classification problems for the first time. These problems are referred
to as the classification datasets.

5.1.2.1 Regression Datasets

The Boston Housing dataset, which pertains to housing prices, was chosen for its
widespread use in regression analysis in the data science community. The Concrete
Compressive Strength dataset was selected as it represents a challenging task in modeling
the behavior of modern high-performance concrete, which is a highly complex material.
The Unified Parkinson’s Disease Rating Scale dataset constitutes a regression problem over
a dataset containing data relative to patients diagnosed with Parkinson’s disease. It is
widely utilized in numerous GSGP studies. The Istanbul Stock Exchange dataset, which
concerns financial markets, was also included due to the difficulty in generating useful
stock market forecasts as a result of the dynamic and chaotic nature of the underlying
stock market process. Four problems in the field of drug discovery, whose objective is
the prediction of key pharmacokinetic parameters (Human Oral Bioavailability, Median
Oral Lethal Dose, Plasma Protein Binding Levels and Docking Energy), and a dataset whose
objective is the prediction of the response of cancer patients to a pharmacologic therapy,
Fludarabine, were also selected for the experiments. These biochemical datasets present
unique challenges, such as high multi-dependency among features by the nature of
compenents and high dimensionality of the feature space, which require methods to
handle overfitting and minimize generalization error [83]. The number of instances
and attributes for each dataset are provided in Table 5.2.

Table 5.2: Number of instances and attributes of regression datasets.

Dataset Instances Attributes

Boston Housing 506 14
Concrete Compressive Strength 1030 9
Unified Parkinson’s Disease Rating Scale (UPDRS) 5875 20
Istanbul Stock Exchange 536 8
Human Oral Bioavailability 359 242
Median Oral Lethal Dose: LD50 234 627
Plasma Protein Binding Levels: PPB 131 627
Docking Energy 992 268
Fludarabine 60 1376
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In the following sections, the attributes used to describe the instances will be dis-
closed when applicable. For each attribute, its name, data type (type), minimum (min),
maximum (max), average (avg), median (med), and standard deviation (SD) will be
reported using abbreviated names. The values will be rounded to the nearest two
decimal places, as this serves to conserve space.

Boston Housing

The dataset, provided by the Statistical Library at Carnegie Mellon University, is
used to forecast housing prices using various variables of the area of Boston, Mas-
sachusetts [84]. These features are listed below and their descriptive statistics have
been reported in Table 5.3. The target is the median value of owner-occupied homes
(MEDV) in $1000’s. A graphical representation of the price distribution is illustrated in
Figure 5.1a.

• CRIM: Per capita crime rate by town.

• ZN: Proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS: Proportion of non-retail business acres per town.

• CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise) .

• NOX: Nitric oxides concentration (parts per 10 million).

• RM: Average number of rooms per dwelling.

• AGE: Proportion of owner-occupied units built prior to 1940.

• DIS: Weighted distances to five Boston employment centres.

• RAD: Index of accessibility to radial highways.

• TAX: Full-value property-tax rate per $10,000.

• PTRATIO: Pupil-teacher ratio by town.

• B: 1000(𝐵𝑘 − 0.63)2 where Bk is the proportion of African-American people by
town.

• LSTAT: % lower status of the population.

• MEDV: Median value of owner-occupied homes in $1000’s.
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Table 5.3: Attributes of Boston Housing.

Type Min. Max. Avg. Med. SD

CRIM float 0.0 89.0 3.6 0.3 8.6
ZN float 0.0 100.0 11.4 0.0 23.3

INDUS float 0.5 27.7 11.1 9.7 6.9
CHAS int 0.0 1.0 0.1 0.0 0.3
NOX float 0.4 0.9 0.6 0.5 0.1
RM float 3.6 8.8 6.3 6.2 0.7
AGE float 2.9 100.0 68.6 77.5 28.1
DIS float 1.1 12.1 3.8 3.2 2.1

RAD int 1.0 24.0 9.5 5.0 8.7
TAX int 187.0 711.0 408.2 330.0 168.5

PRATIO float 12.6 22.0 18.5 19.0 2.2
B float 0.3 396.9 356.7 391.4 91.3

LSTAT float 1.7 38.0 12.7 11.4 7.1
MEDV float 5.0 50.0 22.5 21.2 9.2

Table 5.4: Attributes of Concrete Compressive Strength.

Type Min. Max. Avg. Med. SD

cement (𝑘𝑔/𝑚3) float 102.0 540.0 281.2 272.9 104.5
blast_furnace_slag (𝑘𝑔/𝑚3) float 0.0 359.4 73.9 22.0 86.3

fly_ash (𝑘𝑔/𝑚3) float 0.0 200.1 54.2 0.0 64.0
water (𝑘𝑔/𝑚3) float 121.8 247.0 181.6 185.0 21.4

superplasticizer (𝑘𝑔/𝑚3) float 0.0 32.2 6.2 6.4 6.0
coarse_aggregate (𝑘𝑔/𝑚3) float 801.0 1145.0 972.9 968.0 77.8

fine_aggregate (𝑘𝑔/𝑚3) float 594.0 992.6 773.6 779.5 80.2
age (days) int 1.0 365.0 45.7 28.0 63.2

concrete_compressive_strength float 2.3 82.6 35.8 34.4 16.7

Concrete Compressive Strength

This dataset aimes at predicting the strength of high-performance concrete depend-
ing on several features of the ingredients [60, 85]. In addition to the fundamental
components utilized in traditional concrete, high-performance concrete incorporates
supplementary cementitious materials. To measure the compressive strength of con-
crete, cylinder samples must be subjected to compression testing using a machine.
The resulting measurement is typically expressed in megapascals (MPa) and serves
as the target value in this dataset (concrete_compressive_strength). Attributes used
to describe each instance are presented in the Table 5.4 and distribution of the target
values is depicted in Figure 5.1b.
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(a) Boston Housing (b) Concrete Compressive Strength (c) UPDRS

Figure 5.1: Histogram of the target columns.

Unified Parkinson’s Disease Rating Scale (UPDRS)

The dataset comprises a variety of biomedical vocal measurements and additional
characteristics of 42 patients diagnosed with early-stage Parkinson’s disease [86]. The
patients participated in a six-month trial during which a telemonitoring device was
utilized for remote monitoring of symptom progression, and data was collected accord-
ingly. The primary objective of this data is to predict the clinician’s overall scores on
the Unified Parkinson’s Disease Rating Scale (UPDRS) as reported in [61]. The target
value in the dataset, represented as total_UPDRS, corresponds to these scores and its
distribution is shown in Figure 5.1c. The attributes are listed below and their summary
statistics are presented in the Table 5.5.

• age: Subject age.

• sex: Subject gender ’0’ - male, ’1’ - female.

• test_time: Time since recruitment into the trial. The integer part is the number
of days since recruitment.

• Jitter(%), Jitter(Abs), Jitter:RAP, Jitter:PPQ5, Jitter:DDP: Several measures of
variation in fundamental frequency.

• Shimmer, Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, Shimmer:APQ11,
Shimmer:DDA: Several measures of variation in amplitude.

• NHR, HNR: Two measures of ratio of noise to tonal components in the voice.

• RPDE: A nonlinear dynamical complexity measure.

• DFA: Signal fractal scaling exponent.

• PPE: A nonlinear measure of fundamental frequency variation.

• total_UPDRS: Clinician’s total UPDRS score, linearly interpolated.

36



5.1. EXPERIMENTAL SETUP

Table 5.5: Attributes of UPDRS.

Type Min. Max. Avg. Med. SD

age int 36.0 85.0 64.8 65.0 8.8
sex int 0.0 1.0 0.3 0.0 0.5

test𝑡 𝑖𝑚𝑒 float -4.3 215.5 92.9 91.5 53.4
Jitter(%) float 0.0 0.1 0.0 0.0 0.0

Jitter(Abs) float 0.0 0.0 0.0 0.0 0.0
Jitter:RAP float 0.0 0.1 0.0 0.0 0.0
Jitter:PPQ5 float 0.0 0.1 0.0 0.0 0.0
Jitter:DDP float 0.0 0.2 0.0 0.0 0.0
Shimmer float 0.0 0.3 0.0 0.0 0.0

Shimmer(dB) float 0.0 2.1 0.3 0.3 0.2
Shimmer:APQ3 float 0.0 0.2 0.0 0.0 0.0
Shimmer:APQ5 float 0.0 0.2 0.0 0.0 0.0
Shimmer:APQ11 float 0.0 0.3 0.0 0.0 0.0
Shimmer:DDA float 0.0 0.5 0.1 0.0 0.0

NHR float 0.0 0.7 0.0 0.0 0.1
HNR float 1.7 37.9 21.7 21.9 4.3
RPDE float 0.2 1.0 0.5 0.5 0.1
DFA float 0.5 0.9 0.7 0.6 0.1
PPE float 0.0 0.7 0.2 0.2 0.1

total_UPDRS float 7.0 55.0 29.0 27.6 10.7

Istanbul Stock Exchange

The data was gathered to study the influence of international markets on the Istanbul
Stock Exchange (ISE) and predict the direction of movements in the ISE100 index [87]. It
comprises daily price data for various stock market indices that are co-integrated with
the ISE100. Target is the Istanbul Stock Exchange National 100 Index which represented
as TL BASED ISE. The distribution of TL BASED ISE is plotted in Figure 5.2a. The
attributes are as follows and their basic statistical analysis is presented in Table 5.6. The
values are not rounded to the third decimal point instead of first because of low values.

• SP: The Standard and Poor’s 500 (a stock market index monitoring the stock
performance of 500 large companies recorded on stock exchanges in the United
States) return index.

• DAX: Stock market return index of Germany.

• FTSE: Stock market return index of UK.

• NIKKEI: Stock market return index of Japan.

• BOVESPA: Stock market return index of Brazil.

• EU: MSCI European index.
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• EM: MSCI emerging markets index.

• TL BASED ISE: Istanbul stock exchange national 100 index.

Table 5.6: Attributes of Istanbul Stock Exchange.

Type Min. Max. Avg. Med. SD

SP float -0.054 0.068 0.001 0.001 0.014
DAX float -0.052 0.059 0.001 0.001 0.015
FTSE float -0.055 0.05 0.001 0.0 0.013

NIKKEI float -0.05 0.061 0.0 0.0 0.015
BOVESPA float -0.054 0.064 0.001 0.0 0.016

EU float -0.049 0.067 0.0 0.0 0.013
EM float -0.039 0.048 0.001 0.001 0.011

TL BASED ISE float -0.062 0.069 0.002 0.002 0.016

Human Oral Bioavailability

The dataset serves as a complex, real-world application in the field of pharmacoki-
netics. It involves forecasting the human oral bioavailability of a set of potential new
drug compounds based on a set of molecular descriptors [88].
Human oral bioavailability, indicated by %F, is the parameter that measures the per-
centage of the initial orally administered drug dose that effectively reaches systemic
blood circulation after passing through the liver. Each instance is a vector of molecular
descriptor values identifying a candidate new drug and each column represents a
molecular descriptor. The target is the human oral bioavailability, %F. The distribution
of %F is plotted in Figure 5.2b. The attributes have not been detailed because of the
large quantity and this will remain the same for the subsequent regression datasets.

(a) Istanbul Stock Exchange (b) Human Oral Bioavailability (c) LD50

Figure 5.2: Histogram of the target columns.
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Median Oral Lethal Dose: LD50

The dataset being studied, which is drawn from the field of pharmacokinetics,
concerns the prediction of the median lethal dose of a molecular compound [7]. This
is a widely used metric for evaluating the toxicity of drugs. The acronym LD stands
for Lethal Dose, and the term LD50 refers to the amount of a substance, administered
in one dose, that results in the death of 50% of a group of test animals. Each data point
consists of a vector representing a molecular compound, with the corresponding target
being the LD50 value. The distribution is depicted in Figure 5.2c

Plasma Protein Binding Levels: PPB

This dataset, from the field of pharmacokinetics, aims to predict the percentage of
the initial drug dose that binds to plasma proteins [7]. This measure is of paramount
importance as it relates to the distribution of drugs within the body and their ability
to reach their intended target. The instances consist of vectors representing molecular
compounds, with the corresponding PPB value serving as the target. The distribution
of these values is plotted in Figure 5.3a.

Docking Energy

The dataset in question, belonging to the field of drug discovery and design, aims
to predict the interaction energy between a candidate drug and its target tissue [83].
This metric, known as docking energy, quantifies the strength of binding between the
molecules of the drug and those of the target. Each data point consists of a vector
representing a molecular compound, with the corresponding target being the docking
energy and the distribution is shown in Figure 5.3b.

Fludarabine

The dataset is used to predict the response of a set of cancer patients to the pharma-
cologic of the Fludarabine drug [89]. It was built looking for a functional relationship
between gene expressions and responses to the Fludarabine. Each instance represents a
gene expression and the features are the expression level of one particular gene. Target
is the therapeutic response to the drug. The distribution of its values is illustrated in
Figure 5.3c.
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(a) PPB (b) Docking Energy (c) Fludarabine

Figure 5.3: Histogram of the target columns.

5.1.2.2 Synthetic Datasets

As previously stated in Chapter 3, Keĳzer demonstrated a significant enhancement
in the performance of GP in symbolic regression through the integration of LS, as
presented in his paper [6]. He carried out a set of experiments to illustrate the practical
benefits of utilizing LS. In order to eliminate any biases that may arise from an arbitrary
definition of testing functions, he used problems that have been sourced from previous
research that are relevant to the application and enhancement of symbolic regression.
Besides being a good scientific practice to test a method (in this study, LS) on the same
case studies that were used in the work that introduced that method, motivations for
choosing these benchmarks are the same as in [6], i.e.: “many of the problems above mix
trigonometry with polynomials, or make the problems in other ways highly non-linear”.
Also, it is relevant to point out that, as stated in [6], “being of low dimensionality does
not make the problems easy however”.

The specifics regarding the sampling approach and other problem-specific details
are presented in Table 5.7. The problem names are kept the same as the paper. The
datasets were hand-tailored according to these specifics. The training and testing
intervals are indicated using the [start:step:stop] notation when the set is constructed
with systematic intervals. The rnd(min,max) notation symbolizes random sampling
within a specified range, while the mesh ([start:step:stop]) notation signifies regular
sampling in two-dimensional space.
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Table 5.7: Synthetic dataset settings.

Problem Equation range (train) range (test)

4 𝑓 (𝑥) = 𝑥3𝑒𝑥𝑝−1𝑐𝑜𝑠(𝑥)𝑠𝑖𝑛(𝑥)(𝑠𝑖𝑛2(𝑥) ∗ 𝑐𝑜𝑠(𝑥) − 1) [0:0.05:10] [0.05:0.05:10.05]
5 𝑓 (𝑥, 𝑦, 𝑧) = 30𝑥𝑧

(𝑥−10)𝑦2 x,z = rnd(-1,1) [0:0.05:10]
y = rnd(1,2) [0:0.05:10]

6 𝑓 (𝑥) = ∑𝑥
𝑖 1/𝑖 [1:1:50] [1:1:120]

7 𝑓 (𝑥) = 𝑙𝑜𝑔𝑥 [1:1:100] [1:0.1:100]
8 𝑓 (𝑥) =

√
𝑥 [0:1:100] [0:0.1:100]

9 𝑓 (𝑥) = 𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) [0:1:100] [0:0.1:100]

5.1.2.3 Classification Datasets

For this section of the study, three different classification problems were considered.
Table 5.8 provides the number of instances and attributes for each dataset as well as
the ratio of target classes. The Banknote Authentication Dataset, created with authentic
and forged banknote images, was chosen for its widespread use in binary classification
analysis in the data science community. The Spotify Funk Songs dataset is a dataset
that was established with colleagues several years ago, involving songs extracted from
several playlist. Finally, Breast Cancer Wisconsin (Diagnostic) dataset contains predictions
on breast mass images. It is widely utilized in numerous ML and GP studies.

Table 5.8: Classification Datasets.

Instances Class Ratio Attributes
(class -1: class 1)

Banknote Authentication 1372 762 : 610 5
Spotify Funk Songs 985 711 : 274 14
Breast Cancer Wisconsin (Diagnostic) 569 357 : 212 31

Banknote Authentication

This dataset is used to differentiate between authentic and forged banknotes. The
dataset was sourced from the UCI ML repository and is credited to Volker Lohweg
of the University of Applied Sciences as the owner, with Helene Darksen also of the
University of Applied Sciences credited as the donor [90]. Images acquired from
authentic and forged banknote-like specimens were used to extract data. An industrial
camera is used for digitization. To extract features from images, Wavelet Transform
tool were used. A Wavelet Transform can be used to represent the image as a sum
of different frequency sub-bands which is useful for feature extraction. The resulting
image is a set of coefficients that represent the different frequency components of the
image. The features are the variance, skewness, curtosis of the Wavelet Transformed
image and the entropy of the image. Their characteristics are summarized in Table 5.9.
The target value is -1 for authentic banknotes and 1 for the forged banknotes.
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Table 5.9: Attributes of Banknote Authentication.

Type Min. Max. Avg. Med. SD

variance float -7.0 6.8 0.4 0.5 2.8
skewness float -13.8 13.0 1.9 2.3 5.9
curtosis float -5.3 17.9 1.4 0.6 4.3
entropy float -8.5 2.4 -1.2 -0.6 2.1

class int -1.0 1.0 -0.1 -1.0 1.0

Spotify Funk Songs

The dataset comprises songs from fifteen distinct playlists featuring various genres
on Spotify, one of the largest audio streaming service providers. The playlists encompass
diverse themes such as funky jams, heavy metal, romantic ballads, and relaxing piano.
The platform, named Spotify For Developers, enables developers to extract detailed
information about albums, tracks, and playlists. The dataset was established by me and
my colleagues for an ML project aimed at predicting suitable songs for a funk band
[91]. The attributes of the dataset are elaborated below and a statistical summary has
been provided in Table 5.10. The songs can be classified according to the target column,
which is binary in nature. If the song belongs to a playlist related to the funk genre, it
is labeled as 1, and -1 otherwise.

• danceability: How suitable a track is for dancing.

• energy: Represents a perceptual measure of intensity and activity.

• key: The estimated overall key of the track.

• loudness: The overall loudness of a track in decibels.

• mode: Modality (major or minor) of the track.

• speechness: Presence of spoken words in a track.

• acousticness: A measure indicating the level of acousticness.

• instrumentalness: Measures the level of instrumentalness (no vocals).

• liveness: Detects the presence of an audience in the recording.

• valence: Describes the musical positiveness conveyed by a track.

• tempo: The overall estimated tempo of a track in beats per minute (BPM).

• duration_ms: The duration of the track in milliseconds.

• time_signature: An estimated overall time signature (beats per measure) of a
track.
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Table 5.10: Features of Spotify Funk Songs

Type Min. Max. Avg. Med. SD

danceability float 0.0 0.9 0.5 0.5 0.2
energy float 0.0 1.0 0.5 0.4 0.3

key int 0.0 11.0 5.2 5.0 3.6
loudness float -43.9 -1.9 -14.2 -11.6 8.6

mode int 0.0 1.0 0.7 1.0 0.5
speechiness float 0.0 0.8 0.1 0.0 0.1
acousticness float 0.0 1.0 0.5 0.5 0.4

instrumentalness float 0.0 1.0 0.4 0.1 0.4
liveness float 0.0 1.0 0.2 0.1 0.1
valence float 0.0 1.0 0.4 0.3 0.3
tempo float 0.0 211.3 116.1 112.8 31.6

duration_ms int 62693.0 1215573.0 253833.2 229360.0 125928.2
time_signature int 0.0 5.0 3.8 4.0 0.5

target int -1.0 1.0 -0.4 -1.0 0.9

Breast Cancer Wisconsin (Diagnostic)

The dataset comprises instances of digital images of fine needle aspirates (FNA)
of breast masses [92]. Fine-needle aspiration is a diagnostic procedure employed to
investigate lumps or masses. This technique involves the insertion of a thin, hollow
needle into the mass to obtain a sample of cells, which, upon being stained, are
subsequently examined under a microscope. The features of the dataset describe the
characteristics of the cell nuclei present in the images. For each cell nucleus, there are
10 features with float data type:

• radius (mean of distances from center to points on the perimeter)
• texture (standard deviation of gray-scale values)
• perimeter
• area
• smoothness (local variation in radius lengths)
• compactness (𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2/𝑎𝑟𝑒𝑎 − 1.0)
• concavity (severity of concave portions of the contour)
• concave points (number of concave portions of the contour)
• symmetry
• fractal dimension ("coastline approximation" - 1)

The mean, standard error, and "worst" or largest (mean of the three largest values) of
these features were computed for each image, resulting in 31 attributes in total with
the target. The extensive number of attributes has led to the decision to not display the
statistical summary for each one. The target is the diagnosis which is classified as -1
for benign cases and 1 for malignant cases.
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5.2 Experimental Results

5.2.1 Regression Experiments

The following figures from 5.4 to 5.18 display the performance of the GSGP and GSGP-
LS algorithms on both the training and test sets for the nine considered regression
datasets. The median fitness, measured in terms of RMSE, of the best individual is
plotted against the generation number for each configuration, based on the results of
60 independent runs. The median was chosen over the mean as it is more robust to
outliers, providing a more reliable representation of the data.

From the Figures 5.4, 5.7, 5.12, it can be deduced that GSGP-LS consistently outper-
forms GSGP on the training set for all considered problems. Concerning the results on
the test set, it can be noticed from the Figure 5.4 that GSGP-LS outperforms GSGP on
three of the considered problems:

• Boston Housing (Boston)
• Concrete Compressive Strength (Concrete)
• Unified Parkinson’s Disease Rating Scale (Parkinson)

Nevertheless, as it can be observed in Figures 5.7 and 5.12, GSGP-LS suffers from
overfitting issues on six of the considered problems:

• Istanbul Stock Exchange (Istanbul)
• Human Oral Bioavailability (Bioavailability)
• Median Oral Lethal Dose: LD50 (LD50)
• Plasma Protein Binding Levels: PPB (PPB)
• Docking Energy (Docking)
• Fludarabine (Fludarabine)

To assess the statistical significance of these results Mann-Whitney U test with
statistical significance at 𝛼 = 0.05 was performed for both training and test sets, for
each problem, at each generation, with the null hypothesis that the distribution of the
RMSE of the best individual originated from the 60 runs is the same for GSGP and
GSGP-LS. The results of comparing the two algorithms on the training set are deemed
statistically significant, as indicated by consistently low 𝑝-values of approximately 10−12.
The 𝑝-values are reported in Figures 5.6, 5.9, 5.11. The evolution of the 𝑝-value resulting
from the comparison of the two algorithms on the test set is reported in Figures 5.5,
5.8, 5.10. The significance threshold in each plot is also shown by red horizontal line at
0.05.

The results of the test set for the Boston, Concrete, and Parkinson datasets, as
illustrated in Figure 5.4, provide robust evidence of the superiority of GSGP-LS over
GSGP. The decline in the RMSE is not significant for GSGP-LS, as it commences from a
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much lower RMSE value. It is noteworthy to consider that these datasets possess a high
ratio of instances to attributes and have been extensively studied, without any reported
tendency to overfit. The 𝑝-value plots in Figures 5.5, 5.6 consistently demonstrate a
value near zero, supporting the aforementioned observation.

Figures 5.7, 5.12 demonstrate clear overfitting for all datasets it demonstrates. The
Bioavailability and PPB datasets share a characteristic on the test set: despite GSGP-
LS starting from a lower value, it begins to increase and results in a poorer model,
whereas this trend is not observed for the GSGP algorithm. The increase is more subtle
in the case of Bioavailability and more pronounced in PPB. The possible causes are
discussed in Subsection 5.3. Even though the 𝑝-values in Figure 5.8, 5.10 being below
the threshold, this is due to the lines not having converged yet.

PPB is not the only dataset exhibiting a noticeable increase in RMSE. The LD50
and Fludarabine datasets also demonstrate similar characteristics, starting from a low
RMSE and then increasing to a level even higher than that of GSGP. As a result, their
𝑝-values are initially close to zero but eventually exceed the threshold. While this does
not directly cause overfitting, it is worth noting that these three datasets share a critical
aspect: they all have a very low ratio of instances to attributes.

Istanbul and Docking does not suffer from low instance to attribute ratio but it can
be observed that GSGP-LS cannot show a superior performance. It converges with
GSGP and remains stagnant for many generations with Docking. Although it initially
begins with a lower RMSE, the two methods have a comparable performance with
Istanbul. For both, the 𝑝-value starts from a value close to zero, then gradually increases
as the two methods start to have comparable performance and eventually the 𝑝-value
starts to decline after about 400-450 generations. Then, GSGP starts performing better
and RMSE starts increasing with GSGP-LS algorithm.

The fact that the GSGP-LS error curves on the test set for Bioavailability, LD50, PPB
and Fludarabine are increasing since the very first generations should also be noticed.
The analysis and discussion on the matter is deepened in Subsection 5.3.

Lastly, it is interesting to notice that, for both training and test sets, the initial RMSE
of GSGP-LS is already lower than that at the end of evolution for standard GSGP. On
the training set, this outcome was expected, given the known benefits of LS on the
initial population [6].
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Figure 5.4: Results of the experimental comparison between GSGP and GSGP-LS with
Boston, Concrete and Parkinson datasets.

Figure 5.5: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for Boston, Concrete and Parkinson datasets.
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Figure 5.6: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for Boston, Concrete and Parkinson datasets.

Figure 5.7: Results of the experimental comparison between GSGP and GSGP-LS with
Istanbul, Bioavailability, LD50 datasets.
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Figure 5.8: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for Istanbul, Bioavailability, LD50 datasets.

Figure 5.9: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for Istanbul, Bioavailability, LD50 datasets.

Figure 5.10: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for PPB, Docking and Fludarabine datasets.
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Figure 5.11: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for PPB, Docking and Fludarabine datasets.

Figure 5.12: Results of the experimental comparison between GSGP and GSGP-LS with
PPB, Docking, Fludarabine datasets.
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5.2.2 Synthetic Dataset Experiments

The Figures 5.15, 5.16 showcase the performance comparison between the GSGP and
GSGP-LS algorithms on six problems, using the median RMSE of the best individual as
a metric. The results are based on 60 separate runs and plotted against the generation
number. The evolution of the 𝑝-value resulting from the comparison of the two
algorithms on the test set is reported in Figures 5.13, 5.17 and training set is reported
in Figures 5.14, 5.18.

By the Figure 5.15, it can be observed that problems 4 and 5 exhibit overfitting
issues on both training and testing sets, whereas problems 6, 7, 8, and 9 indicate that
GSGP-LS consistently outperforms GSGP on both sets as shown in Figures 5.15, 5.16.
The statistical significance of their results is evident from the Figures 5.13, 5.17.

The RMSE plot of problem 4 follows a trend similar to that of the Istanbul and Dock-
ing datasets, where GSGP-LS initially outperforms GSGP but eventually experiences a
decline in performance. First, it becomes comparable with GSGP algorithm and then
GSGP outperforms it. 𝑝-value, as in line with this behaviour, starts from a level close
to zero, exceeds threshold and starts decreasing around generation 350.

The inferior performance of GSGP-LS on problem 4 can be attributed to the limited
nonlinearity of the function set, which may not match the shape of functions with a
sinusoidal component. It can be noted that problem 5 exhibits a relatively constant
behavior throughout the process, a deviation from the other functions, which can be
attributed to the presence of division in its mathematical formula. These two topics
will be explored in greater detail in Subsection 5.3.

Figure 5.13: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for problem_4, problem_5 and problem_6 datasets.
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Figure 5.14: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for problem_4, problem_5 and problem_6 datasets.

Figure 5.15: Results of the experimental comparison between GSGP and GSGP-LS with
problem_4, problem_5 and problem_6 datasets.
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Figure 5.16: Results of the experimental comparison between GSGP and GSGP-LS with
problem_7, problem_8 and problem_9 datasets.

Figure 5.17: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for problem_7, problem_8 and problem_9 datasets.
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Figure 5.18: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for problem_7, problem_8 and problem_9 datasets.

5.2.3 Classification Experiments

The subsequent Tables 5.11, 5.12, 5.13 presents the performance of the GSGP and
GSGP-LS algorithms on the three selected classification datasets. A comprehensive
classification report, based on the median values obtained from 60 independent trials,
has been generated for both algorithms. The F1 score has been employed as the measure
of fitness for the algorithms, with the tables providing information on precision,
recall, accuracy, and support as well. For each problem and algorithm, the median
classification report and the confusion matrix of the best model, which is the one with
the highest F1 score, are displayed. The values in the tables are rounded to three
decimal places for the purpose of clarity.

It is worth mentioning that the class labels for the targets were altered from the
original and commonly used labels to -1 and 1, as a result of poor performance in the
initial experiments. Further discussion on this is given in Section 5.3.

The Tables 5.11, 5.12, 5.13 provide insight into the observation that the GSGP-LS
algorithm exhibits superior performance with a higher F1 score and accuracy for all
the problems. The best individual of GSGP-LS predicts both classes faultlessly, as
evidenced by the confusion matrix in Figure 5.19b. Furthermore, as demonstrated in
Figures 5.26b, 5.21b, the total of false positive and false negative cases decreased with
the implementation of GSGP-LS. Figure 5.22 demonstrates the F score per generation
for all the datasets for GSGP and GSGP-LS. Not only it verifies the superiority of GSGP
but also it is possible to observe that GSGP-LS algorithm reaches higher F1 scores faster.
The 𝑝-values for these datasets are also demonstrated in Figures 5.24, 5.23. GSGP
performs slightly better for the training set Wisconsin dataset but it can be observed
that the F1 score of GSGP and GSGP-LS are both in the narrow interval of (0.93, 0.96)
and GSGP-LS outperforms GSGP for the test set.
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Table 5.11: Median Classification Report of Banknote

GSGP Precision Recall F1 Score Support

-1 0.948 0.943 0.932 225
1 0.929 0.932 0.915 187

Accuracy 0.925
GSGP-LS Precision Recall F1 Score Support

-1 0.97 0.996 0.983 225
1 0.995 0.963 0.98 187

Accuracy 0.982

(a) GSGP (b) GSGP-LS

Figure 5.19: Confusion Matrices of the best individuals of Banknote Authentication

Table 5.12: Median Classification Report of Spotify Funk Songs

GSGP Precision Recall F1 Score Support

-1 0.925 0.95 0.933 204
1 0.88 0.821 0.835 92

Accuracy 0.904
GSGP-LS Precision Recall F1 Score Support

-1 0.949 0.94 0.944 213.5
1 0.845 0.867 0.856 82.5

Accuracy 0.919
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(a) GSGP (b) GSGP-LS

Figure 5.20: Confusion Matrices of the best individuals of Spotify Funk Songs

Table 5.13: Median Classification Report of Breast Cancer Wisconsin

GSGP Precision Recall F1 Score Support

-1 0.944 0.961 0.948 105.5
1 0.936 0.899 0.915 65.5

Accuracy 0.936
GSGP-LS Precision Recall F1 Score Support

-1 0.977 0.947 0.963 111
1 0.905 0.959 0.932 60

Accuracy 0.953

(a) GSGP (b) GSGP-LS

Figure 5.21: Confusion Matrices of the best individuals of Breast Cancer Wisconsin
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Figure 5.22: Results of the experimental comparison between GSGP and GSGP-LS with
Banknote, Spotify and Wisconsin datasets.

Figure 5.23: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test data for Banknote, Spotify and Wisconsin datasets.
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Figure 5.24: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on training data for Banknote, Spotify and Wisconsin datasets.

5.3 Discussion on Results

Even though the results obtained with GSGP-LS appear generally promising, some
overfitting issues were encountered in real-life problems and theoretical benchmark
problems.

For real-life problems, it can be observed that LS worsens the overfitting issues
on the Bioavailability, LD50, PPB, Docking and Fludarabine datasets. Thus, it can
be concluded that LS can induce or worsen overfitting on some problems on GSGP.
Taking a closer look at these "problematic" datasets, it can be noticed that they share
two aspects which make them particularly difficult for the regression task, and have
even already caused some of them to be criticised in the literature [93]. First, they
have a large amount of features compared to the amount of instances available (i.e.,
there are many more rows than columns in the dataset). And second, there are similar
observations which map to different target values. For these reasons, these datasets
are relatively prone to overfitting.

The synthetic datasets have revealed overfitting issues on problems 4 and 5. The
function of the problem 4 includes exponential, sine, and cosine functions, thus it is
reasonable to surmise that the LS is struggling to accurately fit the shape of the problem.

To address this issue, the experiment was repeated using a function set. To add
non-linearity to the function set, the following functions were included: addition,
multiplication, reciprocal, negation, square root, and sine ({+, ∗, 1/𝑥,−𝑥,

√
𝑥, 𝑠𝑖𝑛(𝑥)}).

RMSE plots of the problem 4 with new function set can be observed in Figure 5.25.
Additionally, 𝑝-values of the test set is plotted in Figure 5.26. Examining the results, it
can be concluded that it is worth investigating the impact of the function set.

Going back to the results of regression problems, additional insights can be gained
on possible ways to overcome the overfitting issue. Since the test error starts with
a reasonable value and only significantly increases after some generations, as per
definition of overfitting, the most trivial solution would be to stop the evolution
earlier. However, deciding a proper stopping condition to tackle the problem is not
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Figure 5.25: Results of the experimental comparison between GSGP and GSGP-LS with
problem_4 with the alternative function set.

(a) Test Set (b) Training Set

Figure 5.26: Evolution of 𝑝-values resulting from the comparison between GSGP and
GSGP-LS on test and training data for problem_4 with the alternative function set.

straightforward.
The simplest solution in that sense would be to introduce a validation set to simulate

the error on unseen data along evolution, to detect immediately if the solution is starting
to overfit. However, this strategy is only viable with large enough datasets, since it
implies splitting the dataset in more parts, hence reducing the amount of observations
in each. In fact, five datasets where we observed overfitting suffer from lack of instances,
thus becoming not ideal candidates for this solution.

A more sophisticated early stopping criterion, which seems more suitable for the
datasets at hand, has been proposed in [94] to leverage the semantic information
available in GSGP for deciding when to end the evolutionary optimization. Notably,
such a criterion would also yield the positive side effect of improving the overall
computation efficiency of the process. However, both the curves of the test set fitness
of GSGP-LS are increasing since the very beginning of the run on LD50, PPB and

58



5.3. DISCUSSION ON RESULTS

Fludarabine. This induces a thought: although worth investigation, early stopping
may not be enough to generate reliable models in those cases. For this reason, in the
Chapter 6, other strategies that should be explored in the future to limit overfitting are
proposed.

In the case of problem 5, a plateau in RMSE values was noted early on in the
generations. This could be attributed to the division in the definition of problem 5.
The division was defined in the function set as a protected division, which returned a
constant value of 1 for cases where the denominatorwas 0. This could result in a constant
behavior for the model. The overfitting in this scenario is not due to the problem itself,
but rather to the choice of protected division. The algorithm approximates the division
with a value that is not the actual result of the division, which causes in a deviation
from the data. As a result, the algorithm discards the good results and is unable to
improve its performance.

During the classification experiments, no overfitting was observed. However, an
important aspect was noted regarding the use of classification and LS: the class values
assigned to the targets play a crucial role in ensuring the proper functioning of the LS
method. When the model used 0 and 1 as labels, it failed to correctly predict more than
half of the instances of class 1, resulting in subpar performance.

To comprehend the reasoning behind this, it is imperative to recall the linear scaling
equations 5.1.

𝑏 =

𝑛∑
𝑖=1

[(
𝑡𝑖 − 𝑡

) (
𝑃(𝑥𝑖) − 𝑃

)]
𝑛∑
𝑖=1

(
𝑃(𝑥𝑖) − 𝑃

)2

𝑎 = 𝑡 − 𝑏 𝑃

(5.1)

where 𝑃 is a GSGP individual, 𝑃(𝑥𝑖) is the output of the individual calculated on
observation 𝑥𝑖 , 𝑃 is the average output, 𝑡 is target values, 𝑡 is the average target values,
𝑎 and 𝑏 are LS constants. After calculating 𝑎 and 𝑏, individual 𝑃 is evaluated by
calculating the error of 𝑎 + 𝑏𝑃.

The problem occurs due to the utilization of the labels 0 for the targets. Since 0 is
always the minority class in the datasets used in this study, the mean of the labels, 𝑡,
will always be slightly smaller than 0.5:

𝑡 + 𝜖 = 0.5, where 𝜖 > 0
This leads to a situation where the subtraction of 𝑡𝑖 and 𝑡 will result in a value

slightly higher than 0.5, leading to an approximation of 0 for 𝑏 when the label is 1:
𝑡𝑖 − 𝑡 − 𝜖 = 0.5, where 𝜖 > 0
𝑏 ≈ 0

as 𝑎 and 𝑃𝑠𝑐𝑎𝑙𝑒𝑑 are defined as:
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𝑎 = 𝑡 − 𝑏𝑃,
𝑃𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑎 + 𝑏𝑃

a decreases to a slightly lesser value than 𝑡 and 𝑃𝑠𝑐𝑎𝑙𝑒𝑑 becomes slightly smaller than a:
𝑎 + 𝜖 = 𝑡,
𝑃𝑠𝑐𝑎𝑙𝑒𝑑 + 𝜖 = 𝑎, where 𝜖 > 0

causing the most of the predictions for class 1 to be considered as 0.
In this scenario, the use of 0 as label in the equation results in an approximately

constant output. The predictions are not based on the class, but instead, arise from the
inherent properties of 0 as the identity element of multiplication. To resolve this issue,
the class labels were altered to -1 and 1, and subsequent experimentation revealed that
the root cause was the use of 0 in the equations.
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Conclusions and Future Work

This final chapter of the dissertation presents a brief overview of the proposed work
and summarizes the main conclusions related to Geometric Semantic Genetic Program-
ming (GSGP) with Linear Scaling (LS). Additionally, suggestions for further research
are put forward.

The presented technique, referred to as GSGP, is grounded in a theoretical frame-
work that has been thoroughly elucidated. GSGP is a variation of Genetic Programming
(GP) that employs two innovative genetic operators, Geometric Semantic Operators
(GSO), in lieu of the conventional crossover and mutation operators. Another technique,
LS, focuses on altering the fitness of solutions without modifying the genetic operators
themselves. The theoretical underpinnings of both GSGP and LS are delineated in the
background section, and a detailed description of the implementation of both tech-
niques is presented in the methodology. The effects of augmenting GSGP with LS was
explored in this work. In particular, encouraged by the success that was obtained in [15],
the work aimed at investigating the combination of the beneficial traits of these two
methods, which can both outperform standard GP, by improving the genetic operators
– for GSGP – and the fitness – for LS.

The analysis involved a thorough experimental evaluation on the task of symbolic
regression for six theoretical benchmarks and nine real-life problems of various difficul-
ties besides three real-life problems from different fields for classification task. GSGP
was compared against GSGP with LS (GSGP-LS), both in terms of efficiency, i.e., how
fast evolution is able to achieve the desired goal, and in terms of generalization, i.e., how
well the induced model is able to generalize to unseen data. The findings demonstrate
substantial enhancements in most instances, both in the training and testing sets, when
compared to the standard GSGP approach. Moreover, the results indicate that LS
accelerates the evolutionary search process compared to GSGP. These conclusions hold
for both regression and classification problems. Notably, in the classification problems,
no instances of overfitting were detected, and the datasets under examination had not
previously been flagged as prone to overfitting.
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However, it was observed that the integration with LS makes GSGP more prone
to overfitting when the addressed problem is characterized by particularly difficult
data which was observed with regression problems. Nonetheless, from the behavior
of LS during the evolution, it was concluded that search process could be stopped
earlier to achieve comparable or better results than without LS, for both GP and
GSGP, with the desirable side effect of saving computation time. For GSGP, the
approach of early stopping based on semantic neighbourhood presented in [94] can
be considered particularly promising. Besides early stopping, other methods have
recently demonstrated their effectiveness in controlling overfitting. For instance, one
may imagine to develop a system in which LS is turned on and off dynamically during
the evolution. A similar approach has been recently presented for a suitable use of local
search inside GSGP [95]. In that contribution, GSGP was enhanced with local search at
the beginning of the run, but local search was later disabled, for an appropriate control
of overfitting. A similar idea may let GSGP-LS to exploit the advantages of LS in the
initial generations, and later the evolution could continue using GSGP without LS to
control overfitting. Other methods that have been defined to control overfitting for
GSGP and GP are the dynamic interleaving of training instances [96] and soft target
regularization [97]. These methods look promising for GSGP-LS. Last but not least,
the use of an explicit feature selection in a preprocessing phase [98], to integrate the
implicit feature selection already performed by GP during the learning, like for instance
the approach proposed in [99], should be investigated. Furthermore, future studies
and experiments focusing on GSGP-LS and classification should be conducted using
larger and more complex datasets.
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