934 research outputs found

    Earth Resources: A continuing bibliography with indexes, issue 20

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Data Driven Approach To Saltwater Disposal (SWD) Well Location Optimization In North Dakota

    Get PDF
    The sharp increase in oil and gas production in the Williston Basin of North Dakota since 2006 has resulted in a significant increase in produced water volumes. Primary mechanism for disposal of produced water is by injection into underground Inyan Kara formation through Class-II Saltwater Disposal (SWD) wells. With number of SWD wells anticipated to increase from 900 to over 1400 by 2035, localized pressurization and other potential issues that could affect performance of future oil and SWD wells, there was a need for a reliable model to select locations of future SWD wells for optimum performance. Since it is uncommon to develop traditional geological and simulation models for SWD wells, this research focused on developing data-driven proxy models based on the CRISP-Data Mining pipeline for understanding SWD well performance and optimizing future well locations. NDIC’s oil and gas division was identified as the primary data source. Significant efforts went towards identifying other secondary data sources, extracting required data from primary and secondary data sources using web scraping, integrating different data types including spatial data and creating the final data set. Orange visual programming application and Python programming language were used to carry out the required data mining activities. Exploratory Data Analysis and clustering analysis were used to gain a good understanding of the features in the data set and their relationships. Graph Data Science techniques such as Knowledge Graphs and graph-based clustering were used to gain further insights. Machine Learning regression algorithms such as Multi-Linear Regression, k-Nearest Neighbors and Random Forest were used to train machine learning models to predict average monthly barrels of saltwater disposed in a well. Model performance was optimized using the RMSE metric and the Random Forest model was selected as the final model for deployment to predict performance of a planned SWD well. A multi-target regression model was trained using deep neural network to predict water production in oil and gas wells drilled in the McKenzie county of North Dakota

    Structural Evolution of the Arabian Basin Based on 3D Seismic Interpretation

    Full text link
    The Arabian basin was subject to several tectonic events, including Lower Cambrian Najd rifting, the Carboniferous Hercynian Orogeny, Triassic Zagros rifting, and the Early/Cretaceous and Late/Tertiary Alpine orogenic events. These events reactivated Precambrian basement structures and affected the structural configuration of the overlying Paleozoic cover succession. In addition to a 2D seismic array and several drill well logs, a newly acquired, processed 3D seismic image of the subsurface in part of the basin covering an area of approximately 1051 km2 has been provided to improve the understanding of the regional tectonic evolution associated with these deformation events. In this study, a manual interpretation is presented of six main horizons from the Late Ordovician to the Middle Triassic. Faults and folds were also mapped to further constrain the stratigraphic and structural framework. Collectively, this data is used to build a geological model of the region and develop a timeline of geological events. Results show that a lower Paleozoic sedimentary succession between the Late Silurian to the Early Permian was subject to localised tilting, uplift, and erosion during the Carboniferous Hercynian Orogeny, forming a regional unconformity. Subsequent deposition occurred from the Paleozoic to the Mesozoic, producing a relatively thick, conformable, upper succession. The juxtaposition of the Silurian rocks and Permian formations allows a direct fluid flow between the two intervals. Seismic analysis also indicated two major fault generations. A younger NNW-striking fault set with a component of reverse, east-side-up displacement affected the Lower Triassic succession and is most likely related to the Cretaceous and Tertiary Alpine Events that reactivated the Najd fault system. These fault structures allow vertical migration that could act as conduits to form structural traps. Manual mapping of fault structures in the study area required significant time and effort. To simplify and accelerate the manual faults interpretation in the study area, a fault segmentation method was developed using a Convolutional Neural Network. This method was implemented using the 3D seismic data acquired from the Arabian Basin. The network was trained, validated, and tested with samples that included a seismic cube and fault images that were labelled manually corresponding to the seismic cube. The model successfully identified faults with an accuracy of 96% and an error rate of 0.12 on the training dataset. To achieve a more robust model, the prediction results were further enhanced using postprocessing by linking discontinued segments of the same fault and thus, reducing the number of detected faults. This method improved the accuracy of the prediction results of the proposed model using the test dataset by 77.5%. Additionally, an efficient framework was introduced to correlate the predictions and the ground truth by measuring their average distance value. This technique was also applied to the F3 Netherlands survey, which showed promising results in another region with complex fault geometries. As a result of the automated technique developed here, fault detection and diagnosis were achieved efficiently with structures similar to the trained dataset and has a huge potential in improving exploration targets that are structurally controlled by faults

    Drone-based Integration of Hyperspectral Imaging and Magnetics for Mineral Exploration

    Get PDF
    The advent of unoccupied aerial systems (UAS) as disruptive technology has a lasting impact on remote sensing, geophysics and most geosciences. Small, lightweight, and low-cost UAS enable researchers and surveyors to acquire earth observation data in higher spatial and spectral resolution as compared to airborne and satellite data. UAS-based applications range from rapid topographic mapping using photogrammetric techniques to hyperspectral and geophysical measurements of surface and subsurface geology. UAS surveys contribute to identifying metal deposits, monitoring of mine sites and can reveal arising environmental issues associated with mining. Further, affordable UAS technology will boost exploration data availability and expertise in the global south. This thesis investigates the application of UAS-based multi-sensor data for mineral exploration, in particular the integration of hyperspectral imagers, magnetometers and digital cameras (covering the visible red, green, blue light spectrum). UAS-based research is maturing, however the aforementioned methods are not unified effectively. RGB-based photogrammetry is used to investigate topography and surface texture. Image spectrometers measure mineral-specific surface signatures. Magnetometers detect geomagnetic field changes caused by magnetic minerals at surface and depth. The integration of such UAS sensor-based methods in this thesis augments exploration potential with non-invasive, high-resolution, safe, rapid and practical survey methods. UAS-based surveying acquired, processed and integrated data from three distinct test sites. The sites are located in Finland (Fe-Ti-V at OtanmĂ€ki; apatite at SiilinjĂ€rvi) and Greenland (Ni-Cu-PGE at Qullissat, Disko Island) and were chosen as geologically diverse areas in subarctic to arctic environments. Restricted accessibility, unfavourable atmospheric conditions, dark rocks, debris and vegetation cover and low solar illumination were common features. While the topography in Finland was moderately flat, a steep landscape challenged the Greenland field work. These restraints meant that acquisitions varied from site to site and how data was integrated and interpreted is dependent on the commodity of interest. Iron-based spectral absorption and magnetic mineral response were detected using hyperspectral and magnetic surveying in OtanmĂ€ki. Multi-sensor-based image feature detection and classification combined with magnetic forward modelling enabled seamless geologic mapping in SiilinjĂ€rvi. Detailed magnetic inversion and multispectral photogrammetry led to the construction of a comprehensive 3D model of magmatic exploration targets in Greenland. Ground truth at different intensity was employed to verify UAS-based data interpretations during all case studies. Laboratory analysis was applied when deemed necessary to acquire geologic-mineralogic validation (e.g., X-ray diffraction and optical microscopy for mineral identification to establish lithologic domains, magnetic susceptibility measurements for subsurface modelling), for example for trace amounts of magnetite in carbonatite (SiilinjĂ€rvi) and native iron occurrence in basalt (Qullissat). Technical achievements were the integration of a multicopter-based prototype fluxgate-magnetometer data from different survey altitudes with ground truth, and a feasibility study with a high-speed multispectral image system for fixed-wing UAS. The employed case studies transfer the experiences made towards general recommendations for UAS application-based multi-sensor integration. This thesis highlights the feasibility of UAS-based surveying at target scale (1–50 km2) and solidifies versatile survey approaches for multi-sensor integration.Ziel dieser Arbeit war es, das Potenzial einer Drohnen-basierten Mineralexploration mit Multisensor-Datenintegration unter Verwendung optisch-spektroskopischer und magnetischer Methoden zu untersuchen, um u. a. ĂŒbertragbare ArbeitsablĂ€ufe zu erstellen. Die untersuchte Literatur legt nahe, dass Drohnen-basierte Bildspektroskopie und magnetische Sensoren ein ausgereiftes technologisches Niveau erreichen und erhebliches Potenzial fĂŒr die Anwendungsentwicklung bieten, aber es noch keine ausreichende Synergie von hyperspektralen und magnetischen Methoden gibt. Diese Arbeit umfasste drei Fallstudien, bei denen die DrohnengestĂŒtzte Vermessung von geologischen Zielen in subarktischen bis arktischen Regionen angewendet wurde. Eine Kombination von Drohnen-Technologie mit RGB, Multi- und Hyperspektralkameras und Magnetometern ist vorteilhaft und schuf die Grundlage fĂŒr eine integrierte Modellierung in den Fallstudien. Die Untersuchungen wurden in einem GelĂ€nde mit flacher und zerklĂŒfteter Topografie, verdeckten Zielen und unter oft schlechten LichtverhĂ€ltnissen durchgefĂŒhrt. Unter diesen Bedingungen war es das Ziel, die Anwendbarkeit von Drohnen-basierten Multisensordaten in verschiedenen Explorationsumgebungen zu bewerten. Hochauflösende OberflĂ€chenbilder und Untergrundinformationen aus der Magnetik wurden fusioniert und gemeinsam interpretiert, dabei war eine selektive Gesteinsprobennahme und Analyse ein wesentlicher Bestandteil dieser Arbeit und fĂŒr die Validierung notwendig. FĂŒr eine EisenerzlagerstĂ€tte wurde eine einfache RessourcenschĂ€tzung durchgefĂŒhrt, indem Magnetik, bildspektroskopisch-basierte Indizes und 2D-Strukturinterpretation integriert wurden. Fotogrammetrische 3D-Modellierung, magnetisches forward-modelling und hyperspektrale Klassifizierungen wurden fĂŒr eine Karbonatit-Intrusion angewendet, um einen kompletten Explorationsabschnitt zu erfassen. Eine Vektorinversion von magnetischen Daten von Disko Island, Grönland, wurden genutzt, um großrĂ€umige 3D-Modelle von undifferenzierten Erdrutschblöcken zu erstellen, sowie diese zu identifizieren und zu vermessen. Die integrierte spektrale und magnetische Kartierung in komplexen Gebieten verbesserte die Erkennungsrate und rĂ€umliche Auflösung von Erkundungszielen und reduzierte Zeit, Aufwand und benötigtes Probenmaterial fĂŒr eine komplexe Interpretation. Der Prototyp einer Multispektralkamera, gebaut fĂŒr eine StarrflĂŒgler-Drohne fĂŒr die schnelle Vermessung, wurde entwickelt, erfolgreich getestet und zum Teil ausgewertet. Die vorgelegte Arbeit zeigt die Vorteile und Potenziale von Multisensor-Drohnen als praktisches, leichtes, sicheres, schnelles und komfortabel einsetzbares geowissenschaftliches Werkzeug, um digitale Modelle fĂŒr prĂ€zise Rohstofferkundung und geologische Kartierung zu erstellen

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    Earth Resources: A continuing bibliography, with indexes, issue 31

    Get PDF
    This bibliography lists 505 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Architecture and stratigraphy of the Lower Silurian Guelph Formation, Lockport Group, southern Ontario and Michigan

    Get PDF
    The Lower Silurian Lockport Group in Ontario and Michigan comprises, in ascending order: Gasport, Goat Island, Eramosa, and Guelph formations. Guelph facies architecture reveals deposition on an underlying carbonate ramp of Eramosa and/or Goat Island carbonates that dipped towards the Appalachian Basin. Temporally, Guelph facies reflect initial open marine transgressive phases that become increasingly restricted marine and karstic upward. Spatially, the facies display the most restricted marine and karstic fabrics in the central portion of the ‘Michigan Basin’ and are most open marine to the east. Newly acquired regional data supports the re-interpretation of the classic Guelph-pinnacle reef models as karst towers that formed in a paleokarst basin. This new regional perspective of the classic ‘Guelph-play’ will help to explain some of the challenges faced by oil/gas explorationists trying to both map/predict production zones and encourage re-evaluation of existing plays and enable successful exploration of new targets
    • 

    corecore