2,316 research outputs found

    Sentinel: a co-designed platform for semantic enrichment of social media streams

    Get PDF
    We introduce the Sentinel platform that supports semantic enrichment of streamed social media data for the purposes of situational understanding. The platform is the result of a codesign effort between computing and social scientists, iteratively developed through a series of pilot studies. The platform is founded upon a knowledge-based approach, in which input streams (channels) are characterized by spatial and terminological parameters, collected media is preprocessed to identify significant terms (signals), and data are tagged (framed) in relation to an ontology. Interpretation of processed media is framed in terms of the 5W framework (who, what, when, where, and why). The platform is designed to be open to the incorporation of new processing modules, building on the knowledge-based elements (channels, signals, and framing ontology) and accessible via a set of user-facing apps. We present the conceptual architecture for the platform, discuss the design and implementation challenges of the underlying streamprocessing system, and present a number of apps developed in the context of the pilot studies, highlighting the strengths and importance of the codesign approach and indicating promising areas for future research

    Collaboration on an Ontology for Generalisation

    Get PDF
    workshopInternational audienceTo move beyond the current plateau in automated cartography we need greater sophistication in the process of selecting generalisation algorithms. This is particularly so in the context of machine comprehension. We also need to build on existing algorithm development instead of duplication. More broadly we need to model the geographical context that drives the selection, sequencing and degree of application of generalisation algorithms. We argue that a collaborative effort is required to create and share an ontology for cartographic generalisation focused on supporting the algorithm selection process. The benefits of developing a collective ontology will be the increased sharing of algorithms and support for on-demand mapping and generalisation web services

    An Automated System for the Assessment and Ranking of Domain Ontologies

    Get PDF
    As the number of intelligent software applications and the number of semantic websites continue to expand, ontologies are needed to formalize shared terms. Often it is necessary to either find a previously used ontology for a particular purpose, or to develop a new one to meet a specific need. Because of the challenge involved in creating a new ontology from scratch, the latter option is often preferable. The ability of a user to select an appropriate, high-quality domain ontology from a set of available options would be most useful in knowledge engineering and in developing intelligent applications. Being able to assess an ontology\u27s quality and suitability is also important when an ontology is developed from the beginning. These capabilities, however, require good quality assessment mechanisms as well as automated support when there are a large number of ontologies from which to make a selection. This thesis provides an in-depth analysis of the current research in domain ontology evaluation, including the development of a taxonomy to categorize the numerous directions the research has taken. Based on the lessons learned from the literature review, an approach to the automatic assessment of domain ontologies is selected and a suite of ontology quality assessment metrics grounded in semiotic theory is presented. The metrics are implemented in a Domain Ontology Rating System (DoORS), which is made available as an open source web application. An additional framework is developed that would incorporate this rating system as part of a larger system to find ontology libraries on the web, retrieve ontologies from them, and assess them to select the best ontology for a particular task. An empirical evaluation in four phases shows the usefulness of the work, including a more stringent evaluation of the metrics that assess how well an ontology fits its domain and how well an ontology is regarded within its community of users

    Knowledge Organization and the UN 2030 Agenda through the lens of interoperability

    Get PDF
    Preprint Version.This paper seeks to understand the relationship between the technological and semantic interoperability (metadata) of information systems with sustainability, a global proposal of the United Nations 2030 Agenda for the development of our societies. Through a systematic literature review and an analysis of the results, it intends to understand the contribution of knowledge organization and interoperability to the enhancement of sustainable development. Two research questions were addressed: What is the role of interoperable systems in environmental, social, and economic development? How can knowledge organization and interoperability contribute to sustainable development? The results show that interoperability is seen as fundamental to sustainable development, especially when building integrated and standardized information systems. The role of interoperable systems in environmental, social, and economic development is relevant, as knowledge organization and interoperability contribute, indirectly but decisively, to sustainable development. They enable the exchange of information, encourage the construction of global communities of practice and overcome local limitations and deficits. It is concluded that knowledge organization plays a cross-cutting role in projects, which aim to implement the Sustainable Development Goals.info:eu-repo/semantics/publishedVersio

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf Lüthe, Luc Schneider, Peter Simons, Wojciech Żełaniec, and Jan Woleński

    Applications of ontology in the internet of things: A systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    Community-driven development for computational biology at Sprints, Hackathons and Codefests

    Get PDF
    Background: Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches. Traditionally, scientific conferences feature talks presenting novel technologies or insights, followed up by informal discussions during coffee breaks. In multi-institution collaborations, in order to reach agreement on implementation details or to transfer deeper insights in a technology and practical skills, a representative of one group typically visits the other. However, this does not scale well when the number of technologies or research groups is large. Conferences have responded to this issue by introducing Birds-of-a-Feather (BoF) sessions, which offer an opportunity for individuals with common interests to intensify their interaction. However, parallel BoF sessions often make it hard for participants to join multiple BoFs and find common ground between the different technologies, and BoFs are generally too short to allow time for participants to program together. Results: This report summarises our experience with computational biology Codefests, Hackathons and Sprints, which are interactive developer meetings. They are structured to reduce the limitations of traditional scientific meetings described above by strengthening the interaction among peers and letting the participants determine the schedule and topics. These meetings are commonly run as loosely scheduled "unconferences" (self-organized identification of participants and topics for meetings) over at least two days, with early introductory talks to welcome and organize contributors, followed by intensive collaborative coding sessions. We summarise some prominent achievements of those meetings and describe differences in how these are organised, how their audience is addressed, and their outreach to their respective communities. Conclusions: Hackathons, Codefests and Sprints share a stimulating atmosphere that encourages participants to jointly brainstorm and tackle problems of shared interest in a self-driven proactive environment, as well as providing an opportunity for new participants to get involved in collaborative projects

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach
    • …
    corecore