71 research outputs found

    Improving architectural 3D reconstruction by constrained modelling

    Get PDF
    Institute of Perception, Action and BehaviourThis doctoral thesis presents new techniques for improving the structural quality of automatically-acquired architectural 3D models. Common architectural properties such as parallelism and orthogonality of walls and linear structures are exploited. The locations of features such as planes and 3D lines are extracted from the model by using a probabilistic technique (RANSAC). The relationships between the planes and lines are inferred automatically using a knowledge-based architectural model. A numerical algorithm is then used to optimise the position and orientations of the features taking constraints into account. Small irregularities in the model are removed by projecting the irregularities onto the features. Planes and lines in the resulting model are therefore aligned properly to each other, and so the appearance of the resulting model is improved. Our approach is demonstrated using noisy data from both synthetic and real scenes

    Automatic Reconstruction of Parametric, Volumetric Building Models from 3D Point Clouds

    Get PDF
    Planning, construction, modification, and analysis of buildings requires means of representing a building's physical structure and related semantics in a meaningful way. With the rise of novel technologies and increasing requirements in the architecture, engineering and construction (AEC) domain, two general concepts for representing buildings have gained particular attention in recent years. First, the concept of Building Information Modeling (BIM) is increasingly used as a modern means for representing and managing a building's as-planned state digitally, including not only a geometric model but also various additional semantic properties. Second, point cloud measurements are now widely used for capturing a building's as-built condition by means of laser scanning techniques. A particular challenge and topic of current research are methods for combining the strengths of both point cloud measurements and Building Information Modeling concepts to quickly obtain accurate building models from measured data. In this thesis, we present our recent approaches to tackle the intermeshed challenges of automated indoor point cloud interpretation using targeted segmentation methods, and the automatic reconstruction of high-level, parametric and volumetric building models as the basis for further usage in BIM scenarios. In contrast to most reconstruction methods available at the time, we fundamentally base our approaches on BIM principles and standards, and overcome critical limitations of previous approaches in order to reconstruct globally plausible, volumetric, and parametric models.Automatische Rekonstruktion von parametrischen, volumetrischen Gebäudemodellen aus 3D Punktwolken Für die Planung, Konstruktion, Modifikation und Analyse von Gebäuden werden Möglichkeiten zur sinnvollen Repräsentation der physischen Gebäudestruktur sowie dazugehöriger Semantik benötigt. Mit dem Aufkommen neuer Technologien und steigenden Anforderungen im Bereich von Architecture, Engineering and Construction (AEC) haben zwei Konzepte für die Repräsentation von Gebäuden in den letzten Jahren besondere Aufmerksamkeit erlangt. Erstens wird das Konzept des Building Information Modeling (BIM) zunehmend als ein modernes Mittel zur digitalen Abbildung und Verwaltung "As-Planned"-Zustands von Gebäuden verwendet, welches nicht nur ein geometrisches Modell sondern auch verschiedene zusätzliche semantische Eigenschaften beinhaltet. Zweitens werden Punktwolkenmessungen inzwischen häufig zur Aufnahme des "As-Built"-Zustands mittels Laser-Scan-Techniken eingesetzt. Eine besondere Herausforderung und Thema aktueller Forschung ist die Entwicklung von Methoden zur Vereinigung der Stärken von Punktwolken und Konzepten des Building Information Modeling um schnell akkurate Gebäudemodelle aus den gemessenen Daten zu erzeugen. In dieser Dissertation präsentieren wir unsere aktuellen Ansätze um die miteinander verwobenen Herausforderungen anzugehen, Punktwolken mithilfe geeigneter Segmentierungsmethoden automatisiert zu interpretieren, sowie hochwertige, parametrische und volumetrische Gebäudemodelle als Basis für die Verwendung im BIM-Umfeld zu rekonstruieren. Im Gegensatz zu den meisten derzeit verfügbaren Rekonstruktionsverfahren basieren unsere Ansätze grundlegend auf Prinzipien und Standards aus dem BIM-Umfeld und überwinden kritische Einschränkungen bisheriger Ansätze um vollständig plausible, volumetrische und parametrische Modelle zu erzeugen.</p

    Physics based supervised and unsupervised learning of graph structure

    Get PDF
    Graphs are central tools to aid our understanding of biological, physical, and social systems. Graphs also play a key role in representing and understanding the visual world around us, 3D-shapes and 2D-images alike. In this dissertation, I propose the use of physical or natural phenomenon to understand graph structure. I investigate four phenomenon or laws in nature: (1) Brownian motion, (2) Gauss\u27s law, (3) feedback loops, and (3) neural synapses, to discover patterns in graphs

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin

    Development of a SGM-based multi-view reconstruction framework for aerial imagery

    Get PDF
    Advances in the technology of digital airborne camera systems allow for the observation of surfaces with sampling rates in the range of a few centimeters. In combination with novel matching approaches, which estimate depth information for virtually every pixel, surface reconstructions of impressive density and precision can be generated. Therefore, image based surface generation meanwhile is a serious alternative to LiDAR based data collection for many applications. Surface models serve as primary base for geographic products as for example map creation, production of true-ortho photos or visualization purposes within the framework of virtual globes. The goal of the presented theses is the development of a framework for the fully automatic generation of 3D surface models based on aerial images - both standard nadir as well as oblique views. This comprises several challenges. On the one hand dimensions of aerial imagery is considerable and the extend of the areas to be reconstructed can encompass whole countries. Beside scalability of methods this also requires decent processing times and efficient handling of the given hardware resources. Moreover, beside high precision requirements, a high degree of automation has to be guaranteed to limit manual interaction as much as possible. Due to the advantages of scalability, a stereo method is utilized in the presented thesis. The approach for dense stereo is based on an adapted version of the semi global matching (SGM) algorithm. Following a hierarchical approach corresponding image regions and meaningful disparity search ranges are identified. It will be verified that, dependent on undulations of the scene, time and memory demands can be reduced significantly, by up to 90% within some of the conducted tests. This enables the processing of aerial datasets on standard desktop machines in reasonable times even for large fields of depth. Stereo approaches generate disparity or depth maps, in which redundant depth information is available. To exploit this redundancy, a method for the refinement of stereo correspondences is proposed. Thereby redundant observations across stereo models are identified, checked for geometric consistency and their reprojection error is minimized. This way outliers are removed and precision of depth estimates is improved. In order to generate consistent surfaces, two algorithms for depth map fusion were developed. The first fusion strategy aims for the generation of 2.5D height models, also known as digital surface models (DSM). The proposed method improves existing methods regarding quality in areas of depth discontinuities, for example at roof edges. Utilizing benchmarks designed for the evaluation of image based DSM generation we show that the developed approaches favorably compare to state-of-the-art algorithms and that height precisions of few GSDs can be achieved. Furthermore, methods for the derivation of meshes based on DSM data are discussed. The fusion of depth maps for 3D scenes, as e.g. frequently required during evaluation of high resolution oblique aerial images in complex urban environments, demands for a different approach since scenes can in general not be represented as height fields. Moreover, depths across depth maps possess varying precision and sampling rates due to variances in image scale, errors in orientation and other effects. Within this thesis a median-based fusion methodology is proposed. By using geometry-adaptive triangulation of depth maps depth-wise normals are extracted and, along the point coordinates are filtered and fused using tree structures. The output of this method are oriented points which then can be used to generate meshes. Precision and density of the method will be evaluated using established multi-view benchmarks. Beside the capability to process close range datasets, results for large oblique airborne data sets will be presented. The report closes with a summary, discussion of limitations and perspectives regarding improvements and enhancements. The implemented algorithms are core elements of the commercial software package SURE, which is freely available for scientific purposes

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models
    corecore