186 research outputs found

    Semantic subtyping for objects and classes

    Get PDF
    In this paper we propose an integration of structural subtyping with boolean connectives and semantic subtyping to define a Java-like programming language that exploits the benefits of both techniques. Semantic subtyping is an approach for defining subtyping relation based on set-theoretic models, rather than syntactic rules. On the one hand, this approach involves some non trivial mathematical machinery in the background. On the other hand, final users of the language need not know this machinery and the resulting subtyping relation is very powerful and intuitive. While semantic subtyping is naturally linked to the structural one, we show how our framework can also accommodate the nominal subtyping. Several examples show the expressivity and the practical advantages of our proposal

    Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type systems for learning functional programmers)

    Full text link
    Twenty years ago, in an article titled "Covariance and contravariance: conflict without a cause", I argued that covariant and contravariant specialization of method parameters in object-oriented programming had different purposes and deduced that, not only they could, but actually they should both coexist in the same language. In this work I reexamine the result of that article in the light of recent advances in (sub-)typing theory and programming languages, taking a fresh look at this old issue. Actually, the revamping of this problem is just an excuse for writing an essay that aims at explaining sophisticated type-theoretic concepts, in simple terms and by examples, to undergraduate computer science students and/or willing functional programmers. Finally, I took advantage of this opportunity to describe some undocumented advanced techniques of type-systems implementation that are known only to few insiders that dug in the code of some compilers: therefore, even expert language designers and implementers may find this work worth of reading

    Semantic Subtyping for Non-Strict Languages

    Get PDF
    Semantic subtyping is an approach to define subtyping relations for type systems featuring union and intersection type connectives. It has been studied only for strict languages, and it is unsound for non-strict semantics. In this work, we study how to adapt this approach to non-strict languages: in particular, we define a type system using semantic subtyping for a functional language with a call-by-need semantics. We do so by introducing an explicit representation for divergence in the types, so that the type system distinguishes expressions that are results from those which are computations that might diverge

    Decidable Tag-Based Semantic Subtyping for Nominal Types, Tuples, and Unions

    Full text link
    Semantic subtyping enables simple, set-theoretical reasoning about types by interpreting a type as the set of its values. Previously, semantic subtyping has been studied primarily in the context of statically typed languages with structural typing. In this paper, we explore the applicability of semantic subtyping in the context of a dynamic language with nominal types. Instead of static type checking, dynamic languages rely on run-time checking of type tags associated with values, so we propose using the tags for semantic subtyping. We base our work on a fragment of the Julia language and present tag-based semantic subtyping for nominal types, tuples, and unions, where types are interpreted set-theoretically, as sets of type tags. The proposed subtyping relation is shown to be decidable, and a corresponding analytic definition is provided. The implications of using semantic subtyping for multiple dispatch are also discussed.Comment: Published at FTfJP'1

    A Logical Approach To Deciding Semantic Subtyping

    Get PDF
    International audienceWe consider a type algebra equipped with recursive, product, function, intersection, union, and complement types together with type variables and implicit universal quantification over them. We consider the subtyping relation recently defined by Castagna and Xu over such type expressions and show how this relation can be decided in EXPTIME, answering an open question. The novelty, originality and strength of our solution reside in introducing a logical modeling for the semantic subtyping framework. We model semantic subtyping in a tree logic and use a satisfiability-testing algorithm in order to decide subtyping. We report on practical experiments made with a full implementation of the system. This provides a powerful polymorphic type system aiming at maintaining full static type-safety of functional programs that manipulate trees, even with higher-order functions, which is particularly useful in the context of XML

    Set-Theoretic Types for Polymorphic Variants

    Get PDF
    Polymorphic variants are a useful feature of the OCaml language whose current definition and implementation rely on kinding constraints to simulate a subtyping relation via unification. This yields an awkward formalization and results in a type system whose behaviour is in some cases unintuitive and/or unduly restrictive. In this work, we present an alternative formalization of poly-morphic variants, based on set-theoretic types and subtyping, that yields a cleaner and more streamlined system. Our formalization is more expressive than the current one (it types more programs while preserving type safety), it can internalize some meta-theoretic properties, and it removes some pathological cases of the current implementation resulting in a more intuitive and, thus, predictable type system. More generally, this work shows how to add full-fledged union types to functional languages of the ML family that usually rely on the Hindley-Milner type system. As an aside, our system also improves the theory of semantic subtyping, notably by proving completeness for the type reconstruction algorithm.Comment: ACM SIGPLAN International Conference on Functional Programming, Sep 2016, Nara, Japan. ICFP 16, 21st ACM SIGPLAN International Conference on Functional Programming, 201

    On the preciseness of subtyping in session types

    Get PDF
    Subtyping in concurrency has been extensively studied since early 1990s as one of the most interesting issues in type theory. The correctness of subtyping relations has been usually provided as the soundness for type safety. The converse direction, the completeness, has been largely ignored in spite of its usefulness to define the greatest subtyping relation ensuring type safety. This paper formalises preciseness (i.e. both soundness and completeness) of subtyping for mobile processes and studies it for the synchronous and the asynchronous session calculi. We first prove that the well-known session subtyping, the branching-selection subtyping, is sound and complete for the synchronous calculus. Next we show that in the asynchronous calculus, this subtyping is incomplete for type-safety: that is, there exist session types T and S such that T can safely be considered as a subtype of S, but T ≤ S is not derivable by the subtyping. We then propose an asynchronous sub-typing system which is sound and complete for the asynchronous calculus. The method gives a general guidance to design rigorous channel-based subtypings respecting desired safety properties

    SFJ: an Implementation of Semantic Featherweight Java

    Get PDF
    There are two approaches to defining subtyping relations: the syntactic and the semantic approach. In semantic subtyping, one defines a model of the language and an interpretation of types as subsets of this model. Subtyping is defined as inclusion of subsets denoting types. An orthogonal subtyping question, typical of object-oriented languages, is the nominal versus the structural subtyping. Dardha et al. [11, 12] defined boolean types and semantic subtyping for Featherweight Java (FJ) and integrated both nominal and structural subtyping, thus exploiting the benefits of both approaches. However, these benefits were illustrated only at a theoretical level, but not exploited practically. We present SFJ—Semantic Featherweight Java, an implementation of FJ which features boolean types, semantic subtyping and integrates nominal as well as structural subtyping. The benefits of SFJ, illustrated in the paper and the accompanying video (with audio/subtitles) [27], show how static type-checking of boolean types and semantic subtyping gives higher guarantees of program correctness, more flexibility and compactness of program writing

    Timed Session Types

    Full text link
    Timed session types formalise timed communication protocols between two participants at the endpoints of a session. They feature a decidable compliance relation, which generalises to the timed setting the progress-based compliance between untimed session types. We show a sound and complete technique to decide when a timed session type admits a compliant one. Then, we show how to construct the most precise session type compliant with a given one, according to the subtyping preorder induced by compliance. Decidability of subtyping follows from these results
    • …
    corecore