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ABSTRACT

Sinha, Ayan T. Ph.D., Purdue University, August 2016. Physics Based Supervised and

Unsupervised Learning of Graph Structure. Major Professor: Karthik Ramani, School of

Mechanical Engineering.

Graphs are central tools to aid our understanding of biological, physical, and social

systems. Graphs also play a key role in representing and understanding the visual world

around us, 3D-shapes and 2D-images alike. In this dissertation, I propose the use of phys-

ical or natural phenomenon to understand graph structure. I investigate four phenomenon

or laws in nature: (1) Brownian motion, (2) Gauss’s law, (3) feedback loops, and (3) neural

synapses, to discover patterns in graphs.

Random walks is the mathematical formalization of Brownian motion on graphs. I dis-

cuss the connection between the Laplace-Beltrami operator governing the diffusion equa-

tion and the transition matrix of a random walk. This connection is used to construct mul-

tiscale shape signatures with several desirable properties, and applied to shape matching,

segmentation and search.

Next, I establish a connection between the Laplacian of a general graph and the flux

of a potential field over a boundary. This insight is exactly an extension of Gauss law

for charge distributions applied to discrete graphs. I design a novel method for data clus-

tering using this law in conjunction with laws of conservation and spectral graph theory.

My method to identify community boundaries is significantly more robust to noise than

traditional detection of strongly knit modules.

Feedback is pervasive in natural as well as artificial systems. I design a new method

to separate feedback effects in recommender systems such as Netflix from intrinsic pref-

erences of users. This method is based on a simple deconvolution of an iterative feedback

loop common in physical systems that admit feedback. I am able to identify items rec-
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ommended to a user by the recommender system by simply inputting the user-item ratings

matrix to my algorithm.

Finally, I study artificial neural networks inspired by neural synapses in the human

brain. I develop a technique to create a geometric image from a point cloud, so that con-

volutional neural networks used pervasively for image understanding can be used for 3D

shape understanding. I construct deep neural models which use the parametric knowl-

edge of point clouds from a large database to parameterize unknown and incomplete point

clouds. This bridges the gap between traditional geometric processing and data-driven su-

pervised image processing techniques. Furthermore, I demonstrate how pooled activations

of neurons in the networks can be used for real-time understanding of point cloud data. I

infer the hand skeleton structure from depth images as a prototypical application.

Overall, I show how interesting structures in networks, shapes and images can be in-

ferred using physical laws of nature.
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1. INTRODUCTION

I aim to answer the most pressing problems of Big data by combining physical laws and

machine learning. Today, there are two pressing issues yet unresolved in Big-data i.e.

1. How to deal with the large amounts of noise in the data set?

2. How to deal with feedback within the processes that generate the data?

I have developed new techniques to address both of these issues that deliver faster and

more reliable algorithms to uncover the underlying patterns in the data. The secret sauce in

these techniques is inspired by physical laws and processes like diffusion, Gauss law, and

biological neural networks. To test the robustness, I have implemented these techniques

to a wide variety of domains by representing data points and their pairwise relationships

as a graph structure without rebuilding them for each domain. I focus on three types of

graph structures: Networks as a graph, shapes or meshes as a graph and finally an image

as a graph. In networks a node represents a physical, social or biological object of interest,

whereas in shapes, a node is point on the mesh surface. In images the nodes represent pixels

and the edges represent adjacent pixel similarity. Often times, one representation may be

more valuable than another in a particular task. I introduce these three types of graphs in

the context of physical laws used to understand these graph structures, however, note that

these representation are interchangeable as they all are graphs.

1.1 Shapes as Graphs

Geometric meshes are simply a graph structure detailing the connection between ver-

tices embedding in a 3-dimensional manifold. I use random walks and convolutional neural

networks (CNNs) to understand the structure of geometry meshes. Using random walks, I

develop multiscale signatures for shape analysis. I discuss the creation of geometry images
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from a mesh so that CNNs can be used to infer the class of shapes. I motivate understanding

shapes using random walks and the creation of geometry images for analysis using CNNs

here, and the technical details are discussed in the next section.

1.1.1 Random walks for understanding shapes

Traditional methods for shape analysis resort to a single level approach, where the mesh

structure is used to formulate global metrics. However the paradigm is shifting to multi-

scale methods which help understand a shape over multiple levels and discover salient fea-

tures on the mesh at global as well as local scales. Current multiscale methods include the

heat kernel [1] and multiscale biharmonic kernel [2] which operate over the mesh domain

with a tuning parameter, and have been applied to shape segmentation, correspondence and

retrieval [3–5]. These kernels differ in weighting of eigenvalues and sets up one motivat-

ing question for this dissertation, ‘Is there a generalized principle guiding the weighting of

eigenvalues and hence the construction of multiscale kernels, while being intuitive in the

choice of kernel or scale?’ In this thesis, I aim to answer this challenging question using

the Markov chain framework of random walks. The choice of this framework is motivated

by the fact that Markov chains emerge as a generalization of the heat equation and the inti-

mate relationship between the discrete Laplace-Beltrami operator and the rate matrix of a

random walk. For a general discussion on random walks, the reader is asked to refer to the

excellent survey by Lovász [6]. As meshes are point-sampled and subsequently triangu-

lated, the random walk framework naturally fits into general mesh analysis. It has already

been used in a wide array of applications including mesh segmentation, cutting, denoising

etc. [7–9]. In this thesis, I use random walks to construct multiscale kernels with two intu-

itive parameter choices, which generalize the current approaches under a single framework.

All formulated kernels are proven to be convergent and positive definite. Hence they inherit

all the ‘nice’ properties of popular kernel embeddings (GPS, spectral [10], etc.) and kernel

distance metrics (biharmonic, commute-time, etc.) which I briefly review.
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The Heat Kernel Signature (HKS), related to diffusion kernels [11, 12], was proposed as

a point signature. The idea is to extract information about the object using time t as a

scaling parameter. However, choosing a suitable t is not an easy task and most approaches

rely on heuristic tuning with no straightforward interpretation [13]. My approach to this

problem comes from the mixing rate of a Markov chain which is intimately connected

to the rate of change of the heat kernel, and hence, the diffusion process. As the kernel

approaches uniform distribution, I contend its rate of convergence to equilibrium is equally

(if not more) informative. This is one motivation of this dissertation and key separating

factor from other approaches, i.e., to extract information about shapes using the rate of

diffusion in a random walk setting. My work is also inspired by the multiscale biharmonic

kernel and biharmonic distance [14]. The biharmonic distance derived from the biharmonic

operator (square of Laplacian) is a parameter free distance metric on meshes with inverse

square weighting of the eigenvalues. Rustamov’s multiscale biharmonic paper advances

a novel way to construct general multiscale kernels by minimizing the Laplacian energy

subject to the sparsity inducing lasso constraint. On the surface, it is unclear how the

inverse exponent weighting of eigenvalues achieves the scaling. As demonstrated in [15],

the answer is interlinked with wavelet transforms on graphs and point clouds. Similar

observations have been made in the machine learning community in the context of iterated

ranking on manifolds using the Green’s function [16].

As I shall shortly show, my approach provides an intuitive explanation while general-

izing the biharmonic kernel, GPS embedding [17], biharmonic distance and commute time

distance [18,19] on meshed surfaces. To do this, I introduce novel multiscale kernels using

the random walk framework and derive corresponding embeddings and pairwise distances.

The fractional moments of the rate of continuous time random walk (equivalently diffusion

rate) are used to discover higher order kernels (or similarities) between pair of points.

Specifically, the multiscale kernels ταn are constructed by integrating the moments of the

probability transition rates of a random walk and governed by two parameters n and α:

ταn =

∞∫
t=0

tn[ΔαMe−tΔαM ]dt (1.1)
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Figure 1.1. Center: Asymmetric mesh with unequal widths (left strip (blue
arrow) > right strip (red arrow)) along with exploded views. (Right) Distances
are measured from point P and viewed as a height function f(Dp) above mesh
domain (green arrows). Color changes from blue to red as distance increases.
Top Row: Varying tn with n = 2, 4, 8, 16, respectively, scales underlying asym-
metry in path length distribution with n acting as ’frequency filter’. High n
separates distance from P to top left and top right strips displayed using black
arrows. Bottom Row: Varying α with α = 0.995, 0.95, 0.8, 0.4, respectively,
makes asymmetry disappear with ‘scale shift’. At small α all points are at
approximately the same distance, apart from points in immediate vicinity.

where t is time, M is the transition matrix and ΔαM is the lazy rate matrix. I discuss

ties of M and ΔαM with the Laplace-Beltrami operator Δ later on. Figure 1.1 displays

the multiscale distances from the green point P for the asymmetric mesh displayed in the

center of the figure. The bottom left strip (blue arrow) is thicker than the bottom right strip

(red arrow), and hence, there are more diffusion pathways from point P to nodes on the

top left side of the mesh relative to the right. This underlying asymmetry in connecting

pathways from P emerge as I increase the moment parameter n from 2 to 16, i.e., distances

to nodes on the top right strip relative to the top left strip gradually increase (marked using

arrows in top figure), made visible using color plot (red implies large distance) and height
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field (distance along vertical direction with mesh as base). Decreasing α has the opposite

effect of progressively suppressing the asymmetry (see bottom row). For α = 0.4, the

entire mesh is approximately at the same distance from P , apart from the points in the

immediate vicinity. These observations can be explained in terms of Equation (1.1):

• First, replacing ΔαM with Δ, one immediately establishes that the Δe−tΔ term in the

integrand is the differential of the heat operator e−tΔ, hence equal to the negative rate

of heat diffusion.

• Second, the nth moment of diffusion rate with respect to time, tn, scales the rate of

diffusion, i.e., say n = 2 weights the diffusion rate between two points at large times

more heavily than say n = 1 over the integral. In effect, diffusions occurring over

long time periods are penalized for high values of n and are equally weighted for

n = 0, hence the moment extracts scale (see Figure 1.1). From a signal processing

viewpoint, the role of n is to filter frequencies similar to parameter t in the heat

kernel, i.e., higher frequencies are progressively suppressed by increasing n [13].

• As ΔαM can be written as I − αM , each element of the operator e−tΔαM can be

expanded using the Maclaurin series of e−t(I−αM) as:

e−tΔαM (u, v) = e−t

∞∑
k=0

αkMk(u, v)
(t)k

k!
(1.2)

Mk(u, v) can be interpreted as the sum of all random walks of length k joining points

u and v [20]. In the series, paths of length k get weight αk and hence shorter paths

(say k1) will be weighted more than longer ones (say k2) for 0 < α < 1 ( αk2 < αk1)

[21]. From a signal processing viewpoint, the role of α is to shift the scale of analysis

as it is implicitly added to eigenvalues (see Figure 1.1).

• αk and tk are multiplicative parameters in Equation (1.2) and aid each other, i.e.,

decreasing α suppresses longer path lengths and large t discovers longer paths con-

necting two points. This is intuitive as time and distance are coupled notions. Allow-

ing dual parameters α and n to control scale provides greater flexibility and reveals

different multiscale information.
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• Finally, integrating over the entire time interval eliminates the choice of the appro-

priate time interval and replaces it with the range of moment parameter which I per-

ceive to be more intuitive. It also makes the kernel robust to noise and small topology

changes.

The formulated kernels are isometry, scale, and tessellation invariant, can be made

globally or locally shape aware, and are insensitive to partial objects and noise based on

the moment and influence parameters. Additionally, the corresponding kernel distances and

embeddings are convergent and efficiently computable. I introduce dual GMS signatures

based on the kernels and discuss the applicability of the multiscale distance and embedding.

Collectively, I present a unified view of popular embeddings and distance metrics while

recovering intuitive probabilistic interpretations on discrete surface meshes.

1.1.2 Creating geometry images for deep understanding of shapes

A good generic 3D shape representation is vital to the progression of 3D object recogni-

tion. One strategy is to use a probability distribution on a 3D voxel grid [22,23]. Other ap-

proaches quantify some measure of local or global variation of surface coordinates relative

to a fixed frame of reference [24]. These methods are successful under rigid transformations

(rotations, translations and reflections), but will naturally fail to recognize isometric defor-

mation of a shape (say the deformation of a standing person to a sitting person). In other

words representations bases on point coordinates, volumetric or surface-based, are extrinsic

to the shape. I contend that a good shape representation should be invariant to isometry. In

mathematical terms this means that the representation should preserve geodesic distances

computed over shape surfaces. This contention is substantiated by the popularity of the in-

trinsic shape signatures for 3D deformable shape analysis in the geometry community [25].

The ground-breaking accuracy obtained by convolutional neural networks (CNNs) for

image classification [26] marked the advent of deep learning methods for various vision

tasks such as video recognition, human and hand pose tracking using 3D sensors, im-

age segmentation and retrieval [27–29]. Consequently, researchers have tried to adapt the
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Figure 1.2. Learning 3D shape surfaces using geometry images: My approach
to learn intrinsic property of shapes using geometry images is applicable to
rigid (left) as well as non-rigid objects undergoing isometric transformations
(right). The geometry image encodes intrinsic properties of shape surfaces
such as principal curvatures (Cmin, Cmax). Topology of a non-zero genus sur-
face is accounted for by using a topological mask (Ctop) as in the bookshelf
example.

CNN architecture for 3D deformable as well as rigid shape analysis. The lack of a uni-

fied shape representation has led researchers pursuing deformable and rigid shape analysis

down different routes. Rigid shape analysis in deep learning architectures proceed using a

voxelized input or panoramic representation of a shape using different viewpoints [22–24],

which are inherently extrinsic representations. In contrast, CNN-based deformable shape

analysis methods use geodesic convolutional filters as patches or model spectral-CNN’s us-

ing the eigen decomposition of the Lalplace-Beltrami operator [30–32], which are intrinsic

representations. In summary, the vision community has focussed on extrinsic represen-

tation of 3D shapes suitable for learning rigid shapes, whereas the geometry community

has focussed on adapting CNN’s to shift variant spaces Riemannian (or non-Euclidean)

manifolds. A method to unify these two complementary approaches has remained elusive.

Instead of adapting the CNN architecture to support convolution on surfaces, I adopt

the counter intuitive approach of molding the 3D shape surface to fit a regular grid structure

as required by CNNs 1.2. I do this by introducing a method to transform a general mesh

model into a flat and regular image, which I term ‘geometry image’, following [33]. In the
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process, I also attempt to bridge the gap between traditional geometric processing and im-

age processing techniques in this dissertation. The standard approach to create a geometry

image is to first cut the surface into disk-like charts, then parameterize them piecewise in

the plane followed by stitching them together into a texture atlas [34]. This approach fails

to preserve the connectivity between different surfaces, vital for holistic shape analysis.

Another approach is to spherically parameterize a genus-zero surface followed by sam-

pling on a regular polyhedral domain namely the octahedron, tetrahedron and cube [35].

The sampled domain is then projected onto a regular planar domain by cutting along the

polyhedral edges. However, spherical parametrization induces stretch distortion, leading

to loss of intrinsic shape information. It is also not applicable to higher genus surfaces

severely limiting its usage for general 3D shape analysis which come is various forms and

topology.

My main contribution is a procedure for authalic spherical parametrization applica-

ble to general 3D shapes. The critical limitation of spherical parametrization to genus

zero surfaces is removed by filling topological holes using α-shapes along with heuristic

hole-filling methods. I maintain a topological mask so as to be able to infer the holes in

the original shape and recreate the mesh model. The accuracy of my authalic spherical

parametrization stems from (1) an area restoring diffeomorphic flow modeled using dis-

crete differential geometry, and (2) an iterative vertex displacement procedure from the

original mesh to the spherical mesh using barycentric coordinates. I use this parametriza-

tion in conjunction with spherical area sampling and functional interpolation techniques to

output a geometry image of a desired size. The geometry image simplifies complex 3D

tasks such as noise removal or mesh morphing in the derived regular 2D domain. I focus

on using these geometry images in a CNN architecture to classify and retrieve shapes. I

demonstrate that in the presence of sufficient training data, the two principal curvatures

suffice to accurately learn an intrinsic shape representation without resorting to complex

multiscale shape signatures. In summary my contributions are:

1. Accurate authalic parametrization of genus-zero surface models using area restoring

diffeomorphic flow and barycentric mapping.
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2. Extension of authalic parametrization to higher genus surface models via a topolog-

ical mask. I also demonstrate a heuristic procedure to rectify incorrect mesh models

not following the Euler characteristic.

3. An approach to intrinsically learn 3D surfaces using a geometry image which en-

codes features invariant to isometry.

To summarize, surfaces are the most intuitive parametrization of 3D shapes. Learning

surfaces using convolutional neural networks (CNNs) is a challenging task due to the shift

variance of Riemannian manifolds. Current paradigms to tackle this challenge are to either

adapt the convolutional filters to operate on surfaces, learn spectral descriptors defined by

the Laplace-Beltrami operator, or to drop surfaces altogether in lieu of more favourable

voxelized inputs. I adopt an antagonistic approach of converting the 3D shape into a ‘ge-

ometry image’, so that standard CNNs can directly be used to learn 3D shapes. This con-

version is made possible by a low-distortion authalic (area conserving) parametrization of

a genus-zero surface onto a spherical domain. This spherically parameterized shape is then

sampled onto an octahedron and is subsequently cut to convert the original 3D shape into

a flat and regular geometry image. In order to maintain generality of mu approach to learn

shapes as geometry images, I extend spherical parametrization to surfaces with non genus-

zero surfaces by introducing a topological mask. I show the efficacy of my approach to

intrinsically learn 3D shapes using geometry images on several datasets. Furthermore, I

validate that my representation is able to retain all pertinent information of a 3D shape.

1.2 Networks as Graphs

Networks help uncover the underlying mechanisms governing complex systems by col-

lectively understanding dyadic interactions between physical, biological or social objects

represented as nodes [21, 36]. In networks, I focus on three things: (1) Identify communi-

ties or subsets of associated nodes in a network which is a crucial step towards discovering

the functional organization of the network [37–39], (2) Investigate whether it is possible

to identify items affected by feedback loops in recommender systems and (3) Interpreting
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popular kernels used in network science as operators on a random walk, or more generally

a diffusion process on a graph. I motivate discovering communities using Gauss’s law,

deconvolving feedback loops to discover intrinsic preferences of users, and the use of dif-

fusion on a graph for data mining and network science problems here. The technical details

are discussed in the next section.

1.2.1 Gauss’s Law for identifying community boundaries

Overlap characterized as the possibility of nodes having multiple membership [40,41],

and hierarchy representing the organization of communities over multiple scales [42, 43],

are two prominent features of communities in real world networks. Although there is

no unique definition, a common abstraction is that communities in networks are groups

of tightly connected nodes (dense intra-connections) and weakly connected to each other

(sparse inter-connections) [44, 45]. Community detection approaches formalize this ab-

straction and determine the best division of the network into communities by optimizing

a local [41, 46, 47] or global [48–50] objective function. Local measures neglect meso-

scopic topological interactions valuable for community detection, and consequently global

measures have emerged as the leading choice [38], the most popular being modularity op-

timization [49]. However, the hierarchical organization of communities contradicts the

existence of a best partition, but instead necessitates comparing the quality of partitions

obtained at different organizational levels [51]. This obscures a precise formalism of both

local and global objective functions. Local definitions intrinsically cannot compare par-

titions obtained at different hierarchical levels without introducing ad-hoc stability mea-

sures [46], whereas adaptive global definitions [52, 53] using a resolution parameter suffer

from the resolution limit [54]. Further, overlap between communities breaks the fundamen-

tal assumption of communities being sparely inter-connected, as pervasive overlap leads to

strong inter-community connections [41]. The presence of both these features in many

real-world networks warrants a precise definition of overlapping communities consistent

with communities organized at multiple scales. Although there are abundant methods for
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Figure 1.3. Identifying module boundaries improves detection. a: The cur-
vature (color) identifies the boundaries (high curvature) between the peaks
that represent the values of the scalar field (height). b: (Top) A curvature-
like metric of a network shows the same effect wherein the curvature of inter-
community links is higher (darker shades of red) relative to intra-community
links. (Bottom Left) The curvature of links in the network are displayed in the
link curvature matrix. The curvature increases as color changes from blue to
yellow. (Bottom Right) The histogram of curvature values shows a gap between
the curvature of intra-module and inter-module links allowing easy detection.
c: The same methodology is applicable to general graphs such as social net-
works, meshes and images and identifies module boundaries even in the pres-
ence of large noise. The identified modules are mapped to the corresponding
noiseless graphs in the top-right corner for visual verification.

community detection, there exists no quantitative definition of overlapping communities

which supports hierarchical community organization [38].

Here, I seek to use information about the boundary between subgraphs to identify the

communities themselves. This boundary information arises from the curvature of each link

(Figure 1.3 a, b), and the information from the boundaries reliably indicates the module

structure even in the presence of substantial noise (Figure 1.3 c). I will describe how a net-

work analog of Gauss’s law resolves the dichotomy between overlap and hierarchy because

the my definition uncovers overlapping communities and that hierarchical communities are
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nothing but completely overlapping communities at a coarser scale of analysis. I show

that this network analog of Gauss’s law translates into an efficiently optimizable quality

function to reveal hierarchical and overlapping structure in networks. The results on sev-

eral real world networks with known and unknown ground truth community assignment

spanning diverse disciplines, conclusively validates the merit of my contribution relative to

current approaches. Further, I show that expectations of diffusion rate generalize several

network science tools like PageRank [55], harmonic kernels [56–58] and deconvolution

matrices [59]. This framework advances a general methodology to deduce the similarity

between nodes in addition to identifying community structure, and serves as a critical tool

for network science analysis.

1.2.2 Deconvolving feedback loops in recommender systems

Recommender systems have been helpful to users for making decisions in diverse do-

mains such as movies, wines, food, news among others [60,61]. However, it is well known

that the interface of these systems affect the users’ opinion, and hence, their ratings of

items [62, 63]. Thus, broadly speaking, a user’s rating of an item is a either his or her in-

trinsic preference or the influence of the recommender system on the user [64]. As these

ratings implicitly affect recommendations to other users through feedback, it is critical to

quantify the role of feedback in content personalization [65].

Thus the primary motivating question for this work is: Given only a user-item rating

matrix, is it possible to infer whether any preference values are influenced by a recom-

mender system? Secondary questions include: Which preference values are influenced and

to what extent by the recommender system? Furthermore, how do I recover the intrinsic

preference value of an item to a user?

I develop an algorithm to answer these questions using the singular value decomposition

(SVD) of the observed ratings matrix. The genesis of this algorithm follows by viewing the

observed ratings at any point of time as union of true ratings and recommendations:

Robs = Rtrue +Rrecom (1.3)
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Figure 1.4. A scatter plot of deconvolved and true ratings on the Jester joke
dataset (Top) that had no feedback loops and on the Netflix dataset (Bottom)
where their Cinematch algorithm was running. The Netflix data shows dis-
persive effects indicative of a recommender system whereas the Jester data is
highly correlated indicating no feedback system.

where Robs is the observed rating matrix at a given instant of time, Rtrue is the rating

matrix due to users’ true preferences of items (along with any external influences such as

ads, friends, and so on) and Rrecom is the rating matrix which indicates the recommender

system’s contribution to the observed ratings. My more formal goal is to recover Rtrue

from Robs. But this is impossible without strong modeling assumptions; any rating is just

as likely to be a true rating as due to the system.

Thus, I make four strong, but plausible assumptions about a recommender system. With

these assumptions, I am able to mathematically relate Rtrue and Robs. This enables me to

find the centered rating matrix Rtrue (up to scaling). An example of the types of insights

this enables is shown in Figure 1.4. This figure shows two scatter plots of the estimated true

ratings (y-axis) compared with the observed ratings (x-axis) for two datasets. If there is no

recommender system, then these should be perfectly correlated. If there is a system with

feedback loops, I should see a dispersive plot. In the first plot (Jester) I see the results for

a real-world system without any recommender system or feedback loops; the second plot

(Netflix) shows the results on the Netflix ratings matrix, which did have a recommender
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system impacting the data. In the experiments section, I further validate that this dispersive

pattern indeed characterizes recommender system effects through extensive experiments.

Based on these insights, I develop a heuristic, but accurate, metric to quantitatively

infer the influence of a recommender system (or any set of feedback effects) on a ratings

matrix. The results of this metric are shown in the results section. A score near 0 indicates

no recommender system and a large score indicates strong recommender system effects.

Additionally, I propose a metric for evaluating the influence of a recommender system on

each user-item rating pair. Aggregating these scores over all users helps identify putative

highly recommended items. The fraction of non-zero values provide insight into the quality

of recommendations, and these final metrics argue that Netflix had a better recommender

than MovieLens, for example.

1.2.3 Graph diffusion for understanding kernels in network science

The starting point of any data mining application is the notion of similarity between two

nodes in a graph. Although the similarity metrics proposed in literature abound, there lacks

a systematic understanding of these metrics. Similarity metrics fall under the category of

either local metrics such as cosine, Jaccard etc. or global metrics such as PageRank, dif-

fusion, Katz etc. I observed that a common feature underlying global metrics is that the

corresponding similarity matrices, or kernels, possess the same or similar eigen-spectrum.

Specifically, all kernels grounded on random walk principles have the same set of eigen-

vectors and only differ in the eigenvalue weighting. Similarly, path-length based kernels

have the eigenvectors of the adjacency matrix as a common orthonormal basis and differ in

the functional form of eigenvalues. Global kernels are crucial in determining the centrality

of nodes and ranking in graphs. I investigate the principles governing eigenvalue weighting

in kernels, and propose a general mechanism to construct kernels for determining centrality

and ranking.
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Figure 1.5. Kernels constructed as expectations of the rate of diffusion kernel
controlled by 2 parameters: frequency shift, β and frequency filter, n. The 4
matrices differ in β and n weighting of eigenvalues λ and have the same eigen-
vector basis φ. Left: Original matrix with edge width and color proportion to
weight. The dashed edges represent noise. The corresponding color coded ad-
jacency matrix is to the right of the network with darker shades of blue indicat-
ing greater edge weight. Left-Center: PageRank with node sizes proportional
to its PageRank and color coded PageRank matrix to the right. Right-Center:
Harmonic kernel with graph edges colored blue for positive affinity and red for
negative affinity at n = 3. The corresponding color coded affinity matrix is to
the right with darker shades of blue or red indicating greater positive or nega-
tive affinity respectively. Right: Deconvoluted network at β = 2 with inferred
indirect relationships represented as dashed red lines. The color coded decon-
volution matrix is to the right of the network with higher similarity colored in
darker shades of blue.

Specifically, I investigate kernels, τ of the form:

τ =

∞∫
t=0

f(t)ṗtdt (1.4)

where f(t) is a function convoluting with ṗt, the rate of diffusion. Using diffusion, pt,

instead of ṗt, does not work in the integral due to the null space effect, specifically the

presence of an eigenvalue 0 in the spectral expansion confounds the analysis. My key

insight is that ṗt removes the null space, and hence Laplace transform is directly applicable

to evaluate the integral and output general kernels. Different functions, f(t), result in

different kernels with its own set of interpretation. Although, my formulation is applicable

for general diffusion equation, I choose a particular form of the diffusion operator, also

known as the Laplacian, which describes random walks. The contributions are:

• Spectral analysis of continuous time random walks and its relationship with the rate

of diffusion.
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• General mechanism to construct novel kernels by convoluting a function with the

rate of diffusion and the properties of kernels constructed by convoluting polynomial

functions.

• Extension of PageRank as an arithmetic-geometric sum of random walks, extension

of harmonic kernels to a general real exponent and generalization of network decon-

volution approach.

• Validation of my kernels as link predictors in graphs.

1.3 Images as Graphs

In images, pixels play the role of nodes and the pixel gradients play the role of edges. I

use the image representation for 2 physical laws based applications: (1) Image segmenta-

tion using continuous random walks, or diffusion, and (2) Neural network based real time

tracking of hand pose. I introduce the motivation for these 2 applications next.

1.3.1 Diffusion based image segmentation

Understanding the interplay between local scale and global effect is a challenging prob-

lem in image segmentation. My remedy is to use a learning approach to discern all pairwise

affinities using sparse local connections. Traditional unsupervised image segmentation

methods resort to grouping individual pixels based on similarities/dissimilarities in image

features (e.g. brightness, color, texture) over local patches [66]. The three most com-

mon methods under this framework include Shi and Malik’s normalized cut criterion [67],

Comaniciu and Meer’s mean-shift algorithm [68] and Felzenszwalb and Huttenlocher’s

(Felz-Hutt) graph-based segmentation [69]. Local image information is suitable for iden-

tifying feature rich regions; however, coherent perceptual grouping necessitates the use of

global cues between image patches. Two parallel approaches exist for propagating local

image information to global scales:



17

1. Explicitly or implicitly increase the connection radius between pixels in the affinity

matrix

2. Use learning techniques on a sparse affinity matrix to construct a better similarity

matrix or kernel.

Figure 1.6. Left to Right : Original image, single-scale segmentation, multi-
scale segmentation and weighted boundary image obtained using variants of
the generalized Green’s function.

Explicit increase of connection radius is computationally prohibitive, and hence, multi-

scale frameworks for normalized cut [70] and ‘over-segmentations’ from Felz-Hutt, mean-

shift algorithms [71, 72] focus on implicitly increasing the connection radius. The sec-

ond emerging paradigm for systematic combination of local and global cues is to learn all

pairwise affinities using locally connected graphs [73, 74]. The central notion to these ap-

proaches is propagating (diffusing) affinity on a sparse graph and is intimately tied to heat

diffusion (equivalently continuous time random walks) [75,76]. These approaches have led

to state of the art results in retrieval and ranking [77]. More recently, higher order node

affinities have been used for segmenting an image [74, 78]. Full-affinity cut [78] utilizes

full pairwise affinity matrices for image segmentation and Self-diffusion [74] performs a

diffusion process on the affinity matrix for a certain critical time-stamp. Other dense matrix

approaches include, the use of commute time matrix for image segmentation [79] and use

of biharmonic kernel for shape segmentation [80]. The isoperimetric criterion [81] calcu-

lates all affinities from a ‘ground’ node by solving a set of linear equations and recursively

partitions the obtained 2-way segmentation. However, a common disconnect underlying all

these approaches is that the derived kernel is used as a pre-processor in conjunction with a
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standard metric or method to induce partitions, i.e., Full- affinity cut and Self-diffusion use

the normalized cut criterion, commute time in [79] uses spectral partitioning, biharmonic

kernel in [80] relies on mean-shift and isoperimetric graph partition [81] uses the ratio

cut criterion. Hence, there lacks a formal criterion which directly induces partitions using

the structure of the kernel itself. I propose a novel global criterion, the expected diffusion

modulus, which induces partitions based on every nodes’ tendency to diffuse heat, subject

to flow conservation. The diffusion modulus kernel implicitly learns all pairwise affinities

using the nth moment of diffusion rate. The moment parameter n infers resolution and nat-

urally outputs the commonly used commute-time and biharmonic kernels as special cases.

The special structure of the kernel enables fast Louvain-like optimization and automati-

cally determines the number of segments for a given resolution n. Enforcing long range

connections using an over-segmented image leads to fast high-quality segmentations on

the BSDS and MSRC databases. I prove that the diffusion modulus is intricately related to

the ubiquitous normalized cut criterion for image segmentation and modularity metric for

community detection.

1.3.2 Deep neural networks for hand tracking

Robust hand tracking is central to human-computer interaction interfaces and aug-

mented reality applications. Although, there exists robust and accurate methods for full

body tracking, hand tracking is far more challenging [28, 82–89]. This is due to several

reasons: (i) the hand pose exists in a high dimensional space because each finger and the

palm is associated with several degrees of freedom, (ii) the fingers exhibit self similarity,

are flexible and often occlude each other, (iii) noise in acquired data coupled with fast finger

articulations confounds continuous hand tracking. Multi camera setups or GPU accelera-

tion eases some of these challenges, but limits deployment to the general public.

I present a robust method for hand tracking with a single depth camera which achieves

real time performance without a GPU. Specifically, I propose a novel matrix completion

method to estimate the joint angle parameters on a per frame basis. My method is flexi-
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Figure 1.7. An overview of the proposed approach. In a real-setting, I extract
region of interest using depth map and RGB-based wrist band detector (a)-(b).
The obtained depth image is fed into a ConvNet which outputs an activation
feature. These activation features synchronize with other features in a popu-
lation database using my deep matrix completion method and the global pose
parameters are estimated(c). Based on this global pose initialization, I esti-
mate the rest of the local joint parameters in the same recursive manner (d).
The final hand pose is displayed on a multimedia screen (e).

ble to operate with or without temporal information. This alleviates the need for explicit

pose initialization if the method loses track or the hand disappears from the camera’s view

frustum. Furthermore, my pre-compiled database supports a large viewpoint coverage and

my hierarchical pose estimation from global to local parameters is robust to severe finger

occlusions.

At the core of my approach lies a convolutional neural net (ConvNet) architecture to

discriminatively reduce the dimensionality of the depth map. ConvNet’s have achieved

ground-breaking performance in image classification and video recognition. A naive strat-

egy to replace the classification layer in a deep neural net with a regression layer leads to

errors, as the objective function often gets stuck in a local minima. Previous approaches

has have shown that this error decreases by incorporating a prior [90] or a intermediate

heat map features [28] into the ConvNet architecture. Different from these approaches, I
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train several ConvNets to output a discriminative low dimensional activation feature in the

penultimate fully connected layer. This activation vector represents either the global hand

orientation or the local articulations of the five fingers, given a depth map. My main insight

is that a pool of (spatially or temporally) nearby activation features to an activation feature

can better represent the hand pose. For generating a population of activation features from

which such a pool is extracted, I render realistic depth maps covering a large range of hand

articulations and feed them into a deep ConvNet. The ConvNets automatically learn the

scope of training (local or global), the finger type (thumb, ring, index, middle or little), and

prevalent occlusions by simply inputting the discretized class of the pose parameter values,

and do not require any additional information. I then store the activation features from

the ConvNets for each depth map in the training data to create a population database of

activation features. I demonstrate these activation features can be re-purposed on generic

databases in my experiments. Additionally, the low dimensionality of the activation fea-

ture, coupled with product quantization enables efficient retrieval of approximate nearest

neighbors from the population at runtime.

A pose estimation matrix is imputed with the deep activation vectors of the nearest

neighbor, their corresponding joint angles and the activation vector of the input depth map.

This is similar in spirit of the collaborating filtering approach proposed in [91]. However,

neither do I use low fidelity BRIEF descriptors for nearest neighbor retrieval, nor do I use

inefficient iterations to factorize and complete the matrix. Instead, I estimate the unknown

values in the incomplete matrix (i.e., pose parameters of input depth map) by assuming a

low-rank matrix structure with missing entries. I also add some temporal neighbors from

previous frames in the pose estimation matrix which act as a regularizer and reduce jitter

of the estimated pose.

Following the success of cascaded approaches to hand pose estimation [85,89], I hierar-

chically regress the hand pose from global to local joint angle parameters. The articulation

complexity of the palm is lower than of the fingers, and hence, robust estimation of the

global orientation is an easier task relative to that of the fingers. The ConvNet finetuned

to the conditioned search space outputs more discriminative activation features for finger
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articulations. This in turn leads to better accuracy for finger parameter estimation. I demon-

strate that the ConvNet architecture significantly outperforms PCA [85] and random forests

(RF) [89] for global pose initialization. My overall pipeline runs as 32 frame per second

(FPS) on a standard computer. My main contributions are summarized as follows:

1. Initialization of the pose matrix using a low dimensional and discriminative represen-

tation of the global orientation or finger articulations as an activation feature using

deep ConvNets, which aids efficient retrieval of nearest neighbors from a large pop-

ulation of pre-computed activation features using product quantization.

2. A deep matrix completion (DMC) method for estimating joint angle parameters using

the initialized pose matrix.

3. A hierarchical pipeline for hand pose estimation that combines the global pose orien-

tation and finger articulations in a principled way while maintaining real-time frame

rates on a standard computer.

Overall, my techniques provide superior results in pattern recognition objectives such

as image segmentation in computer vision, accurately retrieve similar shapes to a query

from a large database of geometric mesh models, prevent false positives in recommender

systems and identify the hierarchical and overlapping organization of networks.

The organization of the thesis is as follows: I first introduce the theoretical results for

the three different graph types and reference prior literature as required in Chapter 2. In

Chapter 3, I discuss the applications of the introduced theoretical concepts in Chapter 2.

Finally, I summarize and discuss future work in Chapter 4.
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2. THEORY

In this chapter I discuss theoretical details for the four physical laws and how they apply to

understanding graph structure. Each subsection discusses the learning analogy to physical

laws: (1) Brownian motion or random walks, (2) Gauss’s law, (3) Feedback and (4) Deep

Neural networks for understanding graph structure. Relevant background is introduced

wherever applicable.

2.1 Random Walks

A Markov chain is a mathematical system that undergoes state transitions following

the Markov property, i.e., future states depend only upon the present state and not on the

past, or that the system is memoryless. Random walks can be viewed as special cases of

finite time-reversible Markov chains [92]. A random walk starting from a node on a graph

evolves with time, where time is either discrete (set of positive integers) or continuous (set

of positive real numbers). Here, I briefly discuss the formalism of discrete and continuous

time random walks, the inter-relationship between the two and relevant spectral decompo-

sitions which are used in subsequent sections. For a general discussion on random walks,

the reader is asked to refer the excellent survey by Lovász [93]. In this section, I first detail

the random walk operators for different graph based representations. Next, I discuss con-

structing kernels using random walks first in the context of networks and then on shapes.

Finally, I describe how random walks can be used for image segmentation.

2.1.1 Random walk operators

First, I detail basics useful for analyzing discrete and continuous random walks. An

unweighted, undirected network G of N nodes is completely characterized by N ×N ad-

jacency matrix A, a symmetric binary matrix of zeros and ones with ′1′ indicating an edge
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between two nodes and ′0′ otherwise. Let D = diag(di) be a diagonal matrix of the node

degrees in the graph. The probability transition matrix M for the discrete walk is given by

M = D−1A, indicating the probability of leaving a node is evenly split among all its adja-

cent neighbors. As M is asymmetric in general, it is useful to convert it into a symmetric

normalized matrix N for spectral analysis by considering N = D1/2MD−1/2. The study

of continuous time walks is simplified by introducing the random walk Laplacian ΔM and

its normalized counterpart L. Mathematically, ΔM = I −M and L = I − N where I is

an identity matrix of size N . Let the spectral decomposition of the normalized Laplacian

be given by L = ΦΛΦT where Λ is a diagonal matrix with the ordered eigenvalues, i.e.,

0 = λ1 ≤ λ2... ≤ λN ≤ 2, Φ is the matrix with corresponding eigenvectors as columns.

Then the eigen decomposition of the normalized transition matrix is ΦΛ′ΦT with same set

of eigenvectors and eigenvalues related as Λ′ = I−Λ (see [94]). I first discuss discrete and

continuous time random walks which are directly applicable to networks, and then describe

the random walk operators specific to meshes and images, respectively.

Discrete time random walk: Discrete random walks take place over discrete time steps

starting from t = 0 over the positive integer domain. The rule of walk on the graph can be

expressed as

Pt = MTPt−1 (2.1)

Hence iterating,

Pt = (MT )tP0 (2.2)

where Pt is the probability distribution (summing to 1) over the nodes of the graph starting

from the initial distribution P0 and depends on the transpose of the state transition matrix

MT . The stationary distribution or the probability of being at a vertex after the walk has

reached equilibrium (after long time or at t = ∞) is independent of the initial distribution.

Formally π = MTπ or π = �D/vol where � is a vector with all coordinates 1 and vol =∑
u du called the volume of the graph. The distribution at intermediate times, i.e., M t can

be determined using the spectrum of the normalized Laplacian or can be calculated using
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elementary matrix multiplication. The spectral decomposition of the transition matrix is

M = D−1/2ΦΛ′ΦTD1/2 and M t = D−1/2ΦΛ
′tΦTD1/2. Hence,

pt(i, j) =
∑
k≥1

λ
′t
kΦk(i)Φk(j)

√
dj
di

= πj +
∑
k≥2

λ
′t
kΦk(i)Φk(j)

√
dj
di

(2.3)

where pt(i, j) is the probability of starting at i and reaching j in t steps and is the (i, j)th

entry of the matrix M t and tends to πj in the long time limit as | λ′
k |≤ 1. I have used the

orthogonality of eigenvectors ΦT
i Φj = δ(i, j)). Note that Pt is a N × 1 vector whereas pt is

a N × N matrix. The limitation of discrete time steps is overcome in the continuous time

limit and is the topic of my next discussion.

Continuous time random walk: The difference between the discrete and continuous set-

ting of the random walk is the waiting time between hops of a random walker, i.e., constant

1 for the discrete walk (as t = 0, 1, 2 . . .) and an exponential distribution for continuous

time [95]. Recall, the exponential distribution characterizes the waiting time in a Poisson

process and hence the number of jumps completed by a random walker at time t is a Poisson

distribution. The rule of walk is expressed by the Kolmogorov differential equation:

dpt
dt

= −ΔMpt (2.4)

I solve the Kolmogorov equation to determine the probability distribution over all pairs

of state spaces at time t and solution is the exponential matrix. I recover the probability

distribution at time t by using the formula

Pt = [e−tΔM ]TP0 (2.5)

Where P0 is the initial probability distribution vector and Pt is the vector at time t. Again

using the orthogonality of the eigenvectors, the relation ΔM = D−1/2ΦΛΦTD1/2 and

noticing that the normalized Laplacian matrix is diagonalizable, the matrix exponential

is calculated using the eigenvectors as e−tΔM = D−1/2Φe−tΛΦTD1/2. And the spectral

decomposition of the exponential matrix at time t is given as

pt(i, j) = πj +
∑
k≥2

e−tλkΦk(i)Φk(j)

√
dj
di

(2.6)
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As in the discrete setting, the (i, j)th entry pt(i, j) evaluates the probability of transition

from i to j in time t and the probability tends to πj in the long time limit as | λk |> 0. Note

that probability conservation holds for both discrete and continuous time random walks,

i.e.,
∑

j pt(i, j) = 1 ∀i ∈ V or that the probability of a random walker to jump from state i

to any other state is 1.

The diffusion equation is central to many graph theoretic applications ranging from

consensus in multi-agent systems [96] to synchronization in community structure [97].

Simply put the diffusion equation models flow from high density regions to low density

regions based on the density gradient and is succinctly captured by the equation:

dΨ

dt
= −ΔΨ. (2.7)

Here Ψ is the quantity that flows (gas, heat, etc.) and Δ is the Laplace operator which gov-

erns the rate of flow. On discrete graphs, the Laplace operator takes different forms based

on the context of application. It is apparent that if I take Δ = L, and Ψ = Pt, the equation

describing the system is the same as Equation (2.4). The solution to the above differential

equation also gives rise to the heat kernel [98], i.e., the heat kernel Ht is continuous time

random walk matrix, pt. From here on, I refer to the continuous time random walk matrix

interchangeably as the heat kernel, Ht and represent the discrete time analog in terms of

the transition matrix M .

Each element of Ht can be represented by expanding the exponential e−Lt using the

Maclaurin series of e−t(I−M) as:

Ht(u, v) = e−Lt(u, v) = e−t

∞∑
k=0

Mk(u, v)
tk

k!
. (2.8)

Mk(u, v) is interpreted as the sum of all transfer probabilities of length k joining nodes u

and v. t is a real positive number in the range [0,∞). As the heat kernel, Ht is an exponen-

tial sum of random walks, it follows that the derived node-to-node similarities are in some

sense a measure of regular equivalence [99]. Regularly equivalent nodes serve the same

role in a network, which in itself is a reasonable notion of a community (such as function-

ally related protein complexes or social circles). The random walk Laplacian governing the

heat kernel can be viewed as a normalized counterpart of the standard Laplacian.
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Random walk mesh Laplacian: The random walk Laplacian discussed before does not

naturally extend to meshes. In order to coherently analyze mesh model, I discuss the for-

mulation of the Laplacian for mesh surfaces. Specifically, I explain the construction of

probability transition matrix M for discrete random walks, and the construction of rate

matrix Q for continuous time random walks on a triangulated surface mesh. The triangula-

tion (discrete state space) assumption is consistent with general analysis on point-sampled

meshes.

The rate matrix Q is negative of the discrete Laplace-Beltrami operator Δ. This stems

from the fact that Brownian motion and heat flow both satisfy the diffusion equation, and

that Brownian motion is a generalization of continuous time random walks to continuous

state spaces. This relationship can be directly observed by comparing the heat diffusion

equation δHt

δt
= −ΔHt (Ht is the heat kernel) and Kolmogorov’s backward equation δPt

δt
=

QPt (Pt is the Markov kernel) for continuous time Markov chains [100]. The Brownian

interpretation of heat kernel was briefly explained in [1].

It is well known that the Laplace-Beltrami operator Δ is a generalization of the Laplacian

from flat spaces to manifolds [101]. The operator can be constructed using the common

cotangent discretization [101]. The weights w of the Laplace-Beltrami operator are given

by w(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j
cotai,j+cotbi,j

2Ai
if j = i

− cotai,j+cotbi,j
2Ai

if j ⊆ N1(i)

− cotai,j
2Ai

if (i, j) ∈ EB

0 otherwise

where N1(i) is the set of 1-ring neighbours of vertex i, ai,j, bi,j are the two angles

supporting the edge connecting vertices i and j, Ai is the associated surface patch or fi-

nite volume (usually barycentric or Voronoi) and EB indicates a boundary edge. The bi,j

term drops out for boundary points imposing the von Neumann boundary conditions. I

assume that the triangulation is regular, i.e., ai,j + bi,j ≤ π so that all weights are posi-

tive. Another commonly used operator, the conformal Laplacian Lc [102] is related to the

Laplace-Beltrami operator by Δ = A−1Lc, where A is a diagonal matrix of the Voronoi,
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barycentric or mixed area (Au for point u). As Q = −Δ, the weights q of the rate matrix

are given by

q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j
−(cotai,j+cotbi,j)

2Ai
if i = j

cotai,j+cotbi,j
2Ai

if j ⊆ N1(i)

cotai,j
2Ai

if (i, j) ∈ EB

0 otherwise

Verify that
∑

v qij = 0 ∀j ∈ V where V is the set of all nodes, which means that the sum

of all transition rates to or from a node is conserved, i.e., flow conservation. For discrete

random walks, the probability transition matrix M satisfies:

• The single-step transition probability of jumping from any node u to an adjacent node

v ((pij)j∈N1(i)) is positive, i.e., 0 ≤ pij

• The probability of a random walker to jump from state u to any state is 1, i.e.,∑
j pij = 1 ∀j ∈ V (conservation property).

I use the uniformization technique of Markov chains to build M satisfying the above prop-

erties. Uniformization is a technique to simulate continuous time chains using a discrete

chain analog (see Lawler [100] for a detailed exposition). Suppose υi represents the abso-

lute diagonal values of the rate matrix Q and Υ = maxi υi, then the uniformized chain is

given by

p(i, j) =

⎧⎨
⎩

q(i,j)
Υ

if i �= j

1− υi
Υ

if i = j

Using the above transformation, the elements of the transition matrix M are

p(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1−∑
j
cotai,j+cotbi,j

2ΥAi
if j = i

cotai,j+cotbi,j
2ΥAi

if j ⊆ N1(i)

cotai,j
2ΥAi

if (i, j) ∈ EB

0 otherwise

It is easy to verify that reg-

ular triangulation and scaling by Υ ensure satisfaction of Property 1 and 2 respectively.

Note Property 1 does not hold for general meshes. The diagonal elements of the transition

matrix are zero only if u coincides with the index of the maximum element Υ. The non-

zero diagonal values ξu indicate presence of self-loops wherein a random walker remains
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in the same state with positive probability and with probability (1 − ξu) hops to a 1-ring

neighbour (also called the lazy random walk). For notational consistency, I scale the values

of the Laplace-Beltrami operator Δ by 1/Υ and represent it by ΔM . Note the relations

Q = −ΥΔM and ΔαM = I − αM , where ΔαM is the lazy rate operator and α is a tuning

parameter.

Diffusion operator for images: Images are denoted using a weighted graph, by the triple

G = (V,E,A) where V is the set of pixels/regions, E ⊆ V × V is the set of local edge

affinities and A is the weighted adjacency matrix with weights w(u, v) if (u, v) ∈ E.

The transition matrix M that governs a random walk is related to A as M = D−1A and

corresponding random walk Laplacian Δ is given by Δ = I −M . As Δ is unsymmetric I

consider the normalized graph Laplacian L related to A and Δ as L = I−D−1/2AD−1/2 =

D1/2ΔD−1/2. Its elements are:

L(u, v) =

⎧⎪⎨
⎪⎩
1 if u = v

−w(u,v)√
dudv

if i �= j and (u, v) ∈ E

(2.9)

2.1.2 Multiscale kernels using random walks on networks

Different graph theoretic metrics are a result of different weighting scheme on the

eigenvalues, i.e., the representation is of the general form τ = Φf(Λ)ΦT up to a scal-

ing factor where f(Λ) is an operator on the eigenvalues. This motivates me to investigate if

there a generalized principle guiding the weighting of eigenvalues and hence the construc-

tion of the similarity matrices τ . In this discussion I establish that this general principle is

guided by suitable expectations of the generalized rate of continuous time random walks,

or equivalently and more intuitively the rate of diffusion matrix. The generalized rate of

diffusion matrix B̃ is given as (I − αM)e(αM−I)t. The expectations of B̃ over time are

naturally given by:

ταn =

∞∫
t=0

tn[ΔαMe−tΔαM ]dt (2.10)

where ταn is the output similarity matrix governed by two parameters n and α and ΔαM is

the generalized Laplacian. The generalized Laplacian ΔαM is an extension of the standard
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Figure 2.1. Effect of time, t, on rate of diffusion for 3 values of t on the karate
graph. Similarity decreases as color changes from blue to red spectrum.

Laplacian with an additional parameter α and mathematically represented as ΔαM = I −
αM . It immediately follows that, the generalized rate of diffusion matrix is the unscaled

rate of diffusion matrix for α = 1.

I discuss the implications of α and the moment parameter n in network graphs and

provide additional insights for discrete geometric manifolds.

• First, ΔαMe−tΔαM term in the integrand is the negative differential of the generalized

diffusion equation dpt
dt

= −ΔαMpt. tn scales the rate of diffusion between all pairs

of nodes, i.e., large n weighs the diffusion rate at large times more heavily relative to

small n. In effect, diffusions occurring over long time windows are weighed more for

high values of n and are equally weighted for n = 0, hence the moment parameter n

extracts scale. If I consider the rate between a node pair to be a signal over time, the

role of n is to filter frequencies, i.e., higher frequencies are progressively suppressed

by increasing n [13].

• Each element of e−tΔαM can be expanded using the Maclaurin series of e−t(I−αM) as:

e−tΔαM (i, j) = e−t

∞∑
k=0

αkMk(i, j)
(t)k

k!
(2.11)

Mk(i, j) can be interpreted as the sum of all random walks of length k joining points

i and j. For 0 ≤ α < 1, e−tΔαM is probabilistically interpreted as a lazy random

walk where with α probability a random walkers performs a normal random walk

and with (1 − α) probability the walker leaves the current node and teleports to a
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random node, without regard to graph structure. In Equation (2.12), paths of length

k get weight αk and hence shorter paths (say k1) are weighed more than longer ones

(say k2) (αk2 < αk1). For −1 ≤ α < 0, Equation (2.12) can no longer be interpreted

probabilistically but instead, interpreted as a weighted signalling process on a graph.

This is seen by expanding e−t(I−αM) for α < 0 as:

e−tΔ−αM (i, j) =
∞∑
k=0

(I + αM)k(i, j)
(−t)k

k!

=
∞∑
k=0

wsig(I + αM)k(u, v)

(2.12)

where wsig are the weights of the signals transferred between nodes. (I+αM)k is the

random walk counterpart of the signalling graph in [103] with additional parameter α

controlling the influence of signals based on path length k. From a signal processing

viewpoint, the role of α(−1 ≤ α < 1) is to shift the scale of analysis as it implicitly

shifts the eigenvalues in the spectral decomposition of e−tΔαM . To see this, write I −
αM as α(βI+Δm) where β = 1−α

α
. The eigenvalues of (βI+Δm) are (βI+Λ), and

hence, e−tΔαM is spectrally decomposed as D−1/2Φe−αt(βI+Λ)ΦTD1/2. Expanding,

e−tΔαM (i, j) =
∑
k≥

e−αt(β+λk)Φk(i)Φk(j)

√
dj
di

(2.13)

• Allowing dual parameters α and n to control scale provides greater flexibility and

reveals different multiscale information (see [58]) about node connectivity. Integrat-

ing over the entire time interval makes the resulting matrix robust to noise and small

topology changes.

Figure 2.1 displays the effect of t and Figure 2.2 shows the effect of α on the nega-

tive rate of diffusion from the black node in the karate graph, where blue shades indicate

similarity and red shades indicate dissimilarity. I see that nodes close to the black node

progressively become similar as time increases suggesting that the black node reaches a

local equilibrium with these nodes quicker than the rest of the nodes, and hence, becomes

aware of its true neighbourhood. The effect of decreasing α is complimentary, in the sense
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Figure 2.2. Effect of teleportation parameter, α, on rate of diffusion for 3
values of α on the karate graph. Similarity decreases as color changes from
blue to red spectrum.

that the black node becomes progressively unaware of nodes further away from its neigh-

bourhood as α decreases. Hence, allowing dual parameters α and t to control diffusion

provides greater flexibility and reveals multiscale information about node connectivity.

The contribution here is the generalization of popular graph theoretic matrices. These

matrices are derived as special cases of the spectral solution of Equation (2.10). I first

prove the general solution to the equation in the next subsection. In subsequent subsections

I prove the interrelationship between the general solution and different network science

tools, as well as geometric distances.

Expectations of rate of diffusion matrix:I begin this section with the proof for continuous

time random walks

Theorem 2.1.1 The solution of

ταn =

∞∫
t=0

tn[ΔαMe−tΔαM ]dt (2.14)

exists for all real n > 0 and −1 ≤ α ≤ 1 and is given by:

ταn(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

Γ(n+ 1)
∑
k≥2

1
λk

nΦk(i)Φk(j)
√

dj
di

if α = 1

Γ(n+1)
αn

∑
k≥1

1
(β+λk)n

Φk(i)Φk(j)
√

dj
di

if −1 ≤ α < 1

Proof The term ΔαMe−tΔαMdt can be written as [e−tΔαM − e−(t+dt)ΔαM ] using Taylor

series expansion. Using Equation (2.6), the eigenvalue λ1 and corresponding eigenvector
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drop out of the summand for α = 1. Using the orthogonality of eigenvectors and evaluating

the integral, τn simplifies to,

τn(i, j) = Γ(n+ 1)
∑
k≥2

1

λk
nΦk(i)Φk(j)

√
dj
di

(2.15)

where Γ is the gamma function. Verify using Equation (2.13) that all eigenvalues of e−tΔαM ,

hence all eigenvalues of ΔαM have magnitude greater than 0 for −1 ≤ α < 1. The matrix

ΔαM is invertible for all values of α in the range [−1, 1) and the solution for Equation

(2.14) exists. Using the orthogonality of eigenvectors and evaluating the integral, ταn is

given by:

ταn(i, j) =
Γ(n+ 1)

αn

∑
k≥1

1

(β + λk)n
Φk(i)Φk(j)

√
dj
di

(2.16)

Note the starting index k is different for the two equations above, based on the value of

α. The eigenvectors are in decreasing smoothness order as I arrange the eigenvalues in

increasing order, and hence, the order n scales the smoothness while filtering out small

‘frequencies’. Following the same reasoning, the smaller the α value in the range [−1, 1),

the larger the magnitude of β and hence α performs a ‘spectra or scale shift’ [57].

Figure 2.3 demonstrates this phenomenon for three functions: f(t) = 1, f(t) = t2,

f(t) = sin(πt) convoluted with ht for two pairs of nodes, [34, 33] displayed in red and

[34, 1] displayed in blue for the karate graph. I observe that the convoluting function in

effect changes the behavior of the affinity between nodes with different functions leading

to different interpretations of the resulting affinity.

An important property demonstrated in the above theorem is that the rate of diffusion

matrix ΔMe−tΔM , is integrable for all positive values of n over the time domain, whereas,

the diffusion matrix e−tΔM is not, due to the presence of eigenvalue λ = 0. Indeed, matrix

surgical operations like pseudo inverse overcome this limitation of the diffusion matrix

whereas, my results follow from standard algebraic operations on the rate of diffusion

matrix. I next prove it for the discrete random walks.

The formulation equivalent to Equation (2.14) for discrete walks is:

τ̂αn =
∞∑
t=1

(x)n[(αM)t−1 − (αM)t] (2.17)
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Figure 2.3. Effect of the convolution function f(t) on rate of diffusion between
2 node pairs: [34, 33] in red and [34, 1] in blue. Three functions considered are
1, t2, sin(πt).

where τ̂αn denotes the operator defined over the function (x)n, also called the Pochham-

mer symbol or rising factorial and represented as (x)n = x(x + 1)(x + 2)...(x + n − 1).

As M t denotes the transition matrix after time t, M t−1 − M t denotes the change in tran-

sition probability after one time step and equivalent to rate of diffusion in the continuous

time limit. More rigorously, the term in parenthesis in Equation (2.17) can be written as

[e−tΔαM − e−(t+dt)ΔαM ], where I have used the fact that (αM)t or (I −ΔαM)t converges

to e−tΔαM for continuous time walks (see [12] for derivation). Taylor series expansion of

the derived I − e−ΔαMdt term in e−tΔαM (I − e−ΔαMdt) results in the rate of diffusion. An

alternative interpretation of the uvth term in M t−1 − M t is that it denotes the probability

that a random walker is at node v in the tth time-step starting from node u at time t = 0

(see page 159 [21] for case (x)1). Parameters n in (x)n and α play a similar role of exag-

gerating/suppressing pathways (or ‘faraway’ nodes), as in the continuous time case. Recall

in Equation (2.6), eigenvalue 1 and the corresponding eigenvector appear as πv in both M t

as well as M t−1. Substituting the spectral representation of M in the Equation (2.17) for

α = 1, removes the eigenvalue 1 (of M ) and the corresponding eigenvector from the sum-

mand, enabling me to use I − M in an invertible setting (removal of eigenvalue 1 from

M implies removal of eigenvalue 0 from I − M , hence killing its null space). Using the
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sum of infinite series
∞∑
k=1

k(k + 1)...(k + n− 1)[xk−1 − xk] = n!/(1− x)n and spectral

decomposition of (I −M)−n or Δ−n
M , the operator is represented as

τ̂n(i, j) = n!
∑
k≥2

1

λk
nΦk(i)Φk(j)

√
dj
di

(2.18)

Following a similar derivation as in the continuous time case, the representation for 0 <

α < 1 is

τ̂αn(u, v) =
n!

αn

∑
k≥1

1

(β + λk)n
Φk(i)Φk(j)

√
dj
di

(2.19)

Thus, the use of Pochhammer symbol in lieu of tn results in the same resultant kernel as in

the continuous case. I now proceed to showing the relationship of my formulated similarity

matrix ταn and several existing graph theoretic matrices commonly used in literature.

Theoretical Properties: The formulated kernels are robust to noise, provably converge

on finite graphs, are positive definite and can be efficiently approximated.

Scale invariance, robustness and positive definite: For scale invariance, the kernel weight-

ing function on the eigenvectors must satisfy K(γ/ω2) = ω2−2/pK(γ). It can be verified

that the weighting function K(β + λ) = (β + λ)−1/p satisfies this property and hence

the kernels are scale invariant. The heat kernel is robust to noise as it is a weighted sum

over all connecting pathways between nodes,and hence, is frequently used in biological

applications wherein the networks are inherently noisy. Inductively, the rate of diffusion is

also robust to noise. ταn is derived by integrating over the entire time interval and further

suppresses noise and small topological changes in the graph structure. D1/2ταnD−1/2 sim-

plifies to 1
(β+λk)n

Φk(i)Φk(j) and is positive definite. Pre and post multiply with positive

diagonal matrices (diag(π))−1/2, (diag(π))1/2 respectively, results in the kernel ταn being

positive definite.

Convergence and complexity: The convergence of ταn over finite graphs where n is any

positive real number can be verified using the property that the integral
∫∞
0

e−ttz−1dt

(Gamma function) is absolutely convergent for all z with Re(z) > 0 after doing a vari-

able change t′ = t/λi. As each term in the spectral representation converges and the

representation is finite, it follows that the kernel converges. ταn can be computed either
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using the complete eigen spectrum O(|V |2) for sparse graphs or efficiently approximated

using the first k eigenvectors O(|V |3/2)) due to the decreasing smoothness property of the

eigen spectrum.

Generalization of network science kernels: In this subsection I discuss how the rate

of rate of diffusion matrix generalizes several network science tools. Geometric manifolds

are taken up in the next section. I discuss the relationship of ταn to PageRank, harmonic

and deconvolution kernels.

PageRank: PageRank is the original algorithm used by Google to rank search results on the

world wide web [55]. Substituting n = 1 in Equation (2.18) gives:

τα(i, j) =
1

αn

∑
k≥1

1

β + λk

Φk(i)Φk(j)

√
dj
di

(2.20)

Which is precisely the representation of the PageRank kernel for general α. The original

PageRank algorithm uses α = 0.85 to rank search results on the web. The PageRank vector

is retrieved my multiplying τα by a vector of ones �, i.e.,

R = τα� (2.21)

where R is a N × 1 vector of PageRanks. Recently, the heat kernel was proposed as the

pagerank of a graph. The recurrence relationships for PageRank and heat kernel pagerank

are given as

prα,f = αf + (1− α)prα,fM

prt,f
dt

= −prt,f (I −M)
(2.22)

Where prα,f is the PageRank, prt,f is the heat kernel pagerank and f is the preference

vector. The PageRank is a geometric sum whereas the heat kernel pagerank is an exponen-

tial of random walks. This is verified by their equivalent representations in terms of the

transition matrix, M as:

prα,f = α
∞∑
k=0

(1− α)kfMK

prt,f
δt

= e−t

∞∑
k=0

tk

k!
fMk

(2.23)
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A geometric series decays very slowly whereas an exponential series decays too quickly.

The kernel ταn finds a middle ground for pagerank values as an arithmetic-geometric sum

over three parameters α, n, f :

prα,n,f = α

∞∑
k=0

(k + 1)(k + 2)...(k + n− 1)(1− α)kfMK (2.24)

where I use the relationship

∞∑
k=0

(k + 1)(k + 2)...(k + n− 1)(1− α)kfMK =
(n− 1)!

(I − αM)n
(2.25)

Using the spectral decomposition of M in Equation (2.4), it can be verified that (I−αM)−n

takes the same form as ταn upto a constant multiplicative factor. Whence my formulation

shows the transition from geometric maps to exponential maps of the random walk.

Fundamental matrix and harmonic kernel: In the Markov chain theory, the fundamental

matrix Z0 for continuous time random walk is defined as

Z(i, j) =

∞∫
0

(pt(i, j)− πj)dt (2.26)

This matrix is very useful for a wide array of calculations like expected number of visits

to a state, expected return and access times [92]. It can be verified that Z reduces to the

same spectral form as ταn for α = 1 and n = 1 (see page 107 [92]). A kernel is a positive

semi definite similarity matrix and is a starting point of several algorithms in the machine

learning literature. Recently, harmonic kernels H have received much attention in shape

matching and ranking algorithms and are given by:

Hn(i, j) =
∑
k≥2

1

λn
k

Φk(i)Φk(j) (2.27)

for integer n. Pre and post multiplying Equation (2.15) by scaling matrices D1/2 and D−1/2

respectively outputs the harmonic kernels for any positive real n up to a constant. The

associated distance metrics and embeddings also serve a wide range of applications and

directly derivable using H. The reader is asked to refer to the next subsection for a detailed

discussion demonstrating the interrelationship of different distance metrics like commute

time, biharmonic distance etc via my formulation.
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Deconvolution kernel: Deconvolution is a recently proposed approach for removing indi-

rect effects from correlated information [59]. The governing equation for network decon-

volution is:

Gobs = Ω+ Ω2 + Ω3 + · · · (2.28)

where Gobs is the observed matrix and Ω is a matrix of direct dependencies, referred to as

the deconvolution kernel. The solution to the deconvolution kernel Ω is given by:

Ω(i, j) =
∑
k≥1

λ̂k

1 + λ̂k

Φ̂k(i)Φ̂k(j) (2.29)

where λ̂k and Φ̂k are the kth eigenvalue and eigenvector of the observed matrix Gobs with

both direct and indirect effects. Now consider τ̂ = −D1/2ταnD−1/2 for α = −1 and n = 1.

Substituting β = 1−α
α

= −2 I get

τ̂(i, j) =
∑
k≥1

1

(−2 + λk)
Φk(i)Φk(j)

=
∑
k≥1

1

(−2 + 1− λ′
k)
Φk(i)Φk(j) + I − I

=
∑
k≥1

( −1

(1 + λ′
k)

+ 1
)
Φk(i)Φk(j)− I

=
∑
k≥1

−1 + 1 + λ′
k

(1 + λ′
k)

Φk(i)Φk(j)− I

=
∑
k≥1

λ′
k

(1 + λ′
k)
Φk(i)Φk(j)− I

= Ω̂− I

(2.30)

It is clear that Ω̂ is structurally equivalent to Ω by considering the eigenvalues λ′
k associated

with the normalized transition matrix NM = D−1/2MD1/2 = D−1/2AD−1/2 instead of

Gobs. Inferring the direct from indirect effects between node pairs is not affected by the

identity matrix −I , and hence, Ω is the deconvolution kernel for NM . Note, [59] linearly

scales the matrix so as to ensure the maximum magnitude of eigenvalues is less than 1

whereas I scale the observed matrix by suitable exponents of D so as to ensure the same

criterion. Thus, τ̂ is the deconvolution kernel for NM and varying α in the range [−1, 0)
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outputs a generalized convolution kernel controlling the suppression of indirect effects, and

immediately applicable to network deconvolution. The strong assumption that the powers

of Ω all contribute equally to the observed matrix in the original formulation, is effectively

relaxed to:

Gobs = αΩ + α2Ω2 + α3Ω3 + · · · (2.31)

where α is the relaxation parameter in my formulation.

The results derived using the rate of diffusion matrix are also derivable using the dis-

crete counterpart of the rate of diffusion matrix (see [58]). Further, tn in Equation (2.10)

can be replaced by a general functions f(t) which may be suitable for specific applications.

Overall, my key observation is that interpreting the parameters α and n as frequency shift

and frequency filter respectively, generalizes several existing similarity matrices and can

potentially guide creation of new similarity matrices suitable for the particular network to

be analyzed.

2.1.3 Multiscale kernels using random walks on geometric manifolds

As discussed previously, the formulation of the multiscale kernels using the rate of

diffusion matrix is based on two parameters- a moment parameter n and an influence pa-

rameter α, given by the following equation:

ταn =

∞∫
t=0

tn[ΔαMe−tΔαM ]dt (2.32)

I focus my attention to interpreting the same on geometric manifolds. Although tn can be

replaced by general functions of t, I restrict my attention to powers in t (n is a positive frac-

tion), and term ταn as the moment time operator. The implication of this functional form

was discussed at the beginning of this section for general graphs. I now turn my attention

to geometric manifolds. Loosely speaking, n and α produce similar effect of exaggerat-

ing/suppressing ‘faraway’ nodes. However, they do so in very different ways, which I

illustrate by plotting the values of tn[ΔαMe−tΔαM ] for different values of [t, n, α], from the

center of a disc in Figure 2.4. Plot 2.4g shows the rate of diffusion values to all points from
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(a) Disc (b)

32,0,1,4.27E-4

(c) 32,2,1,0.438 (d)

32,8,1,4.71E8

(e)

32,0,.8,6.48E-6

(f)

32,0,.4,10.1E-9

(g)

32,0,1,4.27E-4

(h)

64,0,1,1.04E-4

(i) 64,2,1,0.427 (j)

64,8,1,2.93E10

(k)

64,0,.8,4.93E-9

(l) 64,0,.4,2.1E-

19

Figure 2.4. (a) Disc of radius 5. (g) 3D plot of rate of diffusion from center
(red point) of disc viewed as height function and color coded (rate decreases
as color changes from red to blue). (b)-(f) and (h)-(l): 2D plot of function
tn[ΔαMe−tΔαM ] for different values of t, n, α, viewed as height field (function
value) along vertical axis and distance from center along horizontal axis. The
quadruple indicates [t, n, α, ς] values where ς is the maximum value of function
indicative of weightage in the integral.

the center as a color plot (red implies higher values) and height field from the base of the

disc. Note, the flow conservation property holds ∀t > 0. Formally,
∑

j ΔMe−tΔM (i, j) = 0

∀v ∈ V . This can be verified by writing ΔMe−tΔMdt as (e−tΔM − e−(t+dt)ΔM ). As all rows

of e−tΔM , e−(t+dt)ΔM sum to 1 (Property 2), flow conservation follows. It does not hold

in general for α �= 1. Plots 2.4b, 2.4h display the rate of diffusion at times t = [32, 64]

with almost equal maximum values ≈ [4 · 10−4, 10−4]. Weighting the rate of diffusion by

tn produces similarly shaped scaled plots for the same time, as tn is a multiplicative fac-

tor to the term in parenthesis. It can be visually verified by comparing Plot 2.4b to Plots

2.4c, 2.4d and Plot 2.4h to Plots 2.4i, 2.4j. However, t8 weighting produces two orders of

magnitude difference in the maximum value ≈ [4.7 · 108, 2.9 · 1010] at the two times. This

validates the claim that parameter n penalizes the rate of diffusion at long time scales more

than short ones in the integral, and large values of n provide global information about the
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shape. The influence parameter α affects the diffusion rate on the disc in two ways. Firstly,

it suppresses the diffusion to nodes further away from the center, consequently suppressing

the rate (notice the progressive squeezing in Plots 2.4b to 2.4e to 2.4d and Plots 2.4h to

2.4k to 2.4l as α decreases from 1 to 0.8 to 0.4). Secondly, α decreases the magnitude of

rate of diffusion, affecting the magnitude at long time scales more than short ones. The

maximum value drops from ≈ 6 · 10−6 (Plot 2.4e) to ≈ 10−10 (Plot 2.4f) for t = 32, but

drops from ≈ 5 · 10−9 (Plot 2.4k) to ≈ 2 · 10−19 (Plot 2.4l) at larger time t = 64. This

can be understood by considering the equivalent formulation for discrete random walks,

Equation (2.17), and that the term in parenthesis can be written as αt[M t−1/α − (M)t],

with α appearing as a multiplicative factor with time t as exponent. Hence, the notion of

‘faraway’ nodes for parameters n, α can be stated as:

• For the moment parameter n, ‘faraway’ is related to the rate of diffusion before

converging to the equilibrium distribution, and hence, (loosely) tied to time scales.

• For the influence parameter α, ‘faraway’ is related to the separation between the

source and destination nodes, and hence, (loosely) tied to distance scales.

I do not treat time and distance as independents (both parameters influence time and dis-

tance) but attach the notion of time to n and distance to α, as it makes intuitive sense and

for ease of comprehension. I demonstrate subsequently that each reveal useful multiscale

information about the triangulated mesh. To sum it up, the basic intuition in defining these

operators is that the ‘rate of diffusion is informative for understanding shapes’. This point

is illustrated further in Figure 2.5 where I compare the diffusion kernel to the rate of dif-

fusion kernel for α = 1. The key separating feature is that the smallest eigenvalue and its

corresponding (uninformative) constant eigenvector does not appear in the rate kernel. This

is true as ΔMe−tΔMdt can be written as (e−tΔM − e−(t+dt)ΔM ) and using Equation (2.6).

This is beneficial as it suppresses the fastest decaying eigenvalue (λ1) and most global

eigenvector (Φ1). Hence the rate kernel is ‘more local’ relative to the heat kernel and does

not converge to the uniform distribution, as the constant eigenvector which dominates at

long time is removed. The isocontours of diffusion rate are more intuitive, as they follow
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the shape locally and the derived signatures are discriminative at all scales, unlike the HKS.

These claims are validated in Figure 2.5. The Rate of Heat Kernel Signature (RHKS) is

defined similar to HKS on ΔMe−tΔM instead of e−tΔM . Plots 2.5c, 2.5g indicate robust

matching using RHKS to green anchor point and plots 2.5d, 2.5h indicate discriminative

signatures at all scales unlike HKS. The isolines and color plots of the rate of diffusion

from the anchor point are more localized at small times (plot 2.5a vs. 2.5e); also the iso-

lines follow similar pattern for time t = 2. The color plots, plot 2.5b vs. 2.5f, are starkly

different and can be explained by considering 1/λ2 value which is ≈ 2. 1/λ2 is the mixing

time of diffusion and plot 2.5b clearly indicates that the rate of diffusion is small on the

entire horse model, hence diffusion has nearly converged to equilibrium. Thus, I validate

my claim that the rate of diffusion is equally informative and more discriminative, com-

pared to the diffusion kernel. Having defined the operator, I establish desired symmetric

and positive-definite kernels, and hence, develop the distance metric and the corresponding

embedding.

Kernel computation: I previously computed the multiscale operator using the eigen spec-

trum of the transition matrix and I now show that the result is intimately connected to the

discrete Green’s function, and hence the commute time and biharmonic kernel. Further, I

use the kernel distance to evaluate pairwise distances and characterize the associated em-

bedding. Recall that the spectral representation of ταn simplifies to,

τn(i, j) = Γ(n+ 1)
∑
k≥2

1

λk
nΦk(i)Φk(j)

√
dj
di

(2.33)

or τn = Γ(n+1)D−1/2Φ̂Λ̂−nΦ̂TD1/2 for α = 1 where Λ̂ and Φ̂ indicate the removal of the

0 eigenvalue and the corresponding eigenvector. Further,

ταn(i, j) =
Γ(n+ 1)

αn

∑
k≥1

1

(β + λk)n
Φk(i)Φk(j)

√
dj
di

(2.34)

or ταn = Γ(n + 1)α−nD−1/2Φ(β + Λ)−nΦTD1/2 for 0 < α < 1. From these equations,

it is easy to verify that the symmetric matrix D1/2ταnD−1/2 is positive-definite and so is

the matrix ταn(diag(π))−1 obtained by pre and post multiplying by (diag(π))−1/2, where

diag(π) is a diagonal matrix of stationary probabilities. I use this kernel to define kernel
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(a) Diffusion rate at

time=0.4

(b) Diffusion rate at

time=2

(c) Matching to green

sphere

(d) RHKS of anchor

points

(e) Diffusion at time=0.4 (f) Diffusion at time=2 (g) Matching to green

sphere

(h) HKS of anchor

points

Figure 2.5. Comparison of Rate of Diffusion (Top) vs Diffusion (Bottom). (a)-
(b),(e)-(f) show isocontours and color plots of the magnitude of diffusion/ rate
of diffusion emanating from red sphere at different time values. Magnitude de-
creases as color changes from red to blue. At small times isolines are localized
and at large times the color plot is intuitive for rate of diffusion. (c),(g) display
color plots of difference between scaled signatures for point marked by green
sphere and other points on model for same time range [t1, t2]. Difference in-
creases as color changes from red to blue. Signatures derived from diffusion
rate are informative. (d),(h) displays scaled HKS (diffusion) and RHKS (rate
of diffusion) vs logarithmic time scale for 5 color coded points on model in
(c)/(g). RHKS is discriminative at all scales.

distances, as other mesh based distance metrics naturally arise from it. Note,for geometric

manifolds D is a diagonal matrix with elements di = ΥAi.

Green’s function: I define the derived kernels in terms of standard operators and show the

generic nature of my method in reference to other popular kernels. As stated previously,

the fundamental matrix Z0 for continuous time random walk is defined as

Z0
( i, j) =

∞∫
0

(pt(i, j)− πj)dt (2.35)
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The Green’s function introduced in 1828 by George Green and its discrete counterpart

associated with the Laplacian, introduced in a 2000 paper [104], have received much at-

tention. Formally, it is the pseudo-inverse of the defined Laplace operator and can be more

explicitly stated as

GijΔM(ij) = δij − dj
vol

(2.36)

GijLij = δij −
√
didj

vol
(2.37)

where G and G are the left inverse operators of ΔM and L respectively. It can be verified

that Z0 and G reduce to the same spectral form as τ 1 (see [104] and page 107 [105]). Hence

the relationship between the defined kernel, fundamental matrix and Green’s function using

Gn = Gn
√

dj
di

can be verified to be: τn = Γ(n+1)(Z0)n = Γ(n+1)Gn. From here on, in

order to maintain consistency, I use the Green’s function for representation.

Distance computation: I use the kernel distance to evaluate pairwise distances between

points on a mesh. The kernel distance is defined for positive definite matrices as (Dαn
ij )2 =

(κii−2κij+κjj), where κ is a positive definite kernel. Hence, the general expressions using

the discrete Green’s function for distance between two vertices u and v for the generated

kernels are

(Dαn
ij )2 = voln

(Gαn
ii

di
+

Gαn
jj

dj
− 2

Gαn
ij√
didj

)
(2.38)

(Dαn
ij )2 = voln

(
Gαn

ii

di
+

Gαn
jj

dj
− Gαn

ij

dj
− Gαn

ji

di

)
(2.39)

where voln = Γ(n + 1)α−nvol, Gαn = Φ(β + Λ)−nΦT or Gn = Φ̂Λ̂−nΦ̂T as required,

based on the parameters n and α. I use the relation Gαn = Gαn
√

dj
di

to derive the second

relation from the first. In terms of spectral representation this can be written as

(Dαn
ij )2 = voln

∑
j≥1

1

(β + λj)n

(
Φj(i)√

di
− Φk(j)√

dj

)2

(2.40)

Note that the sum starts from i = 2 for Dn
ij and i = 1 for Dαn

ij . Thus to calculate the exact

pairwise distances, I need to find the full set of eigenvectors and corresponding eigenvalues

for the normalized Laplacian. Using the decreasing smoothness property of the eigenvec-

tors, multiscale distances can be approximated using only the first K eigenvectors and pro-
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vide a trade-off between accuracy and computational time. I shall return to computational

complexity later.

Kernel embedding: Having derived the kernel distances, I see that the embedding that

preserves the nth distance moment with parameter α is given by:

Θαn =
√
voln(β + Λ)−n/2ΦTD−1/2 (2.41)

Note that the D−1/2 scaling appears due the scaling of the conformal Laplacian by area

terms. To drive home this point, if the kernels were derived starting from the confor-

mal Laplacian instead of the normalized Laplacian, the embedding would be: Θ̃αn =
√
voln(β̃ + Λ̃)−n/2Φ̃T , where λ̃ and Φ̃ are the eigenvalues and eigenvectors of Lc and β̃

is the corresponding influence parameter. A similar embedding has recently been proposed

in [16] for understanding manifolds, though with a very different approach. The differ-

ence in the embedding is due to the scaling of the operator. This can be understood by

noting the relation between the Green’s function of the induced subgraphs of Lc,L and

ΔM is Ḡ = GD−1 = D−1/2GD−1/2 where Ḡ is the Green’s function of the conformal

Laplacian [104]. As the Green’s function of the induced subgraphs differ only by a scaling

matrix, it is not that surprising that the two embeddings are equivalent upto a scaling matrix.

Next I state properties of the kernels, distances, embeddings and show related applications.

Theoretical properties of kernels on manifolds: The formulated kernels are isometry,

scale and tessellation invariant, can be made shape aware, insensitive to partial objects and

noise based on the moment function and an additional influence parameter. Additionally,

the corresponding kernel distances and embeddings have all the important properties, i.e.,

are metrics, convergent and fast to compute. I give a brief summary of the properties.

Multiscale: The central theme of the last section was the dual formulation of the multiscale

operator using parameter α and moment function tn. An intuitive interpretation of the

α value is that the remainder (1 − α)M probability translates to a random surfer model,

where with probability (1 − α), a random walker leaves the current node and teleports to

another node, without regard to mesh connectivity. Hence, random contributions due to the

teleportation cancel out in the kernel evaluation, resulting in increasingly local affinities

with decrease in α. It is interesting to note that the α value is a fundamental component
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(a) GMSn (b) GMSn (c) GMSn (d) GMSα (e) GMSα (f) GMSα

(g) HKS (h) HKS (i) HKS (j) Biharmonic (k) Biharmonic (l) Biharmonic

Figure 2.6. Comparison of four multiscale kernels- moment, influence, heat
and biharmonic kernels with local (left) to global (right) support for point at
center of palm.

in the celebrated PageRank algorithm and precisely performs the same function, albeit

for ranking search queries [106]. On the other hand, tn penalizes pairwise nodes which

have a slow rate of convergence to the equilibrium distribution, i.e., nodes separated by

longer path lengths as a function of time. Thus the kernels are dual multiscale, (loosely)

over distance as well as over time scales with different multiscale behaviour, and is a key

differentiation from other multiscale kernels which define multiscale behaviour over either

time (heat kernel) or distance scales (multiscale biharmonic kernel). Figure 2.13 shows the

multiscale behavior over moment n, influence α, the heat kernel over time and multiscale

biharmonic kernel over the lasso constraint. I observe that the multiscale behavior over α

is similar to the multiscale biharmonic kernel and the behavior over moment n is similar

to the behavior over t in heat kernel. Multiscale over n has an interesting behavior. For

large moments, the maximum affinity from the center of hand becomes skewed towards the

thumb, which has an intuitive explanation. The operator weighs the change in transition

probability and visual inspection of affinity gradient indicates that the diffusion from center

of palm towards the thumb occurs over short time interval, whereas a random walker in the
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central regions and other four fingers tend to get ‘lost’, and hence diffusion occurs over a

large time interval. It also indicates there are shorter pathways connecting the palm point

to the thumb and relatively longer pathways connecting to the rest of the hand. The flip

in the least affinity (blue color) from the middle finger to ring finger can also be explained

similarly.

Scale, isometry and tessellation invariant: For scale invariance, the kernel weighting func-

tion on the eigenvectors must satisfy K(γ/ω2) = ω2−2/pK(γ) [107]. It can be verified

that the weighting function K(β + λ) = (β + λ)−1/p satisfies this property and hence the

kernels are scale invariant. In Figure 3.29 the teddy model is scaled 100 times, however the

coloring on the mesh is unaffected, validating this property. As the transition/rate matri-

ces are derived from the discrete Laplace-Beltrami operator, calculated using the isometry

invariant curvature normals, the derived kernels are also isometry invariant. Isometric de-

formation of the Victoria model in Figure 3.29 does not change the isocontours confirming

this theoretical property. The defined transition (M ) and rate matrices (ΔM ) implicitly

account for area terms and hence tessellation invariant. The bunny model in Figure 3.29

shows the invariance of the isolines of the kernel as the model is simplified from 35000 to

1500 vertices. Additionally, invariance to noise is indicated in the dolphin model by adding

gaussian noise (200%) proportional to the average edge length. The partial and full centaur

models in Figure 3.29 display similar isocontours from fixed anchor point on the top of the

human head. The partial centaur model was created by spectral bipartition into 2 segments,

which is more natural than passing a cutting plane through the object.

Convergence: The convergence of the multiscale kernels over finite graphs for tn where n

is any positive real number can be verified using the property that the integral
∫∞
0

e−ttz−1dt

(Gamma function) is absolutely convergent for all z with Re(z) > 0 after doing a variable

change t′ = t/λi (Note λi > 0). As each term in the spectral representation converges and

the representation is finite, it follows that the kernel converges. However for continuous

state space, the Green’s function of a 2D surface would have logarithmic singularity along

the diagonal and not defined [14].



47

Metric: The kernel ταn(diag(π))−1 is positive definite as D1/2ταnD−1/2 is positive-definite

and I pre and post multiply with a diagonal matrix (diag(π))−1/2 which is a positive diag-

onal matrix. Because the multiscale distances are derived using a strictly positive definite

kernel, it satisfies all the necessary conditions for it to be a valid metric, i.e., it is non-

negative and the diagonal values vanish. The fact that it is symmetric follows from the

observation that interchanging u and v does not change the distance calculation. Also

Dαn
uv = 0 iff u = v because if this were not true then Φi(u) = Φi(v) ∀i, as the eigenvectors

form an orthonormal basis, all functions f over the surface would take the same value,

reaching a contradiction.

Complexity: The multiscale kernels (Green’s function) and hence distances can be com-

puted either using the complete eigen spectrum O(|V |2) or using the first K eigenvectors

O(|V |3/2)). An alternative approach is proposed in [14] for calculating on a set of vertices

by solving a set of linear equations(O(S|V |) where S is the size of the subset of vertices).

The subset calculation is exact and the complexity can be reduced to almost linear time

for a small subset (O(|V |) when S << V ). However, such an approach suffers from the

disadvantage that I require independent computations to find multiscale kernels with a dif-

ferent set of parameters. The eigenvectors and eigenvalues of the Laplace operator offer

a common orthonormal basis and all multiscale kernels can be computed by changing the

weightage (exponent and parameter β) of eigenvalues. I use the spectral approach and use

the first 300 eigenvectors to approximate the kernel matrix. Hence the computation time is

the same as for the approximate heat kernel evaluation.

2.1.4 Image segmentation using a random walk kernel

Random walk based approaches have emerged as a power tool for solving wide range

of graph based problems, spanning manifold learning [75], ranking [108], shape analy-

sis [109], etc. Diffusion can be viewed as a generalization of markov chains (or random

walks) [76]. Random walk approaches and its variants have successfully been applied for

seeded image segmentation [110], clustering [111] etc. Different from diffusion based
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Figure 2.7. Insensitivity of Multiscale Kernels to partial objects, tessellation,
noise ,scaling and deformation for different mesh models from fixed anchor
point.

approaches, I use the dual paradigm of the rate of diffusion to motivate a novel global

criterion based on expected rate of diffusion, which induces partitions due to its structural

properties. I first introduce preliminaries and then derive its functional form, which I term

the diffusion modulus criterion, Dn. It is very similar in spirit to the kernels derived for

networks and meshes. It is mathematically represented as:

Dn =
∑
uv

[ N∑
i≥2

1

λi
nΦi(u)Φi(v)

√
dvdu

]
δuv (2.42)

Where Dn is the expected rate of diffusion value to be maximized, n is a resolution parame-

ter, N is the number of pixels/regions, u, v denote the pixels/region, λi is the ith eigenvalue,

Φi(u) is the uth component of the ith eigenvector of Laplacian L for graph G, δuv is a delta

function which is 1 if u, v are placed in the same segment and du is the degree of uth pixel,
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i.e., du =
∑|V |

v=1 w(u, v) where w(u, v) are the local affinities in the original graph G. In

matrix terms, this can also be represented as Dn = HT [D1/2Φ̂Λ̂−nΦ̂TD1/2]H , where D is

a diagonal matrix of degrees du, H is a size N ×K indicator matrix for K segments (Note

each row of H sums to 1), and Λ̂ and Φ̂ indicate the removal of the smallest eigenvalue and

the corresponding eigenvector.

My first contribution is the formulation of the diffusion modulus criterion Dn motivated

by the physical analogy of the rate of heat diffusion and its moments. Dn is a single param-

eter criterion over n(≥ 0), akin to the single parameter normalized cut criterion (number of

segments K). It naturally infers resolution (for lack of a better word and avoid confusion

with scale in multi-scale frameworks). The expected rate of diffusion kernel, Dn
r (term in

parenthesis in Equation (2.42)) as proved previously, can be viewed as generalization of

the commute time and biharmonic kernel. I establish the structural equivalence of the Dn
r

and modularity matrix in community detection [112] and prove that the 2-way normalized

cut is a special case of the criterion.

Expected rate of diffusion or diffusion modulus: Recall that Δ governs diffusion, given

by the equation δHt

δt
= −ΔHt (Ht is the heat diffusion kernel). The solution to the dif-

fusion equation is the exponential kernel Ht = e−tΔ at time t [76].Using its spectral

decomposition, the elements of the heat kernel can be spectrally represented as Ht =

D−1/2Φe−tΛΦTD1/2 or Ht(u, v) =
∑
i≥1

e−tλiΦi(u)Φi(v)
√

dv
du

where Λ=diag(λ1, λ2, ...λ|V |)

is a diagonal matrix with the ordered set of eigenvalues, i.e., 0 = λ1 ≤ λ2... ≤ λ|V | ≤
2, Φ = (Φ1|Φ2|...|Φ|V |) is a matrix with corresponding eigenvectors as columns. For-

mally, each element of the heat kernel e−tΔ can be expanded using the Maclaurin series of

e−t(I−M) as: e−tΔ(u, v) = e−t
∞∑
k=0

Mk(u, v) (t)
k

k!
. Here Mk(u, v) is the probability of tran-

sition from node u to v in k steps. As k spans from 0 to ∞ all path lengths between two

nodes are considered in the probability calculation. The heat kernel conserves probability,

i.e.,
∑

v H
t
uv = 1 ∀v ∈ V, ∀t ≥ 0 [76]. ‘Faithful’ partitions can be obtained by applying

measures like the ratio or normalized cut to Ht as affinities are implicity learnt by consid-

ering all connecting pathways between two nodes. For example, ratio cut on Ht can be

interpreted as the bipartition that minimizes the probability of a random walker switching
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groups at time t. It is proved in [113] that Ncut minimizes the probability of a random

walker evading a set (and its compliment) in its first step starting from the stationary distri-

bution π (π = 1D/vol where 1 is a vector with all coordinates 1 and vol =
∑

u du called

the volume of the graph). Using Ht naturally generalizes it to all steps for a given time

t. Intuitively, time t controls the resolution and large t discovers long diffusion pathways

between two nodes.

Figure 2.8. Scale interpretation of parameter n. Affinity between exemplar
region (red) in original image (left) and all other regions, for 3 values of n. n
increases from left to right and similarity increases as color changes from blue
to red.

The physical analogy of the diffusion equation is that heat flows from a high temper-

ature region to a low temperature region until equilibrium and flow rate is dependent on

the negative temperature gradient. It follows the conservation of energy, i.e., heat is neither

created nor destroyed. This information is captured by the differential of the heat operator

− δHt

δt
which is equal to Δe−tΔ, and I term it the rate of heat diffusion kernel RHt. At t = 0

it becomes the random walk Laplacian Δ in which all rows sum to 0, i.e., flow is conserved.

Indeed, flow conservation holds for all t ≥ 0. To see this, write the net heat flow in time

dt, ΔMe−tΔMdt, as (e−tΔ − e−(t+dt)Δ). All rows of e−tΔ, e−(t+dt)Δ sum to 1 by probabil-

ity conservation, and hence, flow conservation follows. Using Δ = D−1/2Φe−tΛΦTD1/2

and e−tΔ = D−1/2Φe−tΛΦTD1/2, spectral representation of RHt is D−1/2ΦΛe−tΛΦTD1/2.

Pre-multiplying it by D scales each row of RHt to bring it to a favourable symmetric form
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RHt = D1/2ΦΛe−tΛΦTD1/2. At t = 0 only the diagonal terms in Δ are positive. As t

increases nearby nodes reach a local temperature equilibrium with positive RHt(u, v) and

long scale flow comes into play. Hence, the intuition behind using the rate of heat dif-

fusion for segmenting nodes is to minimize the rate of heat flow ( δHt

δt
) within a group or

equivalently maximize the negative temperature gradient (− δHt

δt
), i.e., associate nodes with

positive affinities (in Δe−tΔ). The special structure of RHt implicitly maximizes the rate of

heat flow between groups, i.e., dissociates nodes with negative affinities and not explicitly

included in the criterion. Thus the derived Dn from RHt is not a ‘cut’ criterion that seeks to

minimize the dissociation between groups but a ‘modulus’ criterion that seeks to maximize

the association within groups. In principle RHt can be directly used as a segmentation

criterion. However, Λe−tΛ → 0 as t → ∞ where 0 is a matrix of all zeros, and hence,

introduces the difficulty of choosing an appropriate time range in which segmentation is

meaningful. I overcome this problem by defining the multi-resolution kernel, Dn
r , as the

nth moment of RHt(u, v) with respect to time (see Theorem 1). Mathematically,

Dn
r =

∞∫
t=0

tn[D1/2ΦΛe−tΛΦTD1/2]dt (2.43)

This transformation using tn scales the rate of diffusion and in effect aggregates the dif-

fusion rate at all time scales. The effect of scaling is to penalize the rate of heat flow at

long time periods. For example, n = 2 weights the diffusion rate between two nodes at

large times more heavily than say n = 1 over the integral, whereas n = 0 weights all

rates equally. Hence the moment extracts scale (see Figure 2.8). To simplify Dn
r , rewrite

it as Dn
r =

∞∫
t=0

D1/2tn[e−tL − e−(t+dt)L]D1/2. e−tL can be expanded in spectral form to

Φ1(u)Φ1(v) +
∑
i≥2

e−tλiΦi(u)Φi(v). Φ1(u)Φ1(v) cancels out leaving the equivalent spec-

tral form
∞∫

t=0

D1/2tn[Φ̂Λ̂e−tΛ̂Φ̂T ]D1/2dt. Evaluating the integral, and using orthogonality of

eigenvectors, I get the desired spectral form Dn
r (u, v) = Γ(n+1)

∑
i≥2

λi
−nΦi(u)Φi(v)

√
dvdu

where Γ is the gamma function. This can be expressed in matrix form as Dn
r = Γ(n +

1)D1/2Φ̂Λ̂−nΦ̂TD1/2. The exponent n can be viewed a frequency filter, with high n sup-

pressing higher frequency eigenvalues [108]. Recall, the eigenvalues are arranged in in-
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creasing order, and hence, the eigenvectors are in decreasing smoothness order. As a result,

the eigenvectors associated with the K smallest eigenvalues of the normalized Laplacian

are considered for K-way normalized cut partition. My formulation of the diffusion mod-

ulus transforms the K parameter in normalized cut to the n parameter in Dn. The benefits

of Dn include 1) The spectral decomposition is calculated once and varying n outputs seg-

ments at different resolutions unlike spectral approaches where decomposition is based on

the number of segments, i.e., Dn is a more formal criterion for scale selection 2) The Dn
r

kernel is motivated using the physical analogy of rate of heat diffusion, RHt. RHt sub-

sumes the entire path length distribution over nodes, and hence, ‘learns’ affinities between

all node pairs. 3) RHt is integrated over the entire time domain making the kernel robust to

noise. 4) Pre and post multiplying Dn
r by the diagonal matrix D−1/2 and assigning n = 1

results in the commute-time kernel (also known as Green’s function [79, 108]) and n = 2

results in the biharmonic kernel [114]. This is better understood by using the discrete

formulation of Dn
r

Dn
r =

∞∑
t=1

Dtn[M t −M t+1] (2.44)

This is true because the term in parenthesis can be written as [e−tΔ − e−(t+dt)Δ] for the

continuous case 1. Taylor series expansion of the derived I−e−Δdt term in e−tΔ(I−e−Δdt)

results in the rate of diffusion. D is premultiplied to symmetrize the kernel as in the con-

tinuous case. Intuitively, M t denotes the transition matrix after time t. Hence, M t −M t+1

denotes the change in transition probability after one time step, i.e., the rate of probability

change. Newman uses the functional in Equation (2.44) for n = 1 in a random-walk setting

to derive the commute time kernel (see page 159 [21]). Hence, the multi-resolution term

can be viewed as a generalization of several graph based kernels. The calculation of the

exact diffusion modulus kernel using the entire spectral decomposition of the Laplacian has

complexity O(N3). It can be reduced to O(N2), for sparse graphs using the efficient Lanc-

zos method [79]. It is further reduced to O(kN) by trading accuracy for efficiency, and

calculating the first (smallest) k(k � N) eigenvalues and corresponding eigenvectors. The

1I use the proof in [76] where M t or (I −Δ)
t

converges to e tΔ for continuous time random walks or heat

diffusion.
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summand in Equation (2.42) can be approximated using these values and the error bound is

(generally) linear in 1/k [114]. The larger eigenvalues correspond to local oscillations and

provide little improvement in final segmentation. Note, the embedding Θ that preserves the

kernel Dn
r is, Θn = (Λ̂)−n/2Φ̂TD1/2 as Dn

r = ΘT
nΘn.

Theoretical properties:

Theorem 2.1.2 Let Dn
r be the matrix defined by D1/2[Φ̂Λ̂−nΦ̂T ]D1/2 (drop constant Γ(n+

1)); then Dn
r is symmetric and positive semidefinite. Dn

r �= 0 ∀n. All rows, columns of Dn
r

(also Dn) sum to zero, and sum of all elements of Dn
r equals zero.

Proof. Dn
r is symmetric as interchanging u, v does not change the representation of Equa-

tion (2.42). As all eigenvalues are strictly non-negative, Dn
r is positive semidefinite, and

hence, a valid kernel. The possibility of Dn
r → 0 arises as n → ∞. The eigenvalues are ar-

ranged in increasing order and as n → ∞, Dn→∞
r → D1/2[Φ2λ2

−nΦ2
T ]D1/2. λ2 ≤ 1,

∴ λ2
−n ≥ 1, and hence, it is easy to verify that Dn

r �= 0. Note, λ2 or the spectral

gap is related to the mixing time of a random walk and provides an upper bound to the

graph conductance [115]. Intuitively, cliques have perfect mixing after one time step, and

hence, have λ2 = 1. The eigenvectors form an orthonormal basis, i.e., Φi(u)Φj(v) = δij .

Φ1(u) =
√

du/vol [79], and hence,
∑

u

√
duΦj(v) = 0, ∀j �= 1. Consider, the contribu-

tion of the jth eigen-pair, (Φj, λj) to the ith row of Dn
r . The contribution in spectral form is:

√
di

Φij

λn
j

(√
d1Φ1j +

√
d2Φ2j . . .

√
dNΦNj

)
. The term in parentheses equals zero, and this is

true for every eigen-pair excluding (Φ1, λ1), which does not appear in Dn
r . Hence, each row

sums to zero. Note, the sum equals zero for any 2 ≤ K ≤ N eigen-pairs. As the matrix is

symmetric, all columns sum to zero, and hence, the sum of all elements in Dn
r equals zero.

Intuitively, flow conservation holds for Dn
r and the trivial partition of grouping all nodes

together leads to Dn value 0. Also, maximizing the association implicitly minimizes the

disassociation as (association+dissociation=0), i.e., Dn is an unbiased measure.

Theorem 2.1.3 Let Dn represent the diffusion modulus criterion, HTD1/2[Φ̂Λ̂−nΦ̂T ]D1/2H .

The criterion splits the graph into two segments in the limit n → ∞ and places each node
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in a separate segment for n = 0. The 2-way segmentation is identical to the normalized cut

partition and Dn is equivalent to the modularity metric in the discrete sense.

Proof.All regions are placed in separate segments, only if merging two regions leads to an

inferior diffusion modulus value. Hence for the case n = 0, it suffices to prove that all

non-diagonal elements are negative, i.e., K = N , iff D0
r(u, v) < 0, ∀u �= v. As Le−tL =

−δ(e−tL)
δt

, the definite integral in Equation (2.43) for n = 0 reduces to D1/2[−e−tL]∞0 D1/2.

limt→∞ e−tL =
√
dudv
vol

as all eigenvalues, apart from λ1 = 0 are suppressed, and the uth

element of corresponding eigenvector equals
√

du/vol. Hence, D0
r(u, v) = −dudv

vol
, ∀u �= v

proving the necessary and sufficient condition. For n → ∞, barring degenerate eigen-

values, the diffusion modulus criterion is dominated by the normalized fielder vector, i.e.,

limn→∞ Dn→∞
r (u, v) = limn→∞ λ2

−nΦ2(u)Φ2(v)
√
dvdu. The diffusion modulus increases

iff, sign[Φ2(u)] = sign[Φ2(u)], and hence criterion is maximized by two-way partition

based on signs of Fielder vector (λ2 > 0). Normalized cuts partitions the graph based

on the Fielder vector for the generalized eigenvalue system (D − A)Φ́ = λ́DΦ. This

system has eigenvalues Λ and eigenvectors D−1/2Φ. Hence, bipartition by signs of the

Fielder vector for the normalized cut is the same as Dn→∞. Using the discrete formulation

in Equation (2.44) for n = 0 results in D0
r =

∞∑
t=1

D[(M)t − (M)t+1]. This converts to

D0
r = D[M −M∞]. Using M∞ = 1πT and π = 1D/vol I recover the original definition

of modularity, i.e., [A− κκT

vol
] where κ = diag(D).

Figure 2.9. (Left to Right in sets of 3): Original image, segmentation using
diffusion modulus (DM) and multi-scale DM respectively.
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Image segmentation techniques: Here I develop 2 graphical models suitable for the dif-

fusion modulus and provide efficient optimization techniques. I also extend my method for

hierarchical image segmentation.

Multi-scale graph segmentation: I only connect edges lying in the 4-neighbourhood

of the pixelated image and define the weights of the matrix A as A(u, v) = exp(−θg ‖
gu − gv ‖) if (u, v) ∈ E, where g represent pixel value in Lab color space and θg is a

constant that controls edge strength. The reason for this construction is 2-fold: 1) As Dn

uses a fixed number of eigenvectors to segment an image, I stress on sparsity over region

consistency for efficient spectral decomposition and 2) All pairwise affinities to other pixels

are implicitly learnt by the kernel Dn
r . I proved that each row and column of the Dn

r sums

to 0 and the sum of all elements in Dn
r is 0 in Theorem 1, akin to the modularity metric

for community detection [112]. Hence, an efficient Louvain-like modularity maximiza-

tion algorithm can be leveraged for diffusion modulus optimization [116]. The Louvain

algorithm iteratively proceeds in two phases. The algorithm starts by placing all pixels in

individual segments, and sequentially places each pixel in another pixel/region, which leads

to maximum improvement in criterion, till no further improvement (i.e., local maximiza-

tion of diffusion modulus criterion). The identified segments are subsequently merged into

‘meta-regions’, and the algorithm iterates till maximum global diffusion modulus value is

reached. Although the exact complexity of Louvain is unknown, the method seems to run

in time O(NlogN) and first level optimization requires the highest effort [116]. Applying

the Louvain for first level optimization is prohibitive for even moderately sized images as

Dn
r is a dense matrix. One way to overcome this limitation is to run it sequentially on a

partitioned Dn
r matrix. However, this strategy scales poorly. Instead, I introduce an approx-

imation by uniformly seeding the original image and only consider pixels within a certain

neighbourhood for label assignment. The neighbourhood is set to be sufficiently large so

that each pixel is a neighbour to multiple seeded pixels. I calculate the Dn
r affinity between

each pixel and other neighbouring seeded pixels and group it with the seeded pixel with

which it shares the highest affinity. The intuition behind this approximation is that percep-

tual regions consist of pixels that are ‘close’ in the spatial space as well as the embedded
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space. After this first level optimization, the number of ‘meta-regions’ is sufficiently small

for directly executing Louvain on the reduced Dn
r .

Figure 2.10. Graph construction (left to right): Original image, over seg-
mented image using meanshift and graph model. Region similarity (purple
arrow) and boundary similarity (red edges between yellow and green pixels in
blue, orange regions.)

Rate of diffusion underscores the paradigm of learning affinities using sparse local con-

nections. A natural extension is to use it in conjunction with multi-scale graphs. Towards

this end, super-pixelated regions are generated from the original image to encode long-

range connections. In principle, such regions can be achieved by either mean-shift, Felz-

Hutt or other superpixel algorithms [117]. The obvious advantage of mean-shift algorithm

it that it balances speed and region quality. I propose the use of mean-shift because of its

deep connection with modularity, and hence, the diffusion modulus. Modularity can be

reexpressed a D(M − π) where π is the stationary density distribution, and implicitly cal-

culates the global expectation above the average density. Mean-shift on the contrary finds

the modes of a density function within a specified window, and therefore, can be under-

stood as a more localized version of modularity. These methods compliment each other

and as modularity can be derived from the Dn (Theorem 2), mean-shift is a natural choice

for over-segmentation. Contrary to other approaches, I use the over-segmented image to

construct a region graph. This is beneficial as it naturally creates a smaller graph for effi-

cient spectral decomposition. In addition, the over-segmented regions using mean-shift can

be viewed as an improvement over the approximation introduced in Louvain for first-level
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optimization. A simplistic graphical model is employed using only color cues. The weights

of the adjacency matrix A are calculated as:

A(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(−θg ‖ ḡu − ḡv ‖) (u, v) ∈ Er∑
C exp(−θg ‖ gu∗ − gv∗ ‖) (u∗, v∗) ∈ C

0 otherwise

(2.45)

Where ḡ represents the mean color of the region, Er represents the region neighborhood

and C represents all pixel pairs (u∗, v∗) that belong to different regions (u, v) but lie within

3 pixel radius. The sum over all pixel pairs in C enforces region smoothness (see Figure

2.10). Rate of diffusion optimization follows Louvain algorithm on A. Figure 2.9 com-

pares the segmentations of the single-scale and the multi-scale diffusion modulus criterion.

Observe that the multi-scale version respects image boundaries better.

Hierarchical graph segmentation: The number of segments in an image is result of per-

ceptual scale, and hence, real-world images are unlikely to possess an optimal number of

segments. This claim in instantiated in the ground truth segmentations of the Berkeley im-

age database (BSDS)2 where the same image is grouped into different number of segments

by different people. In order to supplement this observation, weighted boundaries are cre-

ated using a set of multi-resolution segmentations over logarithmically spaced parameter n

in a range. As increasing n results in increasingly global segmentations, boundary pixels

are weighted by n, and summed over entire range to provide a weighted pixel value. Math-

ematically, wp(u) =
∑R

i=1 niδui, where wp(u) is weight of pixel u, R is number of discrete

n values in logarithmically spaced domain, ni is the ith value in range, and δui is delta func-

tion equal to 1 if u lies on boundary for ith segmented image using ni. Thresholding the

boundary pixel weights, outputs desired hierarchical segments, similar to [66] (see Figure

2.11).

In this section, I discussed how random walks can be used to interpret networks, geo-

metric meshes and derive segmentation on images. I discuss Gauss’s law in the context of

community detection next.

2http://www.cs.berkeley.edu/projects/vision/bsds
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Figure 2.11. Hierarchical segmentations (left to right): Image, 2 segmenta-
tions by increasing n and weighted boundary image.

2.2 Gauss’s Law

Although there is no consensus, a common abstraction is that communities are sub-

graphs with strong intra-subgraph cohesion and weak inter-subgraph cohesion, where co-

hesive strength is measured either in terms of direct connections or more sophisticated

connectivity measures [38]. Relationships between boundaries and their contents are com-

mon in physics such as how the well-known Gauss’s law relates the electric flux through a

surface boundary to the charge enclosed within the surface (Figure 2.12 A). My approach

to detect communities boundaries uses a network analog of Gauss’s law to relate a flux

through a subgraph’s boundary to the cohesion among the nodes of a subgraph (Figure

2.12 B). The method works with respect to a general measure of connectivity (or simi-

larity) between all pairs of nodes encoded in matrix S. The element S(i, j) either details

the adjacency A(i, j) of nodes i and j in the network, or the extended similarity of node

i to j evaluated using a reference property such as common neighbors, path connectivity,

etc [118]. I call S(i, j) the connectivity potential of i, j. Given S, the flux through a sub-
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graph boundary for a node, termed connectivity flux, mirrors the electric flux through a

surface for an electrostatic potential field, albeit in a discrete setting (See Figure 2.12C).

According to classical electrodynamics, the electric field at a point in space is the gradient

of the electrostatic potential at the corresponding point. Given the connectivity potentials

between all pairs of nodes, the connectivity flux for a node i through an edge Eb is then

the symmetric difference of node i’s connectivity potentials with respect to the two nodes

constituting the edge, Eb (say m and n) (Figure 2.12C, Top)

Si(Eb) =
(
S(i,m) + S(m, i)

)− (
S(i, n) + S(n, i)

)
. (2.46)

As the flux through a surface is the area integral of the electric field, the net connectivity

flux of node i through a boundary is the sum of the connectivity flux through all edges

constituting the subgraph boundary, EB, i.e.,
∑

b∈B Si(Eb) (Figure 2.12C, Bottom).

The boundary comprises links that separate the subgraph from the rest of the network.

It induces two disjoint multisets of internal and external boundary nodes where every in-

ternal boundary node has an external counterpart. Consequently, the connectivity flux for a

node i with respect to subgraph V k’s boundary is equal to the difference of two terms, one

measuring the connectivity of the node i to internal boundary nodes and one to external

boundary nodes. I call them the internal Si(V k
in) and external Si(V k

out) boundary cohesion,

respectively.Consider the subgraph induced by a subset of nodes V k. Let Ek
B be the bound-

ary links of this subgraph and V k
B be the multiset of nodes induced by the boundary links.

Then the multiset of internal nodes is represented as V k
in = {m | m ∈ V k and m ∈ V k

B},

and the multiset of external nodes is represented as V k
out = {n | n �∈ V k and n ∈ V k

B}. The

cohesion of node i with respect to a general multiset V is:

Si(V ) =
∑
j∈V

(
S(j, i) + S(i, j)

)
, (2.47)

where the summation includes all the repetitions in the multiset. The internal boundary

cohesion of node i with respect to V k is then Si(V k
in) and the external boundary cohe-

sion is Si(V k
out). This decomposition enables me to write the connectivity flux of node i

through the boundary as
∑

b∈Ek
B
Si(Eb) = Si(V k

in) − Si(V k
out) (Figure 2.12D). Note that
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because of the multisets, each cohesion expression has exactly the same number of terms

(See Figure 2.12 D). The net connectivity flux through subgraph V k’s boundary for the set

of nodes in V k constituting community, C is then equal to
∑

i∈V k

(
Si(V k

in) − Si(V k
out)

)
,

which I write as SC(V k
in) − SC(V k

out). The decomposition of connectivity flux into inter-

nal and external components allows me to characterize communities in both a strong and

weak sense [45] (described later). High connectivity flux through the subgraph boundary,

SC(V k
in)− SC(V k

out) suggests a difference in the strength of internal and external cohesion

of subgraph V k, and consequently, a close-knit community (Figure 2.12E).

The relationship between flux and communities motivates an additive quality function

to evaluate a partition of nodes:

Q =
∑
V k

(SC(V k
in)− SC(V k

out)). (2.48)

Exactly optimizing Q, requires a combinatorial search over all sets of boundary links which

is prohibitive for large networks. My main result is a reformulation of Q such that it can be

optimized using computational heuristics available for modularity maximization in order

to reveal the boundary links all at once (Figure 2.12F):

Q =
∑
i,j

[LS + SL]δ(i, j). (2.49)

Here δ(i, j) is 1 if i and j belong to the same community and 0 otherwise, L is a matrix

known as the Laplacian, the discrete analogue of the Laplace operator, and Q possesses

the key properties of the modularity quality function [49] (derived later). Hence, I call my

quality function, the Laplacian modularity and the matrix B = LS + SL the Laplacian

modularity matrix. The Laplacian modularity, like modularity, is an unbiased metric for

any S (described subsequently). However, unlike modularity, it does not suffer from the

traditional resolution limit [119] if S is local (derived later).

An alternate interpretation of the Laplacian modularity matrix is that the ijth term is

the curvature of a link:

B(i, j) = di
(
S(i, j)− 1

di

∑
k∈N1(i)

S(k, j)

)
+ dj

(
S(i, j)− 1

dj

∑
k∈N1(j)

S(i, k)

)
. (2.50)
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Figure 2.12. Community detection using Gauss’s Law. A: Classical Gauss’s
law. B: Gauss’s law for networks implicitly measures the enclosed connectiv-
ity distribution as the connectivity flux through the boundary. C: Evaluating
connectivity flux through a boundary for a node in the network. D: Connec-
tivity flux quantified as measures of cohesion. E: Connectivity flux through a
boundary for a subgraph: High and low values of this connectivity flux indi-
cate good communities or absence of community structure, respectively. The
darker region of blue indicate higher connectivity flux. The color of nodes
(blue to red) highlight the magnitude of connectivity flux (positive to negative)
through the boundary. F: Laplacian modularity quality function derived from
the cumulative connectivity flux for a network partition.

Here di = di(V k) + di(V̄ k) is the total degree of node i and N1(i) indicates the immediate

neighbors of node i. The terms in the parenthesis are the similarity of node i and j minus

the average similarity over the local neighborhoods of nodes i and j, respectively, i.e., it
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measures the rate at which the connectivity of a link deviates from the average connectivity

value over a local neighborhood. Thus, each term in B encodes a curvature-like metric

and collectively, a subgraph is a community as per the Laplacian modularity if the internal

connectivity is higher than the average connectivity calculated over the local neighborhood

of nodes in the subgraph.

In network science, the identification of relevant hierarchical communities in the pres-

ence of overlap remains an open problem [38]. I resolve this problem by using the heat

kernel of a network, Ht, as the connectivity potential matrix S in order to holistically char-

acterize overlapping and hierarchical communities. The heat kernel, Ht, has a parametric

dependence on the time scales, t, of a Markovian process on the network, and hence, is

intrinsically multiscale with a natural interpretation of the network resolution under study.

I write the quality function where S is Ht, as Qt. Although Qt measures non-overlapping

partition, overlapping nodes can be identified by evaluating the nodal flux associated with

each community boundary (see Figure 2.13 A, B). Overlapping nodes are simply nodes

with net positive connectivity flux to multiple communities for given connectivity poten-

tials S. Mathematically, the positive terms in the matrix XTL(S + ST ) resolve overlap,

where X is a 0-1 indicator matrix for the hard partition of dimensions |V | × C (derived

later). The parametric quantity Qt also gives me a way to pick t. The element Ht(i, j)

in the heat kernel represents the probability of a random walker to hop from node i to j

after a Poisson number of jumps with mean t. It suffices to only consider the term LHt

for S = Ht in Equation (2.140) because LHt is symmetric, unbiased and has an intuitive

diffusion dynamical interpretation. I represent LHt as Bt, in this discussion. Substitut-

ing Ht = e−tL in Bt results in DLe−tL, where L is the random walk Laplacian which is

physically interpreted as the negative rate of diffusion (−dHt

dt
) scaled by D. It follows from

thermodynamic principles that the partition which maximizes Qt (the trace of the clustered

matrix, XTBtX), minimizes the net diffusive tendency within subgraphs, or the heat dif-

fusion reaches a local equilibrium at time t before it proceeds to the global equilibrium.

Intuitively, a partition optimal over a long time span corresponds to a stable equilibrium,

or that the local equilibrium reached at time t persists over competing equilibria until time
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(say) t̃ > t. Using this intuition in conjunction with monotonicity of Qt, I define a stabil-

ity curve, r(t) to be the maximum value of the diffusion modularity over the space of all

partitions X , i.e,

r(t) = maxX trace

(
1

2|E|X
TBtX

)
, (2.51)

where the trivial constant 2|E| ensures that the measure lies in [0, 1] and |E| is number

of links. By viewing this quantity as a stability curve (Figure 2.13 C) [120], I can hierar-

chically organize network partitions, from fine to coarse as t increases. Sustained temporal

stability of partitions reveal topological scales or good organizational levels of the network.

I first give an overview of my algorithm and discuss each element in detail over the next

few subsections. I use the Heat kernel, Ht as S in all my experiments and use the Louvain

method [121] to optimize Laplacian modularity, Qt at each time t . The hierarchical com-

munity organization of the network can be explored using the stability curve. However,

only the partition with maximal persistence over a logarithmic time range is picked for an

equitable comparison to other methods. In order to discern overlap in this optimal partition,

I first calculate the fuzzy overlap membership of each node to all subgraphs at discrete time

values in the persistent basin. This corresponds to entries of the matrix XT
o Bt, where Xo

is the overlap indicator matrix. I then introduce a threshold parameter ε that converts fuzzy

overlap membership over the time range into a hard overlap. The choice of ε is guided by

common intuition where ε = 1 outputs a hard partition (no overlap), and ε = 0 identifies

minute structural overlap of communities, especially relevant for networks with incomplete

information or missing links. I set ε = 1 for networks with known communities because

the ground-truth is a hard partition, and ε = 0 for networks with unknown community

assignment where I expect pervasive overlap.

2.2.1 Method details for Gauss’s law to reveal community boundaries

Having given an overview of Gauss’s law for community detection, I proceed to de-

scribe each element in great detail. In discuss additional details regarding constructing and

optimizing the Laplacian modularity. Specifically, I provide a formal definition of commu-
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Figure 2.13. Overlapping and hierarchal communities using Laplacian modu-
larity and the heat kernel: The heat kernel depends on a parameter t that con-
trols the resolution of the communities (small t is fine, and large t is coarse).
A: Network of 29 nodes. B: (Left) Six identified communities at a small time,
tA with overlapping nodes highlighted in red in the network representation.
The rows and columns in the matrix representation follow a linear ordering
indexed by node number. Blue matrix cells indicate positive values and red
cells indicate negative values. (Right) Increasing the time shows three iden-
tified communities at large time, tB with overlapping nodes in red. Observe
the overlapping node at large time tB is not overlapping at the small time tA,
implying it has a weak connection with the individual yellow and blue com-
munities identified at time tA, but a strong connection with them merged into
one (green community at time tB), that is, overlap emerges with time t. C:
The stability curve derived using the heat kernel. The stability curve for the
network shows two large persistent time-spans enclosed within dotted lines
corresponding to the 3-way partition and 6-way partition.

nities, prove key properties of the Laplacian modularity, provide implementation details for

optimizing the quality function and revealing overlap using the Laplacian modularity ma-
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trix, examine the resolution limit of my approach, and provide a multi-resolution extension.

I also provide an interpretation of the Laplacian modularity using resistor networks.

Strong and weak definitions of community: One intuitive formalization of a community

in terms of direct connections is the LS-set, wherein each node has more internal connec-

tions than with the rest of the network [122]. For a network with adjacency matrix, A

where A(i, j) = 1 if there is a direct connection between nodes i and j and 0 otherwise,

a subgraph V k is a LS-set if di(V k) > di(V̄ k), ∀i ∈ V k. di(V k) =
∑

j∈V k A(i, j) is the

internal degree of a node i, and di(V̄ k) =
∑

j∈V̄ k A(i, j) is its external degree to the rest of

the network, V̄ k [45]. An alternate approach is to construct a hierarchical clustering tree by

agglomerating a node-to-node connectivity matrix, S, and subsequently cut branches off

the dendrogram to output a network partition [123]. However, there exist several partitions

of a network into LS-sets or cutoff values in hierarchical clustering. Hence, the algorith-

mic detection of an optimal partition is most popularly premised on comparing the internal

degree of a node to its expectation under a null model, di(V k) > 〈di(V k)〉, as in the modu-

larity quality function [49]. The null model implicitly assumes a node randomly interacting

with all other nodes, however, interactions in real-world networks are preferential within a

local horizon [119, 124]. I define strong and weak communities in terms of the two com-

ponents of the connectivity flux guided by the rationale that a community member is more

cohesive to fellow members inside the community boundary than those outside.

Strong Community: The subgraph V k is a community in a strong sense if:

Si(V k
in) > Si(V k

out), ∀i ∈ V k. (2.52)

Here Si(V k
in) and Si(V k

out) are the internal and external boundary cohesion respectively.

In a strong community, the internal boundary cohesion of each node is greater than its

external value for subgraph, V k, similar to the internal degree of each node is greater than

its external degree in an LS-set.

Weak Community: The subgraph V k is a community in a weak sense if:

SC(V k
in) > SC(V k

out). (2.53)
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The superscript C represents sum over all nodes in V k. In a weak community, the sum

of internal boundary cohesion over all nodes in V k is greater than the sum of external

boundary cohesion, for subgraph, V k, in analogy with the sum of internal degrees exceeds

the sum of external degrees of nodes in a weak community [45]. It is apparent that a

community in the strong sense is also a community in a weak sense, whereas the converse

is not true. As in a LS-set, these definitions of a community account for intra-subgraph and

inter-subgraph cohesion. However, unlike LS-sets, they circumvent bias to subgraph size

because for every internal boundary node there is an external counterpart.

Quality function: I discuss the Laplacian modularity quality function in terms of the two

disjoint components of the connectivity flux, i.e., the internal and external boundary cohe-

sion as described in the main manuscript. Let the set of boundary links for subgraph V k

be Ek such that the node pair [m,n] associated with each link satisfy m ∈ V k, n �∈ V k.

Note m is an internal node (m ∈ V k
in) and n is an external node (n ∈ V k

out). As described in

the main manuscript, the mutual connectivity of a node i, Si(V ), to a multiset of nodes, V ,

based on connectivity matrix, S is assessed as:

Si(V ) =
∑
j∈V

(
S(j, i) + S(i, j)

)
. (2.54)

In matrix form I have the equivalent representation:

S(V ) = VTS + VS. (2.55)

V is the membership vector, where the element V i details the cardinality of node i’s oc-

currence in multiset V . STV models the connectivity of nodes in the network to multiset

V , whereas SV models the reciprocal connectivity of nodes in multiset V to nodes in the

network. A node participating in x boundary links (internal or external) is seeded x times,

so as to maintain the total cardinality of the two membership vectors. Such a node inher-

ently mediates greater control over the measure of cohesion relative to a node participating

in one or no boundary link, akin to the personalization vector in PageRank [125]. The two

components of the connectivity flux are then represented as:

Si(V k
in) = STVk

in + SVk
in =

∑
Ek

(
S(m, i) + S(i,m)

)
(2.56a)



67

Si(V k
out) = STVk

out + SVk
out =

∑
Ek

(
S(n, i) + S(i, n)

)
. (2.56b)

The similarity of node i to the multiset V k
in or V k

out is equal to the sum of connectivity

potentials of node i to induced internal boundary nodes and external boundary nodes, re-

spectively. Note that I use the term similarity and connectivity potential interchangeably in

this entire document. The authors in [126] motivate a sophisticated measure of cohesion

based on triangle density in order to determine communities. In contrast to their defini-

tion, my measure of cohesion is generally applicable to any similarity matrix, S encoding

connectivity potentials.

Figure 2.14. Cohesion to subgraph boundary. A:Internal (blue) and external
(red) boundary nodes induced by boundary links (green) by dotted subgraph
boundary of V 1. B:Cohesion of nodes in network to internal boundary nodes
of V 1. Higher values of internal boundary cohesion are displayed as darker
shades of blue. C: Cohesion of nodes in network to external boundary nodes
of V 1. Higher values of external boundary cohesion are displayed as darker
shades of red. D: Difference of internal and external boundary cohesion due
to V 1. E:Difference of internal and external boundary cohesion due to V 2.
F:Difference of internal and external boundary cohesion due to V 3. Color
legends for S(V k

in)−S(V k
out) values are displayed to the right in subplots D,E,F.
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Figure 2.14 A highlights the internal and external boundary nodes of subgraph V 1 in a

synthetic network of 16 nodes comprising of 3 cliques. The boundary links (green edges)

induce the multiset ([6,6,8,7]) and set ([2,5,14,13]) to be the internal (blue) and external

(red) boundary nodes, respectively. Figure 2.14 B,C graphically illustrates the calculation

of internal and external boundary cohesion for the subgraph V 1, by setting S = A + I . I

is an identity matrix which assigns self-similarity to each node. The sum of all elements in

vectors Vk
in as well as Vk

out is equal to the total number of boundary links to the subgraph,

i.e., four for V 1, and the multiplicity of node 6 is two in V1
in as it connects to two boundary

links.

If a subgraph, V k is a community in the weak sense, I have SC(V k
in)−SC(V k

out) > 0, An

additive quality function over subgraphs derived from the weak definition of a community

is then given by:

Q =
∑
V k

(SC(V k
in)− SC(V k

out))

=
∑
V k

∑
i∈V k

(Si(V k
in)− Si(V k

out)).
(2.57)

Here V k is the subgraph, Si(V k
in) and Si(V k

out) are the internal and external boundary cohe-

sion, respectively. My main result is that optimizing quality function Q in Equation (2.57)

is equivalent to optimizing the function:

Q =
∑
i,j

[LS + SL]δ(i, j) =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.58)

Here Q is the Laplacian modularity quality function, S is the node-to-node connectivity

matrix, L is the Laplacian given as L = D −A, D is a diagonal matrix of node degrees, A

is the adjacency matrix, and δ(i, j) is a delta function wherein δ(i, j) = 1 if both i and j

belong the same community and 0 otherwise. I prove that:∑
V k

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.59)

My second result in this subsection is that my quality function is an unbiased measure at

all resolutions. Formally, I prove that:

Qass +Qdiss = 0. (2.60)
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Here Qass and Qdiss are the associative and dissociative quality functions, respectively. In

the main manuscript I formulate an additive quality function. The expectation is that the

best assignment maximizes the difference of SC(V k
in) and SC(V k

out) over all subgraphs, V k.

The derived quality function is the difference of internal and external cohesion of nodes

with respect to its own subgraph, and hence, represents association within subgraphs and

denoted as Qass:

Qass =
∑
V k

(SC(V k
in)− SC(V k

out)). (2.61)

An alternate strategy to find the best assignment is to minimize the difference of
∑

V k∗ SC(V k∗
in )

and
∑

V k∗ SC(V k∗
out) for the set of all subgraphs V k. Here, the sum over V k∗ represents the

sum over all subgraphs but V k. This is the difference of internal and external cohesion of

nodes with respect to all but its own subgraph, and hence, represents the net disassociation

between V k and set of V k∗. The overall dissociation between all sets of subgraphs, i.e.,

between all V k and V l such that k �= l is then given by:

Qdiss =
∑
V k

∑
V k∗

(SC(V k∗
in )− SC(V k∗

out)). (2.62)

This quality function represents the disassociation between subgraphs and I denote it as

Qdiss. Let me denote the matrix [(D−A)S] as B1 and the matrix [S(D−A)] as B2. Before

proceeding to the proofs of Equations (2.59, 2.60), I state few properties of the matrices B1

and B2.

Property 1 For any node i in subgraph V k:

(Si(V k
in)− Si(V k

out)) =
∑
j∈V k

(B1(j, i) + B2(i, j)). (2.63)

Here B1(i, j) indicates the (i, j)th element of the matrix [(D−A)S] and B2(i, j) indicates

the (i, j)th element of the matrix [S(D − A)].

Proof
∑

j∈V k B1(j, i) sums over the elements of the ith column of the matrix product

[(D − A)S] for all j belonging to V k. Similarly,
∑

j∈V k B2(i, j) sums over the elements

of the ith row of the matrix product [S(D − A)] for all j belonging to V k. Without loss
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of generality, assume that the subgraph V k is a set of k nodes. Using property of matrix

multiplication, the (j, i)th element of B1 corresponds to the vector dot product of jth row

of (D−A) and ith column of S. Also, (i, j)th element of B2 corresponds to the vector dot

product of ith row of S and jth column of (D−A). It is easy to verify that
∑

j∈V k B1(j, i)

is of the form
∑

m c1mS(m, i),m ∈ V where [c11, c
1
2, · · · c1m · · · c1N ] is a N × 1 vector of

coefficients corresponding to B1. Note that it only contains terms corresponding to the

ith column of S. Similarly,
∑

j∈V k B2(i, j) is of the form
∑

m c2mS(i,m),m ∈ V where

[c21, c
2
2, · · · c2m · · · c2N ] is a N × 1 vector of coefficients corresponding to B2. It only contains

terms corresponding to the ith row of S. Further, the coefficients c1m are given by the column

sum of the k×N matrix (D−A)r
V k where (D−A)r

V k represents the k rows corresponding

to nodes in V k and the coefficients c2m are given by the row sum of the N × k matrix

(D−A)c
V k where (D−A)c

V k represents the k columns corresponding to nodes in V k. The

column and row sums of entire matrix (D − A) is 0 by construction. The following hold

for column sums of the matrix (D − A)r
V k :

• The mth column sum is positive if and only if m ∈ V k and node m has an edge

connecting to at least one node n �∈ V k. The coefficient c1m is then equal to number

of links connecting m ∈ V k to n �∈ V k. This follows from observing that the only

positive entries in (D − A)r
V k correspond to the diagonal entries in matrix (D − A)

and the column sum of entire matrix (D − A) is 0.

• The mth column sum is 0 if m ∈ V k and node m has no edges connecting to nodes

n �∈ V k (the positive entry exactly cancels out all negative entries), or m �∈ V k and

has no edges connecting to nodes n ∈ V k (all entries are 0).

• The nth column sum is negative if and only if n �∈ V k and node n has an edge

connecting to at least one node m ∈ V k. The coefficient c1n is then equal to number

of links connecting n �∈ V k to m ∈ V k. This is true because the positive diagonal

entries do not appear in the columns for n �∈ V k in matrix (D−A)r
V k , and hence, all

entries are negative and correspond to edges connecting it to nodes m ∈ V k.

Analogously, the following hold for row sums of the matrix (D − A)c
V k :
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• The mth row sum is positive if and only if m ∈ V k and node m has an edge con-

necting to at least one node n �∈ V k. The coefficient c2m is then equal to number

of links connecting m ∈ V k to n �∈ V k. This is true as the only positive entries in

(D−A)c
V k correspond to the diagonal entries in matrix (D−A) and the row sum of

entire matrix (D − A) is 0.

• The mth row sum is 0 if m ∈ V k and node m has no edges connecting to nodes

n �∈ V k (the positive entry exactly cancels out all negative entries), or m �∈ V k and

has no edges connecting to nodes n ∈ V k (all entries are 0).

• The nth row sum is negative if and only if n �∈ V k and node n has an edge connecting

to at least one node m ∈ V k. The coefficient c1n is then equal to number of links

connecting n �∈ V k to m ∈ V k. This is true because the positive diagonal entries do

not appear in the columns for n �∈ V k in matrix (D−A)c
V k , and hence, all entries are

negative and correspond to edges connecting it to nodes m ∈ V k.

Now consider the term (Si(V k
in)− Si(V k

out)) on LHS in Equation (2.63). By definition:

Si(V k
in) =

∑
Ek

(S(m, i) + S(i,m)). (2.64a)

Si(V k
out) =

∑
Ek

(S(n, i) + S(i, n)). (2.64b)

Here Ek is the set of boundary or interfacing links for subgraph V k such that the node pair

[m,n] associated with each link satisfy m ∈ V k, n �∈ V k. (Si(V k
in) − Si(V k

out)) can be

rewritten as
∑

m∈V (c̃
1
mS(m, i) + c̃2mS(i,m)),m ∈ V where c̃1m, c̃

2
m are positive or negative

depending on m ∈ Vk or m �∈ Vk respectively, and the magnitude is given by the number

of boundary links in Ek which contain m in its node pair. Hence, it is clear that c1m =

c̃1m, c
2
m = c̃2m∀m and (Si(V k

in)− Si(V k
out)) represents

∑
j∈V k B1(j, i) +

∑
j∈V k B2(i, j).

If I were to put all nodes into the same community, verify that all coefficients c1m (given

by the column sums of the N × N matrix (D − A) and c2m (given by the row sums of the

N × N matrix (D − A)) are trivially 0. As a corollary, it immediately follows from that

a
∑

j B1(j, i) = 0, ∀i, i.e., all column sums of the matrix B1 are equal to zero. Hence, the
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sum of all elements in B1 equals zero. Similarly,
∑

j B2(i, j) = 0, ∀i, i.e., all row sums of

the matrix B2 are equal to zero. Hence, the sum of all elements in B1 equals zero.

∑
i,j

B1(i, j) =
∑
i,j

[(D − A)S](i, j) = 0

∑
i,j

B2(i, j) =
∑
i,j

[S(D − A)](i, j) = 0.
(2.65)

Also, it is easy to verify that Equation (2.63) is independent of the subgraph under consid-

eration and is generally true for any subgraph Vk . Therefore,

(Si(V k∗
in )− Si(V k∗

out)) =
∑
j∈V k∗

(B1(j, i) +B2(i, j)). (2.66)

Here j belongs to V k∗, i.e., j belongs to a subgraph in the set of all subgraphs but V k.

Theorem 2.2.1 My main theorem in the manuscript is reformulation of aggregate flux flow-

ing through community boundaries into the Laplacian modularity quality function:

∑
V k

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.67)

Proof Using Property 1 and summing over all nodes i ∈ V k, I get:

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑

i∈V k,j∈V k

(B1(j, i) +B2(i, j)). (2.68)

As δ(i, j) is 1 only if i and j belong to the same subgraph and 0 otherwise, the above

equation can be rewritten as:

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑

i∈V k,j

[(D − A)S + S(D − A)]δ(i, j). (2.69)

Note, this holds for any subgraph V k. As the quality function is additive over all (hard-

partitioned) subgraphs, I get:

∑
V k

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.70)

This proves the theorem.



73

Theorem 2.2.2 The relationship between the associative and dissociative quality function

is:

Qass +Qdiss = 0. (2.71)

Proof Recall the formulation of Qass, and Qdiss:

Qass =
∑
V k

∑
i∈V k

(Si(V k
in)− Si(V k

out)). (2.72)

Qdiss =
∑
V k

∑
V k∗

∑
i∈V k

(Si(V k∗
in )− Si(V k∗

out)). (2.73)

Using Equation (2.66) and summing over all nodes i ∈ V k, I get:

∑
i∈V k

(Si(V k∗
in )− Si(V k∗

out)) =
∑

i∈V k,j∈V k∗
(B1(j, i) + B2(i, j)). (2.74)

The value
∑

i∈V k,j∈V k∗(B1(j, i)+B2(i, j)) represents the disassociation between subgraph

V k and one of the remaining subgraphs V k∗. Adding over all subgraphs V k∗, I get:

∑
V k∗

∑
i∈V k

(Si(V k∗
in )− Si(V k∗

out)) =
∑

i∈V k,j 	∈V k

(B1(j, i) + B2(i, j)). (2.75)

Here the RHS follows from j ∈ V k∗∀V k∗ ≡ j �∈ V k, i.e., a node j ∈ V k∗ over the set of

all V k∗ implies node j �∈ V k. Let me define an operator �(i, j) which is 0 if node i and j

belong to the same subgraph and 1 otherwise. Then the above equation can be rewritten as:

∑
V k∗

∑
i∈V k

(Si(V k∗
in )− Si(V k∗

out)) =
∑

i∈V k,j

[(D − A)S + S(D − A)]�(i, j). (2.76)

Further, adding over all subgraphs V k I get:

∑
V k

∑
V k∗

∑
i∈V k

(Si(V k∗
in )− Si(V k∗

out)) =
∑
i,j

[(D − A)S + S(D − A)]�(i, j). (2.77)

The term on LHS is precisely Qdiss. Using Theorem 2.4.1 and definition of Qass I have:

Qass =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.78)
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Adding Equations (2.77) and (2.78) I get:

Qass+Qdiss =
∑
i,j

[(D−A)S+S(D−A)](δ(i, j)+�(i, j)) =
∑
i,j

[(D−A)S+S(D−A)].

(2.79)

δ(i, j) + �(i, j) = 1 because nodes i and j can either belong to the same community or

different communities and the sets are mutually exclusive. Using Equation (2.65) I have:

Qass +Qdiss = 0. (2.80)

This proves the theorem. Note the result holds independent of metric of similarity S, or

in other words Q is an unbiased quality measure. Also, if A and S are both symmetrical,

using elementary matrix algebra I get that (D−A)S+S(D−A) is also symmetrical. As a

result, it suffices to calculate B = (D−A)S and obtain (D−A)S+S(D−A) as B+BT .

In this section, I proved that the sum of all elements of the Laplacian modularity ma-

trix, (D − A)S + S(D − A) is zero independent of S. Hence, the Laplacian modularity

matrix shares the key feature of unbiasedness with the modularity matrix. Also, it is possi-

ble to use a host of existing modularity optimization techniques for Laplacian modularity

optimization and is the topic of Section 2.2.1.

Overlap: Optimizing Q outputs a non-overlapping partition which are communities in the

weak sense by construction. In the main manuscript I state that the positive terms in matrix

XTL(S + ST ) resolve overlap, where X is a 0-1 indicator matrix for the (hard) partition

of dimensions |V | × C. |V | is the number of nodes, C is the number of communities, and

each row of X is all zeros except for a 1 indicating the node’s membership to a community.

I now provide a formal definition of overlapping nodes with respect to the strong and weak

definitions of a community.

If a node associates with weak communities other than the one it is assigned to in

the optimal partition, i.e., a node assigned to V k satisfies the strong criterion, Equation

(2.52) for some other subgraphs in the set V k∗, k∗ = 1, 2, · · ·\k, then the node is classified

as an overlapping node with membership to these communities. Figure 2.14 D,E,F dis-

plays the difference of internal and external boundary cohesion for the three communities,
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V 1, V 2, V 3 identified by optimizing the Laplacian modularity. Nodes 6 and 12 are correctly

assigned to their respective cliques in the optimal partition, however, have multiple connec-

tions to the subgraph V 3, and emerge as overlapping nodes with positive affinity (shaded

blue) in the vector S(V 3
in)− S(V 3

out) (figure 2.14F).

I now prove that C× | V | matrix XTB1+(B2X)T can efficiently resolve communities

in the strong sense by checking for positive terms where X is a [0 − 1] indicator matrix.

XTB1 + (B2X)T is equivalent to XT (B1 + BT
2 ). Given a partition of nodes into weak

communities, strong or weak membership, and hence, overlap of node i is determined by

checking if the node satisfies the criterion of a strong community for a subgraph other than

the one it is assigned to by the optimal partition, i.e., I check:

Si(V k∗
in ) ≤ Si(V k∗

out), ∀V k∗. (2.81)

Equivalently, Si(V k∗
in ) − Si(V k∗

out) ≤ 0, ∀V k∗ or (Si(V k∗
in ) − Si(V k∗

out)) ≤ 0, ∀V k∗. Using

Equation (2.66), this translates to checking if:

∑
j∈V k∗

(B1(j, i) +B2(i, j)) ≤ 0, ∀V k∗. (2.82)

Now consider the (k, i)th term of the matrix XT (B1 + BT
2 ). Using elementary matrix

multiplication properties, it can be verified that:

(XT (B1 +BT
2 ))(k, i) =

∑
j∈V k

(B1(j, i) +B2(i, j)). (2.83)

If node i belongs to community V k in the strong sense if (XT (B1+BT
2 ))(u, i) < 0, ∀u ∈ k∗

where k∗ are the indices of subgraphs V k∗. It follows that presence of o positive terms in

the ith column implies that node i is classified as an overlapping node with membership to

o subgraphs V u corresponding to the positive indices u, s.t., (XT (B1 + BT
2 ))(u, i) > 0.

Thus, XT (B1+BT
2 ) encodes all information about overlap between different subgraphs and

overlapping nodes can be efficiently identified by checking for positive terms. XT (B1 +

BT
2 ) can be equivalently written as XT (LS + (SL)T ) or XT (LS + LST ) as described in

the main manuscript. Using Equation (2.63), it follows that each element in (XT (B1 +

BT
2 )) encodes the net connectivity flux for all nodes through each subgraph boundary, and
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Figure 2.15. Resolution limit. A: The Laplacian modularity framework does
not suffer from the traditional resolution limit, i.e., V 1 and V2 are not merged by
the Laplacian modularity quality function if V1 and V2 are strong communities.
B: Ring of cliques, Cm C: Pairwise identical cliques, Cm and Cp.

hence, overlapping nodes are simply nodes with net positive connectivity flux to multiple

communities as described in the main manuscript.

Optimization of Laplacian modularity: Modularity optimization is provably NP-hard

and the structural similarity of the Laplacian modularity and modularity matrix makes it

unlikely that an efficient algorithm exists for Laplacian modularity optimization. Several

heuristics and approximate algorithms exist for modularity optimization such as spectral

optimization [127], simulated annealing [128] and greedy agglomerative techniques [129].

These methods can be directly adapted for optimizing the Laplacian modularity quality

function. I use the Louvain method [121] to optimize Laplacian modularity, Q, in all my

experiments due to its speed and accuracy.

Louvain: The Louvain method is the current state-of-the-art method for optimizing mod-

ularity [121]. The generalized version of the method adapted for optimizing my quality

function Q is a greedy optimization method that attempts to optimize Q in two steps. First,

the method looks for small communities by optimizing Q locally. Second, it aggregates

nodes belonging to the same community and builds a new network whose nodes are the

communities. These steps are repeated iteratively until a maximum of Q is attained.
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Resolution limit: I provide an analysis of resolution limit for general similarity matrices, S

and discuss the resolution limit in reference to the heat kernel in the next section. Consider

two partitions of the network, Y and Z. These two partitions are identical in all subgraphs

represented as V ∗, except in Z two subgraphs V 1 and V 2 are merged, whereas in Y they

are considered as separate subgraphs (see Figure 2.15 A). Because, Q is expressed as a sum

over subgraphs, the corresponding value of Q for these two partitions are then given as:

QY =
∑
V ∗

(SC(V ∗
in)−SC(V ∗

out))+ (SC(V 1
in)−SC(V 1

out))+ (SC(V 2
in)−SC(V 2

out)) (2.84)

QZ =
∑
V ∗

(SC(V ∗
in)− SC(V ∗

out)) + (SC(V 1,2
in )− SC(V 1,2

out )). (2.85)

The contribution to QY and QZ over subgraphs V ∗ is the same. Then, the difference in

quality of these two partitions is ΔQ = QY −QZ .

ΔQ = (SC(V 1
in)− SC(V 1

out)) + (SC(V 2
in)− SC(V 2

out))− (SC(V 1,2
in )− SC(V 1,2

out )). (2.86)

Expanding SC as a sum over nodes I get:

ΔQ =
∑
i∈V 1

(Si(V 1
in)− Si(V 1

out)) +
∑
i∈V 2

(Si(V 2
in)− Si(V 2

out))

−
∑

i∈V 1,2

(Si(V 1,2
in )− Si(V 1,2

out )).
(2.87)

To simplify the calculations, I only consider the contributions from (D−A)S in the Lapla-

cian modularity matrix and the counterpart S(D − A) can be analyzed similarly. I dis-

tinguish three types of links: between V 1 and V 2 (Eint), between V 1 and the rest of the

network V ∗ (E1) and between V 2 and the rest of the network V ∗ (E2). Using the property

that Si is a sum over links, I separate terms in ΔQ as follows:

∑
i∈V 1

(Si(V 1
in)− Si(V 1

out)) =
∑
i∈V 1

(∑
E1

(S(m, i)− S(n, i)) +
∑
Eint

(S(m, i)− S(n, i))

)
(2.88a)∑

i∈V 2

(Si(V 2
in)− Si(V 2

out)) =
∑
i∈V 2

(∑
E2

(S(m, i)− S(n, i)) +
∑
Eint

(S(m, i)− S(n, i))

)
(2.88b)
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∑
i∈V 1,2

(Si(V 1,2
in )− Si(V 1

out)) =
∑

i∈V 1,2

(∑
E1

(S(m, i)− S(n, i)) +
∑
E2

(S(m, i)− S(n, i))

)
.

(2.88c)

I now analyze ΔQ over two cases. Let Ê be the set of nodes induced by links E. In the

first case there are no common nodes induced by links [E1, E2], [E1, Eint] and [E2, Eint],

i.e., Ê1 ∩ Ê2 = φ, Ê1 ∩ Êint = φ and Ê2 ∩ Êint = φ. Second I analyze for the case where

nodes may be common in the sets. I consider S of the form S(i, j) > 0 only if there is a

direct connection between i and j.

Case 1: If there are no common induced nodes, then it follows that for
∑

E1
, S(m, i) >

0, S(n, i) > 0 only if i ∈ V 1. Similarly, for
∑

E2
, S(m, i) > 0, S(n, i) > 0 only if i ∈ V 2.

Hence, I have:

∑
i∈V 1,2

(∑
E1

(S(m, i)− S(n, i))

)
=

∑
i∈V 1

(∑
E1

(S(m, i)− S(n, i))

)
(2.89a)

∑
i∈V 1,2

(∑
E2

(S(m, i)− S(n, i))

)
=

∑
i∈V 2

(∑
E2

(S(m, i)− S(n, i))

)
. (2.89b)

Therefore these contributions cancel out in ΔQ and I am left with:

ΔQ =
∑
i∈V 1

∑
Eint

(S(m, i)− S(n, i)) +
∑
i∈V 2

∑
Eint

(S(m, i)− S(n, i)). (2.90)

For Eint, m and n are complimentary for the subgraphs V 1 and V 2, i.e., an internal node

to V 1 is an external node to V 2 and vice versa. Without loss of generality, let me assume

m belongs to V1 and n belongs to V2. If I assume a constant value of S(m, i)∀i, say S(m),

then the sum over V1 is dm(V 1)S(m), where dm(V 1) is the number of connections of m

to subgraph V 1. Similarly, sum over V2 is dm(V̄ 1)S(m) where dm(V̄ 1) is the number of

external connections of m to V 2 (in this case the external degree of node m). Hence,

Equation (2.90) reduces to:

ΔQ =
∑
Eint

(
(dm(V 1)− dm(V̄ 1))S(m) + (dn(V 2)− dn(V̄ 2))S(n)

)
. (2.91)

Now under the assumption that V 1 and V 2 are LS-sets or strong communities as per the

definition of Radicchi [45], (dm(V 1) − dm(V̄ 1)) and (dn(V 2) − dn(V̄ 2))S(n) are always
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greater than 0, and hence ΔQ > 0. In other words, the Laplacian modularity does not

suffer from the traditional resolution limit.

Case 2: In the case where some induced nodes may be common, the Equation (2.89)

does not hold, and hence, no simplification occurs. So I investigate the Laplacian modu-

larity on a per node basis so as to detail the resolution constraints on a module without any

assumption on the number of common induced nodes. Let S(i, V k) =
∑

j∈V k

(
S(i, j) +

S(j, i)
)
, i.e., S(i, V k) is the reciprocal sum of connectivity coefficients of a node i to nodes

in a subgraph. Then I have:

∑
i∈V k

(Si(V k
in)− Si(V k

out)) =
∑
i∈V k

di(V̄ k)S(i, V k)−
∑
j∈V k∗

dj(V k)S(j, V k). (2.92)

Here di(V̄ k) indicates the external degree of node i and dj(V k) indicates the external de-

gree contribution of node j to subgraph V k. Equation (2.92) constitutes subgraph V k’s

contribution to Q. Then node i’s total contribution to Q, S i(Q) is:

S i(Q) = di(V̄ k)S(i, V k)−
∑
p∈k∗

di(V p)S(i, V p). (2.93)

This is because node i’s positive contributions to Q occur as an internal boundary node

of subgraph V k and negative contributions occur as an external boundary node to some

subgraphs in V k∗. I have an additional constraint that di(V̄ k) =
∑

p∈k∗ d
i(V p), i.e., the

total external connections of a node i is equal to the sum of (external) degree contributions

to all other subgraphs. So for S i(Q) ≥ 0, I get the relationship:

S(i, V k) ≥
∑

p∈k∗ d
i(V p)S(i, V p)∑

p∈k∗ d
i(V p)

. (2.94)

This equation intuitively reflects that the net internal connectivity of a node to a subgraph

should be greater or equal to the weighted sum of net external connectivity to all other

subgraphs. If the above equation holds for all nodes in a subgraph, then it is considered a

module. If I consider S to be equal to the adjacency matrix A, I have S(i, V k) = 2di(V k)

and S(i, V p) = 2di(V p). Equation (2.94) then reduces to:

di(V k) ≥
∑

p∈k∗(d
i(V p))2∑

p∈k∗ d
i(V p)

. (2.95)
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Using Cauchy-Schwarz inequality, x2
1 + x2

2 . . . x
2
n ≥ (x1 + x2 . . . xn)

2/n, I get:

di(V k) ≥
∑

p∈k∗(d
i(V p))2∑

p∈k∗ d
i(V p)

≥
(∑

p∈k∗(d
i(V p))

)2
|k|∑p∈k∗ d

i(V p)
. (2.96)

Here k is the number of subgraphs node i has connections to. Using the relation di(V̄ k) =∑
p∈k∗ d

i(V p) I get:

di(V k) ≥ di(V̄ k)

|k| . (2.97)

Instead of requiring that the internal degree exceeds the external degree as in a strong

community, the Laplacian modularity quality function for S = A requires that the internal

degree of a node exceeds the average external degree over subgraphs the node connects

to. Further, if all nodes in a subgraph have external connections to a maximum of one

other subgraph then s = 1 and I recover the strong definition of a community. Under these

conditions, the Laplacian modularity mitigates the traditional resolution limit.

Figure 2.15 demonstrates the efficacy of my construct against the traditional resolution

limit [119] for S = A. On a ring of cliques Cm of size m, my approach always identifies the

correct partition with highest QLS irrespective of size of m for m > 2. In contrast, modu-

larity provably always merges cliques and I observed that Infomap merged cliques for small

m. On pairwise identical cliques Cm, Cp of size m and p respectively connected as shown

in Figure 2.15, QLS never merged the smaller cliques Cp irrespective of the difference in

sizes, unlike modularity which merges the smaller cliques Cp into one subgraph.

Multi-resolution methods: I briefly mention multi-resolution extension of the Laplacian

modularity framework akin to multi-resolution modularity [130]. I differentiate multi-

resolution from hierarchy, i.e., multi-resolution methods output partitions at all resolutions

whereas I contend hierarchy to be in reference to topological scales of the network. The

multi-resolution extension of the Laplacian modularity has a straight-forward extension

using resolution parameter ω as:

Q =
∑
i,j

[(D − ωA)S + S(D − ωA)]δ(i, j) =
∑
i,j

[LωS + SLω]δ(i, j). (2.98)
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Where Lω is the resolution dependent Laplacian. ω = 0 outputs the trivial partition where

all nodes are grouped into one community. Varying ω in the range [0, 1] outputs multi-

resolution partitions. In order to determine the relevant hierarchies among the set of parti-

tions output by varying, ω, I construct a stability curve using the equation:

r(ω) = maxXtrace[X
TBωX]. (2.99)

where Bω is the matrix given by [LωS+SLω]. Smaller values of ω favor coarser partitions.

However, the ω lacks an intuitive interpretation, unlike time t, in the Laplacian modularity

using the heat kernel. I shall demonstrate the stability curve for alternate definitions of

connectivity potentials in results section.

Another strategy to account for resolution is to consider averaging over longer con-

nected neighborhoods by considering the Laplacian corresponding to powers of A, i.e., L

corresponding to A2, A3, · · · . For example, the quality function corresponding to A2 is:

Q =
∑
i,j

[(D2 − A2)S + S(D2 − A2)]δ(i, j). (2.100)

Here D2 are the row or column sums of the symmetric matrix, A2. Similarly, I can consider

higher powers of the Laplacian with the same structural properties of L, i.e., the row and

column sums of Ln are 0. The corresponding quality functions are of the form:

Qn =
∑
i,j

[LnS + SLn]δ(i, j). (2.101)

Where Qn is the quality function corresponding to the nth power of the Laplacian. How-

ever, there is no way to determine relevant hierarchies from the partitions output by the

Laplacian corresponding to different powers of A, Equation (2.100), or by considering

higher order Laplacians, Ln of varying n, Equation (2.101). As a result, I advocate the

Laplacian modularity using the heat kernel as a principled way to determine relevant hier-

archies using the stability curve, the topic of my next section.

Resistor network interpretation of Laplacian modularity: A large connectivity flux

through a community boundary is encoded as high connectivity density among the internal

nodes in the Laplacian modularity matrix due to my network analog of Gausss law. This can
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Figure 2.16. Resistor network interpretation of Laplacian modularity: The
plots to the left show the voltage applied to each node in the network. Blue
indicates a unit positive potential applied to a node and its neighbors, whereas
red indicates a grounded node. The plots in the middle show the net current
flow through each node in the network as a result of the applied voltages on
nodes in the network. The current flow changes from positive to negative as the
node colors change from blue to red. The plot on the right indicates that I am
in effect maximizing the net positive current in the network to identify modules
in my Laplacian modularity framework.

also be interpreted using resistor networks. The well-known relationship between current

vector Curr, voltage vector V ol and the Laplacian L in resistor networks is [131]:

L ∗ V ol = Curr. (2.102)

Now if I were to sequentially apply voltages to each node, where the ith voltage vector

corresponds to the connectivity values (the ith row and column of S), then the Laplacian

modularity matrix is equal to the net current flow matrix, i.e., the ith column of B1 is

the current induced by applying voltages equal to ith column of S at the nodes and the ith



83

column of B2 is the current induced by applying voltages equal to ith row of S at the nodes.

Maximizing the Laplacian modularity matrix effectively translates to finding subgraphs

such that the positive current flow is maximized. Note that the net current flow in the entire

network is zero. This is graphically illustrated in Figure 2.16. The plots on the left show

the applied voltage and the induced current at the different nodes due to Equation (2.102).

All induced currents are succinctly represented by the Laplacian modularity matrix, and

optimizing Q results in a partition wherein the positive currents are maximized (Plot to the

right in Figure 2.16). This is intuitively interpreted as maximizing the charge distribution

within modules using Gauss’ law.

2.2.2 Laplacian modularity using heat kernel

In this section I discuss the heat kernel, the solution to the diffusion equation in con-

text of random walks and Gauss’s law for community boundary identification. I mention

properties of the Laplacian modularity using the heat kernel and implementation details for

identifying the relevant hierarchies from the stability curve.

Diffusion based Laplacian modularity: If I take S = Ht, then the resulting Laplacian

modularity matrix is (D−A)Ht+Ht(D−A). However, I only consider Bt = (D−A)Ht

for analysis as Bt has a precise physical interpretation as the rate of diffusion matrix. In all

my subsequent discussions, I term the corresponding quality function, Qt as the diffusion

based Laplacian modularity abbreviated as DLM. It is worthwhile to note that the random

walk Laplacian hints at an alternate strategy to construct the normalized version of the

Laplacian modularity quality function, given as:

Q̃ =
∑
i,j

[(I −D−1A)S + S(I −D−1A)]δ(i, j). (2.103)

Where I −D−1A is the row normalized random walk Laplacian. The column normalized

counterpart, I − AD−1 can also be used instead of I −D−1A in the above equation. The

properties of the Laplacian modularity quality function, Q, such as unbiasedness hold true

for the normalized Laplacian modularity quality function, Q̃. If I take S = Ht in the above

equation, it can be proved that (I −D−1A)Ht = Ht(I −D−1A) (see Property 2). Hence,
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the node-to-boundary cohesion matrix, Ht(I −D−1A) contains no additional information.

It suffices to only consider the symmetric form (D −A)Ht in the DLM. The definitions of

strong and weak communities under the DLM construct are discussed next.

Random walks have been used extensively for community detection [48, 132, 133], all

following the common intuition of a random walker getting trapped in densely connected

parts corresponding to communities. I demonstrate that the DLM quality function has a

precise probabilistic interpretation in terms of random walks, an alternate viewpoint to the

cohesion to subgraph boundaries as discussed in the main manuscript. The basic quantity to

consider is the probability pt(i, j) of a random walker to hop from node i to j in time t. This

corresponds to the probability after t discrete jumps or Poisson number of jumps with mean

t for discrete and continuous time random walks respectively [134]. Intuitively, a random

walker tends to visit nodes in its own subgraph more often than nodes belonging to another

subgraph. I formalize this intuition by comparing the frequency of a random walker starting

from a node to visit nodes in its own subgraph relative to the frequency of visiting the rest

of the nodes at time t. In order to facilitate pairwise comparison, I consider contributions

from random walkers starting from two disjoint sets of internal V k
in and external V k

out nodes

belonging to the interfacing links or edge-cuts, i.e., links connecting the subgraph to the rest

of the network. Formally, H i
t(V

k
in) and H i

t(V
k
out) are the sum of probabilities of independent

random walks starting from the internal and external nodes of subgraph V k to reach node

i in time t, and can be viewed as random-walk counterparts of intra-community and inter-

community link counts. Let the set of interfacing links for subgraph V k be Ek such that

the node pair [m,n] associated with each link satisfy m ∈ V k, n �∈ V k. Note m is an

internal node (m ∈ V k
in) and n is an external node (n ∈ V k

out). Mathematically, then the two

contributions are represented as:

H i
t(V

k
in) =

∑
Ek

pt(m, i) (2.104a)

H i
t(V

k
out) =

∑
Ek

pt(n, i). (2.104b)

Intuitively, the two quantities represent the sum of probabilities of two sets of |Ek| indepen-

dent random walkers starting from internal and external nodes to reach the node being eval-
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uated for. In the case of the time-dependent heat kernel, boundary cohesion as described

in the main manuscript is synonymous with consensus among networked multi-agent sys-

tems, where higher values indicate greater cooperation of a node with seeded agents at time

t [96]. Equipped with these definitions, I proceed to define communities in the strong and

weak sense.

Community in the strong sense The subgraph V k is a community in a strong sense if:

H i
t(V

k
in) > H i

t(V
k
out), ∀i ∈ V k. (2.105)

In a strong community, the sum of probabilities of the set of random walkers starting from

internal nodes to visit each node of the subgraph V k is greater than the sum of probabilities

probability of the set of random walkers starting from external nodes at time t. From an

opinion dynamical perspective, in a strong community there is consensus among internal

agents respecting the belongingness of each agent at time t.

Community in the weak sense The subgraph V k is a community in a weak sense if:

∑
i∈V k

H i
t(V

k
in) >

∑
i∈V k

H i
t(V

k
out). (2.106)

In a weak community, the sum of probabilities of the set of random walkers starting from

internal nodes of the subgraph V k to collectively visit the nodes of subgraph Vk is greater

than the sum of probabilities of the set of random walkers starting from the external nodes.

Overall, these definitions model coordinated consensus among internal agents in all sub-

graphs with regard to community membership, at time t. The optimal partition satisfying

the above definition is the DLM quality function:

Qt =
∑
i,j

[(D − A)Ht]δ(i, j). (2.107)

Where I represent (D − A)Ht = Bt and term it the DLM matrix. I now state a few

additional properties of the DLM matrix, Bt.

Property 2 Although the matrix Ht is asymmetrical in general, the DLM matrix is sym-

metrical, i.e., for all node pairs (i, j) I have:

Bt(i, j) = Bt(j, i). (2.108)
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Proof I prove the above property using spectral decomposition of the DLM matrix. I

rewrite Bt as:

Bt = (D − A)Ht

= D(I −M)Ht

= D1/2(I −N)D1/2Ht

= D1/2LD1/2Ht.

(2.109)

I have used M = D−1A and N = D1/2MD−1/2 and L = I − N . Ht is given as e−tL.

Substituting the spectral representations I get:

Bt = D1/2LD1/2e−tL

= D1/2ΦΛΦTD1/2D−1/2Φe−tΛΦTD1/2.
(2.110)

Using the orthogonality of the eigenvectors ΦTΦ = I , the final spectral representation for

Bt is D1/2ΦΛe−tΛΦTD1/2. Taking the transpose of the derived matrices, I verify that the

matrix is symmetrical:

BT
t = (D1/2ΦΛe−tΛΦTD1/2)T

= (D1/2)T (ΦT )T (e−tΛ)TΛTΦT (D1/2)T

= D1/2Φe−tΛΛΦTD1/2

= Bt.

(2.111)

Note, D, e−tΛ,Λ are all diagonal matrices. Symmetry implies the row sums, like the col-

umn sums of Bt are all 0. I also prove the same for discrete random walks where the

similarity matrix at time t is given as M t. The discrete random walk helps understand the

relation between DLM and modularity as follows:

Bdiscrete
t = D1/2LD1/2M t

= D1/2ΦΛΦTD1/2D−1/2ΦΛ
′tΦTD1/2.

(2.112)
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The spectral representation for Bdiscrete
t is D1/2ΦΛ(I − Λ)tΦTD1/2 and I have:

(Bdiscrete
t )T = (D1/2ΦΛ(1− Λ)tΦTD1/2)T

= (D1/2)T (ΦT )T ((1− Λ)t)TΛTΦT (D1/2)T

= D1/2Φ(I − Λ)tΛΦTD1/2

= Bdiscrete
t .

(2.113)

The spectral decomposition can be used to prove (I − D−1A)Ht = Ht(I − D−1A) as

follows:

(I −D−1A)Ht = D−1/2(I −N)D1/2Ht

= D−1/2LD1/2e−tL

= D−1/2ΦΛΦTD1/2D−1/2Φe−tΛΦTD1/2

= D−1/2ΦΛe−tΛΦTD1/2.

(2.114)

Ht(I −D−1A) = HtD
−1/2(I −N)D1/2

= e−tLD−1/2LD1/2

= D−1/2Φe−tΛΦTD1/2D−1/2ΦΛΦTD1/2

= D−1/2ΦΛe−tΛΦTD1/2.

(2.115)

In the dissertation I showed that the DLM matrix is a scaled derivative of the diffusion

matrix, i.e., (D − A)Ht is −D times the derivative of e−tL. This interpretation enables me

to make an implicit connection with diffusion which underscores the dynamics governing

community exploration. The physical analogy of the diffusion equation is that a commodity

(heat, current) flows from a high density region to a low density region until equilibrium

and flow rate is dependent on the negative of the density gradient [21]. Consider a network

with N node on which I independently administer a substance of di units to node i at

time t = 0 and the ground the rest of the nodes. I do this sequentially for all nodes

and observe the dynamics of the diffusion process over time. Then the matrix −(D −
A)e−tL precisely encapsulates the rate of flow information for all node pairs of this physical
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process. Tailoring Equation (2.5) so as to account for the amount of substance administered

at each node, I get:

Ht = [e−tL]TDH0

= [e−tL]TDTH0

= [De−tL]TH0.

(2.116)

Differentiating, I have:
dHt

dt
= [−DLe−tL]TH0. (2.117)

As time grows tightly connected nodes reach a local equilibrium with and long scale flow

comes into play [135]. Hence, the intuition behind using the rate of diffusion for finding

community structure is to minimize the rate of flow dHt

dt
within well connected groups or

equivalently maximize the negative of the diffusion flux matrix DLe−tL. Hence, I term the

matrix DLe−tL to be the DLM matrix, Bt which seeks maximize the association within

groups, i.e., is a ‘modularity’ criterion akin to modularity. The property of the all columns

of Bt summing to zero physically follows from flow conservation in diffusion systems.

Overlap: C× | V | matrix XTBt can efficiently resolve communities in the strong sense

and hence overlap for DLM, as in the Laplacian modularity framework. A distinctive

feature of my approach to determine overlap in networks using DLM is that it progressively

considers contribution from paths of all lengths in contrast to a local edge density evaluation

as in [41, 136]. This has the desirable effect of uncovering overlapping nodes dynamically

with time in contrast to all other approaches. In the main manuscript I defined overlapping

nodes as those which individually satisfy the strong criterion of a community. In order to

gain an intuition of the dynamic process revealing overlap in the DLM approach, I provide
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an alternate viewpoint in terms of path length distribution. Consider each element of DLM

matrix for continuous time random walks expressed in terms of path length probabilities:

Bt(i, j) = [D − A]Ht

= D(I −M)e−tL

= D(I −M)[e−t

∞∑
k=0

Mk(i, j)
(t)k

k!
]

= De−t

( ∞∑
k=1

[
(t)k

k!
− (t)k−1

(k − 1)!
]Mk(i, j) + I

)

=
∞∑
k=1

fij(t, k)M
k(i, j).

(2.118)

Here each element ofe−tΔαM is expanded using Maclaurin series expansion of e−t(I−M) to

get Bt(i, j) in terms of M(i, j). fij(t, k) is a function of time t which absorbs the constants

and the final expression validates that each term of Bt(i, j) is a combination of all path

lengths from 1 to ∞. The membership of a node j to subgraph V k is decided by the value

of
∑

i∈V k Bt(i, j) which again is a dynamic function of time:

∑
i∈V k

Bt(i, j) =
∑
i∈V k

∞∑
k=1

fij(t, k)M
k(i, j). (2.119)

Consequently, overlap emerges dynamically based on probabilistic paths of all length from

nodes in Vk to node j, a feature unique to my method. As I consider a weighted sum over

all possible path lengths instead of shortest path length, overlap determination is robust to

small topological changes in the network. This is desirable when the network has spurious

or missing links as common in many biological networks.

Hierarchy: My formalism demonstrates that overlap and hierarchy are complimentary to

each other in the sense that hierarchical communities are completely overlapping commu-

nities at a coarser scale of analysis. Although this viewpoint reconciles the antagonism

between overlap and hierarchy, it is important to determine which partitions are relevant

over the time range t = [0,∞]. In the main text, I introduce the stability curve r(t) to

determine persistent partitions over range of analysis. It is given by:

r(t) = maxXtrace[Rt]. (2.120)
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Where Rt is the clustered matrix for partition X given by Rt = 1
2|E|X

T [(D − A)Ht]X .

Although my stability function shares several features of the stability function described

in [120], the dynamics governing the clustering process are fundamentally different. I state

the similarity between these stability functions here and later describe the differences in

Section 2.2.2.

The stability curve organizes a hierarchy of fine to coarse communities as time in-

creases, with the trivial N way partition at time t = 0 and 2-way partition at time t = ∞
which I prove next.

Property 3 Let Bt represent the DLM matrix, (D−A)Ht. The associated quality function

Qt partitions the graph into two communities in the limit t → ∞ and places each node in

a separate community for t = 0.

All nodes are placed in individual communities, if and only if merging two nodes leads to

an inferior quality of partition resolved by value Q̃. Hence for the case t = 0, it suffices to

prove that all non-diagonal elements are negative, i.e., C = N , iff [D − A]H0(i, j) ≤ 0,

∀i �= j. Ht is equal to the identity matrix I at time t = 0 for both continuous and discrete

time random walk. Hence, B0 = [D − A]. As D is a diagonal matrix with positive entries

and [D − A] considers the negative of the adjacency matrix A with all positive entries, it

is clear that the only positive entries in [D − A] lie on its trace. Hence, all non-diagonal

entries are negative leading to C = N and Q̃0 = 1. I resort to the spectral decomposition

of Bt in order to show Q̃t outputs a 2-partition as t → ∞. As t → ∞, barring degenerate

eigenvalues, the DLM matrix is dominated by the normalized fielder vector given by:

lim
t→∞

Bt(i, j) = lim
t→∞

[D − A]Ht→∞(i, j)

= lim
t→∞

D(I −M)e−tΔM

= lim
t→∞

D(D−1/2ΦΛΦTD1/2)(D−1/2Φe−tΛΦTD1/2)

= lim
t→∞

D1/2ΦΛe−tΛΦTD1/2

≈ D1/2Φ2(λ2e
−tλ2)ΦT

2D
1/2

=
√

didjλ2e
−tλ2Φ2,iΦ2,j.

(2.121)
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The approximation of D1/2ΦΛe−tΛΦTD1/2 is D1/2Φ2(λ2e
−tλ2)ΦT

2D
1/2 at long times be-

cause the eigenvalue λ2 dominates all eigenvalues asymptotically, including λ1 (λie
−tλi =

0 for λ1 = 0). Let r(t,X) be the stability curve for partition X . Now, consider the finest

partition into N communities with Xf equal to an identity matrix of size N . Then the

asymptotic value of stability curve for Xf as t → ∞ is given by:

r(t,Xf ) ≈ λ2e
−tλ2

2 | E |
∑
i

diΦ
2
2,i. (2.122)

The value for the partition Xnf where I merge 2 nodes i and j into a single community and

assign the rest of the nodes independent communities is:

r(t,Xnf ) ≈ λ2e
−tλ2

2 | E |
(∑
k 	=i,j

dkΦ
2
2,k + (

√
diΦ2,i +

√
djΦ2,j)

2
)
. (2.123)

The difference of these values is:

r(t,Xnf )− r(t,Xf ) ≈ λ2e
−tλ2

| E |
√

didjΦ2,iΦ2,j. (2.124)

Which only increases if sign[Φ2,i] = sign[Φ2,j] as Φ2,iΦ2,j becomes positive. Inductively,

the quality function Q̃ is maximized by two-way partition based on signs of Fielder vector

(eigenvector corresponding to λ2) as t → ∞. Although, I proved the property for continu-

ous walks, the proof for discrete walks is analogous.

An important property of the DLM matrix is the monotonicity of the diagonal terms.

This enables me to analyze stability without resorting to the minimum over time as in the

stability formalism of [120]. The monotonicity of the diagonal terms Bt(i, i) follows from

spectral decomposition:

Bt(i, j) =
√

didj
∑
k≥2

λke
−tλkΦk,iΦk,j

Bt(i, i) = di
∑
k≥2

λke
−tλkΦ2

k,i.
(2.125)

I have Φ2
k,i > 0 and λke

−tλk > 0 and in addition λke
−tλk is monotonic over time for

0 < λk < 2. Hence, the diagonal terms decrease over time and diagonal becomes the zero

vector as t → ∞. The monotonicity directly implies that Qt is maximum at time, t = 0



92

Figure 2.17. Comparing stability curves. A: Stability curve using clustered
autocovariance [120] for a hierarchical, scale-free graph proposed in [137]
with 125 nodes. The curve identifies the natural 5-way partition (inset) but
fails to identify the finer 25-way partition for all values of the resolution pa-
rameter t. The 26-way partition which is identical to the 25-way partition with
5 nodes in all but one community, in which the central node is assigned to an
independent community. The stability value for this 26-way partition exceeds
that of the 25-way partition for all t, and hence, the autocovariance stability
function fails to identify the relevant hierarchical organization of the network.
B: My stability function identifies the 25-way partition (inset) along with the
5-way partition to be the persistent over relatively longer time spans.

with magnitude 1 (the trace of the clustered matrix XT
f D − AXf = D − A is equal to

2|E|).
A compelling validation of my approach to identify hierarchy is displayed in Figure

2.17. My stability curve for a hierarchical (figure 2.17A), scale-free graph [137] with 125

nodes identifies the 25-way partition along with the 5-way partition to be the persistent over

relatively long time spans. Figure 2.17B shows the stability curve for the clustered autoco-

variance [120], a generalization of the modularity to identify topological scales, optimized

over entire time range. I observe that it identifies the natural 5-way partition but fails to

identify the finer 25-way partition for all values of the resolution parameter t.

Automatic community identification: For the purpose of constructing the stability curve

r(t), I first discretize t over the range [0, tmax] into say τ distinct values. I run Louvain for

each value of t and obtain a set of τ partitions. I extract the set of unique partitions from
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these τ partitions as some (persistent) partitions naturally occur more than once. I draw

a stability curve r(t,X) for each unique partition and the optimal stability curve follows

Equation (2.120).

The thrust of my framework to identify communities is based on the assumption that

there is no best partition in real world networks but several valid community assignments

which I discern using the parametric stability curve, the parameter being time, t. In the

main body of the dissertation, I establish that partitions optimal over long time windows of

the stability curve correspond to the set of relevant partitions of the network. However, for

fair comparison to other parameter free community detection methods, I provide a method

to obtain the most relevant or best partition from the stability curve in the continuous time

case. This partition is used to compare my approach to the other methods in the main

manuscript. A naive analysis based on length of persistent time window of partitions in the

stability curve will always output the 2-way partition to be most relevant as it persists over

the time range [t2,∞] where t2 is the smallest time value for which the 2-partition becomes

optimal. Hence, it is imperative to discern whether the 2-way partition is a sound partition

of the network in a practical context or an artifact of the stability curve. For this purpose,

I explore my network over a limited time horizon [tmin, tmax] with the expectation that

communities identified at t < tmin and t > tmax are second fiddle to the overall network

analysis. Recall that at t = 0, the number of identified communities is the trivial N -way

partition, assigning each node to its own community. This partition is ignored by setting

tmin to be equal to the smallest value of t for which the number of identified communities

is less that N . Naively fixing tmax to a constant value without regard to graph topology

could lead to missing vital information present in the analysis beyond tmax. Hence, it is

reasonable to assert that the time tmax should be dependent on a global property of the

graph and guarantee random walkers have explored a sufficient horizon of the graph. There

exists several possible choices, but a heuristic that works well in practice is to take tmax

to be equal to the relaxation time of the Markov chain or when the Markov chain is close

to the steady state distribution. Mathematically, the relaxation time is the inverse of the

asymptotic rate of convergence to the stationary distribution and equal to the inverse of
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the spectral gap, 1/λ2 for continuous time chains and 1/(λ′
2) for discrete time chains [93].

Thus, I first discretize t with logarithmic spacing in the time range [tmin, tmax] and then run

the Louvain algorithm on the corresponding DLM matrices for these values of t. I set the

number of discrete values of t to be 200 for all networks. Next, the partitions are used to

construct the stability curve and subsequently ranked based on the length of the persistent

time window. The length of time window is set to be equal to the difference of log(tend)

and log(tint) where tint and tend are the start and end values of the time t over which a given

partition is optimal. I choose the logarithmic time scale because the DLM matrix at time t

is an exponential function of t and the logarithm is the reciprocal function of exponentials,

i.e., the exponentially weighted time t scales linearly on a logarithmic scale for comparison

between partitions. The partition with maximum log(tend)− log(tint) value is chosen to be

the most relevant hierarchical partition.

After extracting the hard maximally persistent partition over the time window [tint, tend]

in the stability curve, I obtain overlapping communities at each discrete value of t falling

in the interval [tint, tend] using the method described in Section 2.2.1. These overlapping

partitions obtained for different values of t ∈ [tint, tend] may not be mutually consistent, as

overlap may dynamically emerge or disappear based on path length distribution over the

time interval. I resolve this conflict using the magnitude of XT
o B(k, i) as it is indicative of

the strength of association of an overlapping node i with the subgraph Vk it overlaps with,

where Xo is the indicator matrix for an overlapping partition. Hence, the positive values

indicate the relative membership strength of an overlapping node with its corresponding

subgraph, i.e., leads to fuzzy overlap. I evaluate the fuzzy overlap of each overlapping node

in the range t ∈ [tint, tend]. This dynamically varying fuzzy overlap is transcribed to hard

overlap by thresholding the normalized magnitude of association as follows:

(i ∈ V u) ⇐⇒ (XT
o B(u, i)

XT
o B(k, i)

≥ ε
)∀t ∈ [tint, tend]. (2.126)

Where ε is a threshold parameter which discerns the minimum strength of relative associ-

ation of a node i with subgraph V u (normalized by association strength with the subgraph
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V k, node i was assigned in the hard partition) necessary for hard overlap. It is easy to

verify that ε = 1 recovers the hard partition as
XT

o B(u,i)
XT

o B(k,i)
is 1 only for u = k, ∀t ∈ [tint, tend].

The steps for identifying the most relevant communities are as follows:

• Discretize time t over time range [tmin, tmax], where tmin is the value of time t such

that the number of identified communities is less than number of nodes in the network

and tmax = 1/(λ′
2).

• Run the Louvain algorithm on the DLM matrices corresponding to the discretized

values of t and obtain a set of partitions.

• Calculate the stability values, and hence, the stability curve for the network using the

set of partitions.

• Extract the most relevant partition from set of partitions optimal over different time

windows using the length of persistence, i.e., partition with maximum log(tend) −
log(tint) value.

• Find the overlapping nodes for a given threshold value ε using Equation (2.126)

Figure 2.18 demonstrates DLM on a synthetic network of 29 nodes as shown in the

main manuscript. The stability curve for the network in Figure 2.18 B shows two persistent

basins enclosed within dotted lines corresponding to the 3-way partition and 6-way parti-

tion. The 3 and 6 communities along with the corresponding overlap at ε = 0.5 are shown

Figure 2.18 C,D. I next discuss the computational complexity of my method and provide

approximate techniques for constructing the DLM matrix for very large graphs.

Computational complexity and approximation: I analyze the complexity of constructing

the DLM matrix. In order to calculate the Bt exactly, I need to find Ht. For discrete time

random walks, Ht is directly computable in O(cEt), or estimated in O(Kt) with accu-

racy O(c/
√
K) through K random walks of length t [133]. For continuous time walks,

calculating matrix exponential e−tL unfortunately has complexity O(N3). Instead of re-

calculating e−tL for different values of t, I decompose the normalized Laplacian L into its

eigenvalues and eigenvectors. The eigenvectors serve as a common orthonormal basis, and
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Figure 2.18. Community detection using DLM. A: Network of 29 nodes. B:
Stability curve as derived by DLM. C: 6 identified communities with overlap-
ping nodes highlighted in red at threshold ε = 0.5. D: 3 identified communities
with overlapping nodes in red at threshold ε = 0.5.

hence, e−tL is efficiently calculated by changing the weighting function of the eigenvalue

matrix, i.e., e−tΛ in D−1/2Φe−tΛΦTD1/2. Calculating the full spectral decomposition of

the Laplacian has complexity O(N3). However, as most real world networks are sparse,

complexity reduces to O(N2) using the efficient Lanczos method [18]. It is approximated

in O(kN) by calculating the first (smallest) K eigenvalues and corresponding eigenvec-

tors. The error bound is (generally) linear in 1/K [2] due to the decreasing smoothness

property of the eigenvectors. An alternative approach to speed up calculations is to use

the technique proposed in [138] to sequentially compute each column of the exponential

matrix with sublinear time complexity. Eigen decomposition is prohibitive for very large

graphs, and hence, discrete random walks are more suitable for large networks. The sec-
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ond part to my method is optimization using Louvain for τ distinct values of t. Although

the exact computational complexity of the method is not known, the method seems to run

in time O(NlogN) with most of the computational effort spent on the optimization at the

first level [121]. I demonstrate the applicability of DLM to very large networks using the

discrete time random walks in results.

Resolution limit: Modularity compares the number the edges inside a community rela-

tive to the number of edges inside a community expected at random. This comparison is

expressed succinctly using my representation as DM > DM∞ where M∞ represents the

matrix of stationarity distributions and multiplying by D preserves the degree distribution

and volume of the graph while randomly rewiring the edges. The corresponding quality

function DM −DM∞ measures the excess of edges relative to those expected at random.

The resolution limit of modularity [119] stems from implicitly assuming all node pairs

interact with each other in the null model. On the contrary, my notion of a community

using discrete time Markov process translates to DM t > DM t+1 and unlike modularity,

I only consider node pairs at resolution t + 1 to be interacting while resolving the com-

munity structure at resolution t. The horizon of node interactions is further suppressed in

the continuous case because node pairs at resolution t + dt implicitly interact to resolve

the community structure at resolution t, where dt is an infinitesimally small period of time.

This can be verified as:

[D − A]e−tL = DLe−tL

=
DLe−tLdt

dt

= lim
dt→0

DLe−tLdt

dt

= lim
dt→0

D(e−tL − e−(t+dt)L)

dt
.

(2.127)

I have used the Maclaurin series expansion to rewrite Le−tLdt as (e−tL − e−(t+dt)L).

My representation to quantify interacting node pairs also provides a mechanism to de-

fine null models conditional on horizon of interaction, i.e., DM t wires edges based on

random paths of length t or less emanating from each node. Such a formulation of nulls
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Figure 2.19. Comparing diffusion dynamics and rate of diffusion dynamics.
A: Karate network B: The scaled rate of diffusion dynamics over time for two
pairs of nodes. The the rate of diffusion between node pair [34,33] is shown by
red curve. The the rate of diffusion between node pair [34,1] is shown by blue
curve. Two nodes are considered for coarse graining only if the probability flux
is positive. The probability flux between pair [34,33] is positive for some time t
(shown by shaded red region), whereas the probability flux between pair [34,1]
is never positive. C: The diffusion dynamics over time for same pairs of nodes.
The horizontal dotted lines indicate the baseline value for the node pairs in the
null model. Two nodes are considered for coarse graining only if the proba-
bility over time exceeds the baseline value. The probability flux between pair
[34,33] is positive for some time t (shown by shaded red region), whereas the
probability flux between pair [34,1] is never positive. It follows from elemen-
tary calculus that the time at which probability value for node pair [34,33]
is maximum (red curve) corresponds to the time at which the probability flux
value for node pair [34,33] is 0 in B. Hence, the gain by coarse graining two
nodes is dependent on extrinsic null model for diffusion dynamics, whereas is
dependent on intrinsic network topology for rate of diffusion dynamics.

models based on path lengths instead of degrees, has remained elusive in community detec-

tion literature [38], and I contend to be an important step towards precise definition of nulls

models. It provides an alternate approach to overcome the resolution limit of traditional

modularity optimization. In contrast to ad-hoc resolution parameters weighing standard

configuration null model, I can instead define modularity as DM > DM t with some t

less than or equal to the diameter of the graph. DM t progressively restricts the horizon of

interacting node pairs, and for a suitable choice of t overcomes the resolution limit.

Considering the rate of diffusion dynamics for mitigating the resolution limit has a de-

cisive advantage over modularity and expected diffusion dynamics in general. This is high-
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lighted by investigating the question: At what specific instant of time do the two dynamic

approaches coarse-grain a pair of nodes into one? For diffusion dynamics it is equivalent

to choosing a choosing a sufficiently large t such that diHt(i, j) > diH∞(i, j), i.e., the

scaled probability of a random walker to reach node j starting from i after t steps exceeds

its stationary probability scaled by di. For rate of diffusion dynamics, I choose t such that

di
−dHt(i,j)

dt
> 0 or equivalently any value of time t after the probability curve Ht(i, j) has

reached a maximum (the derivative is 0 at the peak). Using the Kolmogorov’s backward

equation, di
−dHt(i,j)

dt
can also be expressed as djHt(i, j)−

∑
k∈N1(j)

Ht(i, k) where N1 in-

dicates the 1-neighborhood. It follows from Markov chain theory that, the gain by coarse

graining a pair of nodes is positive if the probability of a random walker to reach node

j after t steps from node i exceeds the average probability of reaching node j’s neigh-

bours, Ht(i, j) >
∑

k∈N1(j)
Ht(i,k)

dj
. Thus, the decision to coarse grain is independent of the

stationary distribution but instead dependent on the collective dynamics at the same time

resolution over the 1-neighborhood (see Figure 2.19). At the network level, this trans-

lates into exploring community structure by performing a local comparison of probability

measures where the precise formalism of local evolves dynamically with time. This is in

stark contrast to expected diffusion dynamics which resolves communities by analyzing the

local to global probability measures against the global stationary distribution, and hence,

invariably involves a global comparison.

Other methods: I discuss other popular method for community detection next.

Modularity Modularity maximization is the most popular method for non-overlapping com-

munity detection [49]. Modularity measures the excess of links relative to a baseline, usu-

ally taken to be the configuration model. The modularity quality function initially pro-

posed to detect non-overlapping communities in unweighted and undirected networks, has

been extended to weighted [139], directed [140], overlapping [141] and multislice net-

works [142]. Despite its wide appeal, modularity suffers from the resolution limit and

numerous approaches have been proposed to overcome this limit [143–145]. Modularity

optimization is provably NP-hard [146], so I use the popular Louvain method to assess the

performance of modularity maximization in a practical context [121].
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Infomap The Infomap algorithm detects communities by minimizing the code length of

map equation encoded using information theoretic principles [48]. Recent experiments on

benchmarks demonstrate the Infomap algorithm to be the one of the most accurate method

for community finding [38]. Although the Infomap does not suffer from the resolution

limit, it has the tendency to overpartition a network (the field-of-view limit) [147]. I use the

implementation provided by the authors to minimize the code length (out of 100 restarts)

and derive the final community structure.

OSLOM: OSLOM, an acronym for ‘order statistics local optimization method’, is one of

the most versatile methods of community detection capable of detecting overlapping and

hierarchical communities in weighted, directed and dynamic networks [136]. OSLOM like

modularity uses the configuration model to estimate statistical significance of communities.

In order to overcome the resolution limit posed by this null model, it performs an iterative

cluster search within the detected communities, and consequently, limits the horizon of the

network under exploration.

Link Clustering Link clustering defines a community to be a group of links instead of

tightly connected nodes and builds an agglomerative link-dendrogram to uncover overlap

and hierarchy [41]. The link dendrogram is cut at the level which maximizes the partition

density in order to obtain the most relevant community structure. Although with its own

set of merits, the unconventional approach of grouping links is symmetric to the traditional

approaches grouping nodes, and hence, not a priori better as argued in [38]. I contend that

the Laplacian Modulus can be used to determine the overlapping nodes in the line graph, or

equivalently the boundary links in the original graph and overcome the limitations of link

clustering.

Clique Percolation The clique percolation method is one of the earliest approach to de-

tect overlapping communities in networks [40]. The method proceeds by first finding all

complete subgraphs or cliques of size k and nodes that belong to multiple disjoint (or

non-percolating) cliques are classified as overlapping nodes. The parameter k provides

an intuitive way to define the strength of communities and acts as an effective resolution

parameter. However, the rigid definition of clique communities makes it undesirable for ex-



101

Figure 2.20. Results of other community detection methods on synthetic graph.
The identified communities for the same synthetic network of 29 nodes by dif-
ferent community detection methods; Left:Modularity and Infomap, Center:
OSLOM, Right: Link communities and clique percolation. Observe no other
method identifies the 6 communities as in Figure 3 in the main manuscript.

tremely dense or sparse networks leading to giant components or absence of communities,

respectively for all values of k [41]. I scan over the entire range of k and use the optimal k

to demonstrate its performance.

2.2.3 Extension of Laplacian modularity to other network types

In this section, I extend the Laplacian modularity framework to other network types

encountered in network science analysis like weighted, directed, signed and multiplex net-

works.

Weighted Networks: I denote a weighted graph by the triple G = (V,E,A) where V is

the set of nodes, E ⊆ V × V is the set of edges and A is the weighted adjacency matrix:

A(i, j) =

⎧⎨
⎩ w(i, j) if (i, j) ∈ E

0 otherwise.
(2.128)

Here w(i, j) is the weight on the edge (i, j) ∈ E. Let D = diag(di) be the diagonal

weighted degree matrix with elements given by the degree of the nodes di =
∑

j w(i, j).

The weighted Laplacian matrix takes the same form as in the unweighted case, i.e., L =

D − A. The definition of strong and weak communities follow those of the unweighted
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Figure 2.21. Laplacian modularity for a directed network. A: A strongly
connected directed network of 29 nodes B: Defining communities in the
strong sense for a node in subgraph Vk with respect to out-links and in-links.
The strong community criterion for the blue node ([19]) in subgraph, V k,
shaded pink (nodes [15,16,17,18,19]) over the 3 interfacing out-links with
internal nodes ([15,16]) in red and external nodes ([13,14,22]) in green is:
2S(19, 15)+S(19, 16) > S(19, 13)+S(19, 14)+S(19, 22). The strong com-
munity criterion for the blue node ([19]) in subgraph, V k, shaded pink (nodes
[15,16,17,18,19]) over the 3 interfacing in-links with internal nodes ([15,17])
in red and external nodes ([10,12,27]) in green is: 2S(15, 19) + S(17, 19) >
S(10, 19) + S(12, 19) + S(27, 19).

graph, except that the membership vector includes the weights of the induced links, i.e., in

the equation:

S(V ) = STV + SV . (2.129)

Here V is the membership vector, where the element V i is equal to the sum of edge weights

node i is connected to, instead of the cardinality as in unweighted graphs. The resulting

quality function is identical in form. The quality function Qwgt is mathematically repre-

sented as:

Qwgt =
∑
i,j

[(D − A)S + S(D − A)]δ(i, j). (2.130)

I resort to the same algorithms to determine overlap as in the unweighted case.

Directed Networks: I naturally extend my Laplacian modularity framework to directed

networks. Let G be a strongly connected directed graph with N nodes and E be a set of

directed edges. Strong connectivity ensures that the dynamics over time is ergodic useful

for DLM. Edge directionality changes the calculation of boundary cohesion. Specifically,
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instead of the entire set of interfacing links Ek for subgraph V k as in undirected commu-

nities, I consider two sets of interfacing links, in-links Ek
in (those that point towards the

subgraph) and out-links Ek
out (those that point away from the subgraph). Formally, if node

pair associated with a directed edge is [m,n] where m is the origin node and n the des-

tination node, then Ek
in is the set of edges with m �∈ V k, n ∈ V k and Ek

out is the set of

edges with m ∈ V k, n �∈ V k. The two sets of contributions for internal and external nodes

used in the boundary cohesion calculation are modified to account for in-links and out-links

separately (see Figure 2.21). Mathematically, Si(V k
in) and Si(V k

out) are represented as:

Si(V k
in) =

∑
Ek

out

S(m, i) +
∑
Ek

in

S(i,m) (2.131a)

Si(V k
out) =

∑
Ek

out

S(n, i) +
∑
Ek

in

S(i, n). (2.131b)

Following a similar derivation, the quality function to be optimized becomes:

Qdir =
∑
i,j

[(Dout − Adir)S + S(Din − Adir)]δ(i, j). (2.132)

Here Adir is the adjacency matrix with the Adir(i, j)
th entry denoting a directed edge

from node i to j,Dout is a diagonal matrix of out-degrees, i.e., Dout = diag(dout) where

diout is the ith element corresponding to node i of the out-degree vector given by diout =

sumjAdir(i, j), Din is a diagonal matrix of in-degrees, i.e., Din = diag(din) where diin is

the ith element corresponding to node i of the out-degree vector given by diin = sumjAdir(j, i),

S is the connectivity matrix, and δ(i, j) is 1 if i and j belong to the same community and 0

otherwise.

I also introduce the directed counterpart of the random walk Laplacian so as to be able

to use eigen decomposition for efficient optimization of the DLM quality function. The

probability transition matrix Mdir is given by Mdir = D−1
outAdir, indicating the probability

of leaving a node is evenly split among its adjacent neighbors. Adjacent neighbors of a

node i in a directed network are those connected with out-links starting from node i. Naive

pre and post multiplication by an exponent of the degree matrix doesn’t convert M into a

symmetric normalized matrix, as in the undirected case. Instead, the normalized symmetric
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matrix Ndir for directed graph is given by Ndir = Π1/2MdirΠ
−1/2 where Π is a diagonal

matrix with elements corresponding to the stationary distribution vector π for the directed

graph [94]. The stationary distribution vector is well defined for a strongly connected graph

and is given by the eigenvector corresponding to eigenvalue 1 of Mdir. The random walk

Laplacian ΔMdir and its normalized counterpart Ldir are given by ΔMdir = I −Mdir and

Ldir = I −Ndir where I is an identity matrix of size N . Let the spectral decomposition of

the normalized Laplacian be again given by Ldir = ΦΛΦT as in the undirected case. The

eigen decomposition of the normalized transition matrix is then given by Ndir = ΦΛ′ΦT

with same set of eigenvectors and eigenvalues related as Λ′ = I − Λ as in the undirected

case. Using the above relations, the probability transition matrix M t
dir for discrete directed

random walks at time t is:

M t(i, j) =
∑
k≥1

λ
′t
kΦk(i)Φk(j)

√
πj

pii
. (2.133)

The exponential matrix e−tΔMdir , denoting the probability transition at time t for continuous

time directed random walks is given by:

Ht(i, j) =
∑
k≥1

e−tλkΦk(i)Φk(j)

√
πj

πi

. (2.134)

In both the above equations, the (i, j)th term is the probability of starting at i and reaching

j in time t. It is important to note that all formulaes for undirected networks reconcile with

the ones for directed networks in the Laplacian modularity as well as DLM frameworks.

Thus, one efficacy of my formalism is that undirected networks are a special case of di-

rected networks. However, the Laplacian and DLM matrices for directed networks are not

symmetric in general.

Another appealing feature of my approach using random walks is that it provides a

rigorous formalism of modularity for directed networks. Modularity Qmod
dir for directed

networks is defined as:

Qmod
dir =

1

| E |
∑
i,j

[A− dind
T
out

| E | ]δ(i, j). (2.135)

Here din and dout are N × 1 length vectors of the in-degree and out-degree respectively

(diin =
∑

j Adir(j, i)) [140]. However, this definition of modularity has critical limitations
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as expressed in [148], particularly the inability to coherently account for edge directionality

but instead favor partitions with high edge densities. In order to circumvent this problem,

the modification proposed in [148] is to instead define modularity as:

Q̃mod
dir =

∑
i,j

[ΠMdir − ππT ]δ(i, j). (2.136)

However, as ΠMdir �= A in general, the above definition introduces an undesirable transfor-

mation to the original adjacency matrix, i.e., I introduce structural changes to the topology

of the original network. I overcome this limitation as well as limitation of original modular-

ity for directed networks with my own version which appears naturally from the properties

of random walks. It is given by:

Q̂mod
dir =

1

| E |
∑
i,j

[A− doutπ
T ]δ(i, j). (2.137)

This definition stems from defining modularity matrix as Dout[Mdir − M∞
dir] where M∞

dir

is the matrix of stationarity distribution. M∞
dir is given by �πT where � is a N × 1 vector

with all coordinates 1. As DoutMdir = A and DoutM
∞
dir = doutπ

T , Dout[Mdir − M∞
dir]

simplifies to [A− doutπ
T ] as in Equation (2.137). Note that the modularity matrix reduces

to D[M−M∞] for undirected networks. I use the relation M∞ = �πT where π = �D/vol

and DM = A to recover the original modularity matrix given by [A − dT d
vol

]. Overall, I

contend that Equation (2.137) offers a more coherent formalism of modularity for directed

networks than those proposed previously.

Signed networks: In signed networks, there are both positive and negative links. I perform

a separate analysis for positive and negative links:

S+(V+) = ST
+V+ + S+V+

S−(V−) = ST
−V− ++S−V−.

(2.138)

Here V−,V+ are the membership vectors indicating boundary nodes for the positive and

negative networks with connectivity potentials S+, S−. Following a similar analysis, the

quality function for signed networks is:

Qsgn =
∑
i,j

[(D+−A+)S++S+(D+−A+)−(D−−A−)S−−S−(D−−A−)]δ(i, j). (2.139)
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Here D+, D− are the positive and negative degrees, A+, A− are the positive and negative

adjacency matrices. In terms of the Laplacian for the positive and negative adjacency net-

work, the equation becomes:

Qsgn =
∑
i,j

[L+S+ + S+L+ − L−S− − S−L−]δ(i, j). (2.140)

Here A is the signed adjacency matrix and D is sum of signed diagonal degrees. Note that

when the resulting matrix is asymmetrical, I symmetrize it, in order to apply the Louvain

algorithm.

Multislice Networks: Another class of networks receiving a lot of attention are multislice

networks that are defined by coupling multiple adjacency matrices. Each slice encodes

connections that may vary over time or across different attributes of the network. [142]

generalizes modularity for multislice networks by making a connection between Laplacian

dynamics and null models. The general nature of my framework enables extending my

definition of communities to multislice networks with the additional feature of identifying

overlap unlike [142].

A natural feature of a multislice network is that it introduces replicates of each node in

every slice. Hence I get a set of N × Y nodes, Vmulti for which I wish to explore the com-

munity structure where Y is the number of slices. Let me represent nodes in unweighted

undirected multislice networks as is where the subscript s indicates the slice under con-

sideration for node i. The edges in the network Emultislice are broadly characterized into

two types, Eintra
multi indicating an edge between node pair [is, js] in the same slice and Einter

multi

indicating an edge between the same node i in different slices r and s (node pair [ir, is]). I

construct the multislice adjacency matrix Amulti in order to quantify random walks on the

network:

Amulti(is, js) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (is, js) ∈ Eintra
multi

ω if (ir, is) ∈ Einter
multi

0 otherwise.

(2.141)

Here the parameter ω controls the coupling between slices. The diagonal matrix is given

by Dmulti = diag(dis) where dis =
∑

jr
w(is, jr). I account for intra- and inter-slice



107

Figure 2.22. Laplacian modularity for a multislice network. A: An illustra-
tive multislice network with dashed inter-slice links and solid intra-slice links.
B: Constructing the adjacency matrix Amulti for the multislice network. The
blue areas correspond to intra-slice links and green blocks correspond to the
placement of inter-slice links.

interfacing links separately for internal and external nodes (see Figure 2.22). Let the set of

intra-slice interfacing links for subgraph V k be Ek
intra and the set of inter-slice interfacing

links be Ek
inter. Mathematically, the list of the four contributions are:

Sis(V k
in∩intra) =

∑
Ek

intra

(S(ms, is) + S(is,ms)) (2.142a)

Sis(V k
in∩inter) =

∑
Ek

inter

(S(ir, is) + S(is, ir)) (2.142b)

Sis(V k
out∩intra) =

∑
Ek

intra

(S(ns, is) + S(is, ns)) (2.142c)

Sis(V k
out∩inter) =

∑
Ek

inter

(S(ir, is) + S(is, ir)). (2.142d)

The net internal boundary cohesion is then calculated as (Sis(V k
in∩intra)+Sis(V k

in∩inter)).

Similarly, the net external boundary cohesion is calculated as (Sis(V k
out∩intra)+Sis(V k

out∩inter)).

For notational simplicity, let me denote (Sis(V k
in∩intra) + Sis(V k

in∩inter)) as Sis(V k
in), and

represent (Sis(V k
out∩intra)+Sis(V k

out∩inter)) as Sis(V k
out). Then the definitions of strong and

weak communities are given by:
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Community in the strong sense: The subgraph V k is a community in a strong sense if:

Sis(V k
in) > Sis(V k

out), ∀i ∈ V k. (2.143)

In a strong community, the internal boundary cohesion of all (intra or inter-slice) nodes is

greater than its external value for subgraph, V k.

Community in the weak sense: Then the subgraph V k is a community in a weak sense if:

∑
is∈V k

Sis(V k
in) >

∑
is∈V k

Sis(V k
out). (2.144)

In a weak community, the sum of internal boundary cohesion over all (intra or inter-slice)

nodes in V k is greater than the sum of external boundary cohesion, for subgraph, V k.

Using these sets of definition, the quality function to be optimized takes the familiar

form:

Q̃multi =
∑
is,jr

[(Dmulti − Amulti)S + S(Dmulti − Amulti)]δ(is, jr). (2.145)

The spectral representations for S can be derived by following the procedure in Section

2.2. The multislice quality function in Equation (2.146) is can identify overlap in multislice

networks using the same principles derived for single slice networks.

An alternate way is to neglect the cohesion from inter-slice coupling and consider it as a

free parameter. In order words, only the intra-slice edges are considered while calculating

the average similarity over the 1-neighborhood. In such a scenario, the quality function

takes the form of the quality function introduced in [142], and mathematically represented

as:

Q̃multi =
∑
is,jr

(
[(Ds

multi−As
multi)S

s+Ss(Ds
multi−As

multi)]δsr + δij(Cjsr +Cisr)

)
δ(is, jr)

(2.146)

Here superscript s indicates the slice under consideration, and Cjsr is the parameter repre-

senting the inter-slice weights.

Overall, in this section I show that the Laplacian modularity framework is one of the

most complete architectures to determine community structure in various network types.
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2.3 Deep Neural Networks

Convolutional neural networks (CNNs) are machine learning models inspired by bio-

logical neural networks. Unlike traditional deep architectures, CNN’s have the attractive

property of weight sharing reducing the number of variables to be learned. The principle

of weight sharing in convolutional filters is especially relevant [25] to image processing

where same atomic features reappear at different parts of the image. This is applicable

to 3D shapes as well. I use CNN’s for two applications: (1) Understanding 3D meshes

by introducing a novel technique for surface parametrization, so that, 3D meshes can be

analyzed similar to 2D images , and (2) Extend CNN’s for regression by introducing a

technique called deep matrix completion and apply it to a prototypical example of hand

tracking from depth images.

2.3.1 Learning geometry image of shapes using CNN’s

The choice of spherical parametrization has these critical advantages:

1. The cut is defined post parametrization, in contrast to other surface parameteriza-

tions (e.g., Floater) wherein the cuts are defined pre parametrization. This allows

me to efficiently sample additional cuts in order to achieve rotational invariance of

the geometry images to the cut location for learning shapes using CNN’s. Geome-

try images encoding intrinsic properties for different cuts are pose invariant, in the

sense they are either translated or rotated. Note, max pooling in CNNs are known to

achieve translational invariance.

2. Spherical symmetry allows creating a continuous geometry image without edge dis-

continuities, and hence, implicitly inform the CNN about the spherical domain via

padding. A cut defined pre parametrization won’t have this symmetry.

3. Spherical parametrization. results in geometry image with a fixed square boundary

within which all pixels encode shape information. Iterative cuts will either create
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Figure 2.23. Authalic vs Conformal: 2500 vertices of the hand mesh are color
coded (a,b) and mapped onto a square domain using authalic (c) and con-
formal (d) spherical parametrization. Conformal parametrization compress
high curvature points to dense regions. Hence, finger tips are all mapped to
a very small regions in (d). The 64× 64 geometry image is created by uni-
formly sampling the square domain (blue dots in c,d), and then interpolating
the nearby feature values. (e) Authalic geometry image encodes all tip fea-
tures. (f) The resolution of geometry image is insufficient to capture the tip
feature colors. This is validated by reconstructing shape from geometry im-
ages encoding x, y, z locations (g-h).

an atlas losing connectivity information between subregions, or create a free bound-

ary increasing memory complexity as many pixels outside the boundary contained

in geometry image don’t contain shape information. It also increases the learning

complexity as CNNs have to abstract the mask of inside/outside shape boundary.

Hence, spherical parametrization is the most natural setting for learning shapes using

CNNs. Next, the necessity of authalic parametrization arises from the fact that the number

of training samples and parameters in the CNN limit the input resolution of the geometry

image. Under the constraint of resolution, authalic geometry images encode more informa-

tion about the shape as compared to conformal geometry images (see Figure 2.23).

Spherical parametrization: I briefly overview authalic spherical parametrization tech-

niques and point the readers to [149] for literature on general surface parametrization. I
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Figure 2.24. Shape reconstruction using geometry images: The original teddy
model to the left is reconstructed (right) using geometry images corresponding
to the X, Y and Z coordinates (center).

also discuss prevalent deep learning paradigms and state the distinctiveness of my approach

to current methodologies

Although, methods for conformal (angle preserving) mesh parametrization abound [150–

152], there is relatively less work on authalic (area preserving) mesh parametrization. This

is because a conformal parametrization preserves local shape, which is useful to the graph-

ics community for feature oriented applications such as texture mapping. However, an au-

thalic parametrization of a shape is more compatible with the notion of convolving surface

patches with constant size (equi-areal) filters. Also, conformal parametrization induces se-

vere distortion to elongated shape structures common in deformable shape models [153].

Note that a mapping that is both conformal and authalic is isometric, and must have zero

Gaussian curvature everywhere. This is rare in the context of general 3D mesh models and

one must choose one or the other.

There exist several approaches to authalically parameterize a mesh with disk like topol-

ogy [154] but deformable shape surfaces usually admit the topology of a 2-sphere and are

compact manifolds. There exist only a handful of methods in literature that authalically

parameterize a shape on a spherical domain. Dominitz and Tannenbaum [155] and Zhao

et al. [153] use optimal transport for area-preserving mapping. Although efficient to im-
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plement, these methods introduce smoothing and sharp edges get lost [156]. This is a

critical drawback for CAD-like objects which contain several sharp edges. A method that

implicitly corrects area distortion by penalizing large triangle sizes is proposed in [157].

However, my experiments indicate that this approach fails to work in a practical setting.

A method similar in spirit to mine uses Lie advection to iteratively minimize the planar

areal distortion of a parametrization [158]. The proposed extension of their approach to the

3D spherical domain introduces several singularities and triangle flips, highly undesirable

for coherent 3D shape representation and analysis. Instead, the gradient vectors derived

from the area restoring diffeomorphic flow are mapped on the original mesh domain using

barycentric mapping to determine the corresponding vertex displacement coordinates in the

spherical domain.

As stated earlier, current methods employing deep learning for 3D shape analysis either

appropriate for rigid transformations such as ShapeNets [22], VoxNet [23], DeepPano [24]

or fail to utilize the power of CNN’s to learn hierarchical abstractions from raw input fea-

tures by introducing transformations to the convolutional filters [31] or the shape repre-

sentation [30]. Another critical bottleneck in voxel based approaches is that the 3rd extra

dimension introduces a large computational overhead. Consequently, the voxel grid is re-

stricted to a relatively low resolution (30 × 30 × 30 in ShapeNets and 32 × 32 × 32 in

Voxnet). Also, active voxels interior to the shape are not useful indicators of the overall

shape, as long as the shape boundary is well defined and does not contain internal voids.

Indeed, they are deterrent for analyzing shapes undergoing isometric transformations.

In contrast to all these approaches, I only represent the shape surface as a geometry

image wherein each pixel can encode any global or local feature of the shape, or the point

coordinates themselves. In my experiments, I encode intrinsic properties of points on the

surface as pixel intensities in the geometry image which serves as input to the CNN model.

The CNN then automatically learns discriminative abstractions of the 3D shape, useful for

shape classification or retrieval.

Authalic Parametrization of 3D shapes: In this section I first discuss preprocessing steps

to transform erroneous or high genus mesh models into a genus zero topology. Next I
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Figure 2.25. Progression of my authalic spherical parametrization algorithm:
Individual plots display the shape reconstructed from the geometry image cor-
responding to a spherical parameterizations. The area distortion associated
with the geometry image, and hence the spherical parametrization, progres-
sively decreases with iterations given an initial spherical parametrization.

state my novel approach for authalic parametrization. Note that I employ notation and

terminologies in the context of discrete differential geometry, unless stated otherwise.

Mesh preprocessing: A surface mesh, M is represented as V, F,E wherein V is the set

of vertex coordinates, F the set of faces and E the set of edges constituting all faces. With

abuse of notation, I term mesh models following the Euler characteristic to be accurate,

given by:

2− 2m = |V | − |E|+ |F | (2.147)

where |x| indicates the cardinality of feature x and m is the genus of the surface. Unfor-

tunately, most mesh models do not strictly follow the Euler characteristic, such as those

in the Princeton ModelNet benchmark. In such a scenario, I first find active points in a

grid structure with suitable resolution which are interior to or on the boundary of the mesh

model. This is akin to the process of voxelization. I then find the α-shape with radius equal

to the resolution of the grid. An α-shape is a generalization of the convex hull with radius

parameter r such that varying r from 0 to ∞ returns a range of shapes between the empty

shape and convex hull, respectively. I find the largest connected region of the resulting α-

shape and use the corresponding boundary vertices and facets for subsequent procedures.

The resulting shape is usually accurate barring degeneracies in the original model. In my

experiments I perform the above procedure only for models in the Princeton ModelNet [22]

benchmark.
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If the genus of an accurate mesh model is evaluated to be non-zero, I then find the

medial axis of the shape and sequentially fill all identified loops until the genus becomes

zero. I keep track of the imputed points which constitute the topological mask of the shape.

If this fails to return a genus-zero surface, I progressively increase the radius r of the α-

shape till the genus becomes zero. I mostly get a high fidelity representation of the original

shape after this procedure. Additional details for making a mesh accurate and transforming

a high genus surface to a surface topologically equivalent to a sphere are provided next.

I discuss the process for creating a topological mask for non genus zero surfaces for

models in Princeton ModelNet benchmark. As discussed, the procedure to convert a high

genus surface to a genus zero surface is to first fill topological holes identified using medial

axis, and then progressively increase the radius r of the α-shape till the genus becomes

zero. The additional points that fill the holes identified by the medial axis are indexed 0,

whereas the points on the original shape are indexed 1. A geometry image, Cidx created

from these points indexed 0 or 1 serves as a topological mask. However, the holes filled by

increasing the radius r of the α-shape does not introduce additional points onto the shape,

but instead introduces new faces. For such shapes, I calculate the point-wise Hausdorff

distance between points in the geometry image (X,Y and Z coordinates) corresponding to

the genus-zero shape and points on the original α-shape with r equal to the grid resolution.

It is expected that the Hausdorff distance be small (or equal to 0) for a point in the geometry

image which is contained in the original shape and be large for points lying on new faces in

the transformed α-shape. Hence, I encode the Hausdorff distance, D, as a similarity value

in the range [0; 1] such that values close to 0 indicate points on new faces and values close

to 1 indicate points in the original shape.

The topological mask, Ctop is then calculated as the Hadamard product of Cidx and

Cdist, where Cidx corresponds to the geometry image of points on the shape indexed with

values 0 or 1. Ctop then serves as a topological mask for the shape. The overall procedure to

derive Ctop for higher genus surfaces is to first calculate the medial axis and then calculate

Cidx corresponding to the 0; 1 points. If the genus of the resulting shape is 0 then Cidx

directly serves as Ctop for subsequent shape analysis. Else if the genus of the resulting shape
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is higher than 0, then I progressively increase r of the α-shape till the genus becomes zero

and calculate Cdist. This genus-zero shape serves as input to the authalic parametrization

procedure.

Authalic Parametrization: My method for authalic spherical parametrization takes as input

any spherically parameterized mesh and iteratively minimizes the areal distortion in 3 steps

described in detail below and outputs a bijective map onto the surface of a sphere. I use the

spherical parametrization suggested in [159] for initialization due to its speed and ease of

implementation. I evaluated different initial parameterizations [152] and my experiments

indicate that the final authalic parametrization is robust to initialization. I now detail the 3

steps:

(1) At every iteration I first evaluate a scalar harmonic field corresponding to the areal

distortion ratio of vertices in the original mesh and spherical mesh by solving a Poisson

equation. Mathematically, I solve

∇2g = δh (2.148)

where g is a function defined on the vertex set V , ∇2 transforms to the Laplacian operator

for a closed mesh surface [160], and δh is the areal distortion ratio wherein each element

of the vector is defined as

δhu =
As

u

Au

− 1 (2.149)

As
u is the spherical triangular area associated with the Voronoi region around vertex u and

Au is the triangular area associated with vertex u on the mesh model. The elements of the

discretized version of the Laplacian operator with cotangent weights are calculated as:

L(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
v

cotau,v+cotbu,v
2

if, v = u

− cotau,v+cotbu,v
2

if, v ⊆ N1(u)

0 otherwise

where N1(u) is the set of 1-ring neighbours of vertex u, au,v, bu,v are the two angles sup-

porting the edge connecting vertices u and v and EB indicates a boundary edge. I assume

that the triangulation is regular, i.e., au,v+bu,v ≤ π so that all weights are positive. Equation

(2.152) now becomes

Lg = δh (2.150)
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Figure 2.26. Left: Harmonic field corresponding to area distortion on sphere
displayed on the original mesh. Center: Area restoring flow on the spherical
domain mapped onto the original mesh as a quiver plot. Right: Enlarged plot
of area restoring flow.

The scalar field g is evaluated using the above equation at every iteration for the vector δh

(see Figure 2.26) . Due to the sparsity of L, Equation (2.150) can be efficient evaluated at

every iteration using the preconditioned bi-conjugate gradient method. However, I precal-

culate the pseudoinverse of L once, and use it for every iteration. This saves the overall

computational time. Note, k-rank approximation (k ≈ 300) of the pseudoinverse when

the |V | is large does not noticeably affect the final result. (2) I then evaluate the gradient

field of the of the harmonic function on the original mesh. This field is indicative of the

required vertex displacements on the spherical mesh so as to decrease the areal distortion

ratio. Consider a face fuvw in the original mesh with its three corners lying at u, v, w. Let n

be a unit normal vector perpendicular to the plane of the triangle. The gradient vector ∇g

for each face is solved as [161]:⎡
⎢⎢⎢⎣
v − u

w − v

n

⎤
⎥⎥⎥⎦∇g =

⎡
⎢⎢⎢⎣
gv − gu

gw − gv

0

⎤
⎥⎥⎥⎦

A unique gradient vector for each vertex is obtained as weighted mean of incident angle of

each face at the vertex and the corresponding gradient value as done in [158] :

∇gu =
1∑

fuvw
cuvw

∑
fuvw

cuvw∇g(fuvw) (2.151)
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fuvw are the faces in the one ring neighborhood of vertex u and cuvw is the angle subtended

at vertex u by the edge vw. Figure 2.26 shows the gradient low field using a quiver plot on

the mesh model.

(3) In contrast to [158] which operates directly on the spherical mesh domain, I displace

the vertices on the original mesh and then map these displacements onto the spherical mesh

using barycentric mapping, i.e., vertex displacements on the original mesh serve as proxy to

determine the corresponding displacements on the spherical mesh. Barycentric mapping is

possible because the original and spherical mesh have the same triangulation. Each vertex

in the original mesh is (hypothetically) displaced by:

v = v + ρ∇gv (2.152)

where ρ is a small parameter value. A large value of ρ leads to a large displacement of the

vertex and may displace it beyond the its 1-neighborhood. This causes triangle flips and

the error propagates through iterations. However, a small value of ρ leads to large con-

vergence time. I empirically set ρ equal to 0.01 in all my experiments which achieves the

right tradeoff between number of iterations to convergence and accuracy. The barycentric

coordinates of displaced vertices are evaluated with respect to triangles in the one-ring,

and the triangle with all coordinates less than 1 is naturally chosen as the destination face.

The vertex in the spherical mesh is then mapped to the corresponding destination face with

the same barycentric weights. The purpose of this indirect mapping procedure is twofold

(1) The vertex displacements minimizing areal distortion are constrained to be on the in-

put mesh, which in turn ensure the mapped displacements onto the spherical domain are

well behaved. (2) Additionally, the constraint that the vertices remain on the mesh model

minimize triangle flips and alleviate the need for an expensive retriangulation procedure

after each iteration. The iterations continue until convergence. In practice I stop the itera-

tions after the all areal distortion ratios fall below a threshold or the maximum number of

iterations has been reached. The maximum number of iterations is set to 100.

Learning shapes using geometry images: In this section I briefly discuss the creation of

a geometry image and intrinsic properties of a surface relevant to learning 3D shapes. I
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also discuss my CNN architecture for learning rigid as well as deformable shapes for shape

classification and retrieval.

Geometry image The spherical parametrization maps the surface of the mesh onto a sphere.

I then project this spherical surface onto an octahedron and cut it to obtain a square, thus

creating a geometry image. The advantage of mapping the surface onto an octahedron

over other regular polyhedra such as a tetrahedron or cube is that the signals can be linearly

interpolated onto a regular square grid with minimum stretch [35]. For brevity, I skip details

on the spherical area sampling for projecting points on the sphere onto an octahedron and

refer readers to [35] for details. The edges of the octahedron cut to flatten the polyhedron

are shown in Figure 2.27. Observe the reflective symmetry of the geometry image along

the vertical, horizontal and diagonal axes shown in Figure 2.27. Due to this symmetry, I

can create replicates without any discontinuities along any edge or corner of the image (see

Figure 2.29). This property is useful for implicitly informing a deep learning model about

the warped mesh the image represents. Additional discussion of this property is provided

ahead. The procedure of creating the geometry image is visually elucidated in Figure 2.27.

Intrinsic properties of shapes: Having obtained a geometry image from a mesh model,

I next discuss encoding the pixel values with intrinsic descriptors. There exist several

possibilities which I enumerate:

1. Principal curvatures: The two principal curvatures, κ1 and κ2 measure the degree by

which the surface bends in orthogonal directions at a point. They are in effect the

eigenvalues of the shape tensor at a given point.

2. Gaussian Curvature: The Gaussian curvature κ is defined as the product of the prin-

cipal curvatures at a point on the surface, κ = κ1κ2. The sign of Gaussian curvature

indicates whether a point is elliptic (κ > 0), hyperbolic (κ < 0) or flat (κ = 0)

3. Mean curvature: The mean curvature, H is the average of the principal curvatures at

a point on the surface, H = 1
2
(κ1 + κ2).
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Figure 2.27. Explanation of geometry image construction from a spherical
parametrization: The spherical parametrization (A) is mapped onto an oc-
tahedron (B) and then cut along edges (4 colored dashed edges in line plot
below) to output a flat geometry image (C). The colored edges share the same
color coding as the one in the octahedron. Also the half-edges on either side of
the midpoint of colored edges correspond to the same edge of the octahedron.

4. Heat kernel signature [25]: The heat kernel, ht is the solution to the differential

equation δht

δt
= −Δht (ht is the heat kernel). The heat kernel signature (HKS) at the

point is the amount of untransferred heat after time t , given by

ht(u, u) =
∑
i≥0

e−tλiΦi(u)Φi(u) (2.153)

Where λ and Φ are the eigenvalues and eigenvectors of the Laplace-Beltrami oper-

ator. The heat kernel is invariant under isometric transformations and stable under

small perturbations to the isometry, such as small topological changes or noise. Addi-

tionally, the time parameter t in the HKS controls the scale of the signature with large

t representing increasingly global properties, i.e., its a multiscale signature. Variants

of the heat kernel include the GMS [162], GPS [163]which differ in the weighting of

the eigenvalues.
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Figure 2.28. Intrinsic vs. Extrinsic properties of shapes. Top left: Original
shape. Top Right: Reconstructed shape from geometry image with cut edges
displayed in red. The middle and bottom rows show the geometry image encod-
ing the y coordinates and HKS, respectively of two spherical parameterizations
(left and right). The two spherical parametrization are symmetrically rotated
by 180 degrees along the Y-axis. The geometry images for Y-coordinate dis-
play an axial as well as intensity flip. Whereas, the geometry images for HKS
only display an axial flip. This is because HKS is an intrinsic shape signature
whereas point coordinates on a shape surface are not.

Figure 2.28 discusses the difference between intrinsic and extrinsic shape properties in

the context of geometry images. I discuss the pros and cons of each intrinsic property in

the scope of deep learning using CNN next.

Convolutional Neural Net: CNNs is a machine learning model inspired by biological neu-

ral networks. Unlike traditional deep architectures, CNN’s have the attractive property of

weight sharing reducing the number of variables to be learned. The principle of weight

sharing in convolutional filters is especially relevant [25] to image processing where same

atomic features reappear at different parts of the image. This is applicable to 3D shapes as

well. From the purview of intrinsic learning of shapes using CNN, the principal curvatures

are the most atomic property of a point on the surface. The Gaussian and Mean curvature

are functions of the principal curvatures, and hence, are expected to provide little additional
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cues for learning shapes. The heat kernel signature too can be interpreted as an extension

to curvature, wherein the curvature of a point is estimated over balls of larger radius con-

trolled by the time parameter t [25]. The heat kernel is useful for enforcing consistency

to geometry images when local curvature calculations are affected by noise. I discuss this

point to a greater detail in the experiments section.

I discuss the salient features of my CNN based learning of geometry images Different

from traditional image based CNNs. First, I pad the geometry image with replicates of

the original image to implicity inform the CNN about the warped structure of the original

mesh. Owing to the octahedral symmetry, there are no edge and corner discontinuities

if the 4 connected replicates to a geometry image are rotated by 180 degrees (or flipped

once along the x-axis and y-axis each). This is visually illustrated for the geometry images

encoding the x, y, and z coordinates of the mesh model in Figure 2.29. No subsequent

layer in the CNN is padded so as to not distort this information. Second, the orientation of

the geometry image is dependent on the poles of the spherical parametrization, which are

ambiguous independent of shape orientation due to my flow based authalic parametrization.

When the shapes are known to be upright, the z-axis ambiguity is naturally remedied by

incorporating an additional feature map in the geometry image encoding the angle between

a vertex normal and the z-axis [29]. This works better in practice than say realigning

the north pole of the derived spherical parametrization with the highest point along the

centroid axis. However, note that this is an extrinsic representation. The x and y axis

ambiguities can be then be approximately resolved by rotating the spherical parametrization

in equal intervals about the z-axis for each shape. This however is not applicable to general

databases. In such a case, additional samples are created by fixing a predetermined number

of points to be the north pole of the spherical parametrization as discussed later. The pixel

mean is subtracted from each feature map before feeding the geometry image into a CNN.
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Figure 2.29. Padding structure of geometry images: The geometry images for
the 3 coordinates are replicated to produce a 3× 3 grid. The center image in
each grid corresponds to the original geometry image. Observe no discontinu-
ities exist along the grid edges.

2.3.2 Deep learning for matrix completion

The easy availability of commercial depth cameras marked the advent of real time solu-

tions to the human pose estimation problem [164]. The success of hand tracking naturally

depends on synthesizing my knowledge of the hand (e.g., geometric shape, constraints on

pose configurations) and latent features of the RGB-D data stream (e.g., region of interest,

key feature points like finger tips, and temporal continuity). In this dissertation, I propose

a novel method to achieve this synthesis by drawing on collaborative filtering approaches

for recommender systems. My main insight is that a recommender system (e.g., Netflix)

is very similar to a pose tracking system. Both systems have some intrinsic and extrinsic

information about its constituent objects, the users in a recommender system and individual

poses in a tracking system. The intrinsic knowledge of the hand in a tracking system cor-

responds to known user ratings in a recommender system. Similarly, the extrinsic RGB-D

point cloud information corresponds to the metadata available about users (e.g., geograph-

ical locations, background, and interest). Specifically, the hand pose estimation problem

is analogous to the cold-start problem in recommender systems. The cold-start problem in
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recommender systems is to suggest personalized items to a new user with unknown pref-

erences. In analogy to a tracking system, the hand pose estimation problem is to evaluate

the unknown pose parameters of the kinematic hand model for a new point clouds appear-

ing at every instant of time via a RGB-D sensor. A common technique to alleviate the

cold-start problem is to suggest items to a new user based on recommendations available

for like-minded users. The like-mindedness or similarity between users is evaluated using

metadata such as age, gender, geographical location, interests, etc.

I propose a deep matrix completion approach to estimate the 3D pose of a hand using

depth data from commercial 3D sensors. I discriminatively train convolutional neural net-

works to output a low dimensional activation feature given a depth map. This activation

feature vector is representative of the global or local joint angle parameters of a hand pose.

I efficiently identify ’spatial’ nearest neighbors to the activation feature, from a database of

features corresponding to synthetic depth maps, and store some ’temporal’ neighbors from

previous frames. My matrix completion algorithm uses these ’spatio-temporal’ activation

features and the corresponding known pose parameter values to estimate the unknown pose

parameters of the input feature vector. My database of activation features supplements

large viewpoint coverage and my hierarchical estimation of pose parameters is robust to

occlusions. I show that my approach compares favorably to state-of-the-art methods while

achieving real time performance (≈ 32 FPS) on a standard computer.

Preliminaries: In this section, I briefly describe my 3D hand model and discuss my method

to extract the region of interest corresponding to the hand which serves as input to my hand

pose estimation method.

Hand model: I use a kinematic hand model with 21 degrees of freedom (DOF), rep-

resented as H(θ, φ), as standard in hand pose estimation literature (see Figure 1.7d). θ

denotes the set of 18 joint angle parameters and φ is the set of 3 global translation param-

eters (x, y and z) of the hand.

Region of interest extraction: Unlike the body, the hand occupies a relatively small re-

gion in the overall depth image obtained from the 3D depth camera. Hence, I preprocess the

depth image to only include values that lie in the range of [50, 500] mm under the premise
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that the hand lies within this range. I then do a largest blob detection as an indicator of

the hand segment, followed by by median filtering for noise removal, depth normalization

so that values lie in the range [0, 255], and finally resize the image while maintaining the

aspect ratio to obtain a 64×64 depth image.The centroid of the blob in the original image

marks the global position, φ. In more extreme settings (for ranges upto 2000 mm), I use a

colored wristband as a simple indicator of the hand region as done in [88, 165]. Even in a

close range scenario, the wristband helps removing extraneous pixels like those below the

wrist, leading to better performance.

Dimensionality Reduction using Deep Learning: It is well known that the activation fea-

tures from the intermediate hidden layers of a ConvNet can be re-purposed across domains.

This suggests that the activation feature of a depth image itself contains discriminative cues

about its overall shape and form of the hand, in the context of hand pose estimation. The

thrust of my approach relies on the contention that a pool of nearby activation features

is better able to reach consensus about the hand’s orientation and shape. This introduces

two challenges (1) The activation features in the population should conform to the activa-

tion features obtained from different individuals in diverse real settings. Additionally, they

should be accurately annotated with their ground truth labels (joint angles or positions) (2)

The population of activation features must be large enough to provide robust nearest neigh-

bors to any input activation feature, however should be efficiently retrievable and consume

limited memory. A straightforward approach is to directly use the depth data gathered from

3D sensors to train a ConvNet and store the corresponding activation features. However,

creating a such database of hand poses to cover full range of hand articulations with accu-

rate ground truth labels is a tedious task. In this section, I describe how I generate such a

population of activation features from synthetic dataset, reflective of real data.

Synthetic population of realistic hand poses: I generate synthetic depth maps by first im-

posing static (e.g., range of motion, joint length, location) and dynamic (e.g., among joints

and fingers) constraints listed in [166]3. I then uniformly sample each of the 18 joint param-

3The availability of rigourous constraints in terms of joint angles is the main reason I choose angles over joint

position in my hand pose method.



125

Figure 2.30. The viewpoint coverage of the hand model. Under the assumption
that the hand appears closest to the camera, my system covers nearly the entire
viewpoints.

eters in this restricted configuration space. This ensures that the depth maps are reflective

of real poses covering a wide range of hand articulations. However, data from 3D sensors

are prone to noise, distortion and additional artifacts. Hence, I add gaussian noise N(0, σ2)

to the synthetic depth maps wherein the standard deviation σ is chosen from a range of

[0, 2] by uniform sampling. The viewpoint coverage (coverage due to the 3 wrist rotation

angles θW = {θWr , θWp , θWy }) is illustrated in Figure 2.30. My large coverage ensures the

robustness my method to camera viewpoint changes and not restricted to near frontal poses.

I discuss the size of the synthetic population in context to ConvNets in the next subsection.

Activation features using ConvNet: ConvNet and its variants are the current state of the art

architecture for numerous classification tasks such as object detection, scene recognition,

texture recognition and fine grained classification. However, hand tracking is effectively a

regression task. My preliminary experiments with deep learning indicated that ConvNets

do not adapt to regression as well as they do for classification. Consequently, my activation
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Table 2.1.

Accuracy and memory comparison of global pose initialization.

Model Accuracy Memory Settings

RF 57.45 % 1.30 GB 22 Depth, 70 Trees

59.04 % 1.87 GB 22 Depth, 100 Trees

ConvNet 71.01 % 2.12 MB 20 Epochs

72.30 % 2.12 MB 25 Epochs

PCA 5.72 % None

features are computed using ConvNet for classification instead of regression. These activa-

tion features feed into my matrix completion method which implicitly regresses and outputs

the estimated joint angle parameters. The classification of joint angles into quantized bins,

and hence, calculation of the activation feature in the penultimate layer, is performed by the

ConvNet architecture. Observe that the penultimate layer corresponding to the activation

feature is a 32 dimensional vector so as to reduce memory usage in storing the population

of activation features.

There are two extremal strategies for quantization. The first strategy is to quantize each

joint angle separately for a total of 21 ConvNets. However, this is inefficient both in terms

of speed and memory. The second is to use an all-in-one strategy to train all joint angle

parameters simultaneously. However, it would be impossible to learn an accurate classi-

fier in such a high dimensional space even with a nominal number of bins. Hence, I use

a 2-stage hierarchical strategy which satisfactorily balances computational time, memory

requirement and classification accuracy.

In Stage 1 the activation feature associated with the 3 global rotation angles, θW =

{θWr , θWp , θWy } is calculated and input into the matrix completion method along with a pool

of nearest neighbors. The output of the matrix completion method is used to infer the

correct rotation bin. For each rotation bin, five ConvNets are trained to output the activa-
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tion feature associated with each of the five fingers. The ConvNets in Stage 2 are trained

on images within the bin to simplify learning and also on images in adjacent bins to pre-

vent boundary errors. I used 200K images for Stage 1 global regression (see Figure 1.7c)

wherein the roll, pitch, yaw angles were quantized into 144 bins. Subsequently, 5 Convnets

for each of 144 bins were trained on 10K images within the bin and 10K randomly chosen

images in adjacent bins. Training converged after 20 Epochs for the global bin and approx-

imately 10 Epochs for the local rotation bins. The discrete quantization over the joint angle

values for each finger is as follows: thumb (144), index (144), middle (36), ring (144), and

little (144).

The activation feature associated with the global rotation is critical to the overall ac-

curacy of my approach because this step influences all subsequent ones. To demonstrate

the efficacy of ConvNet relative to other approaches, I detail the classification accuracy of

ConvNet for global rotation relative to PCA [85] and random forest (RF) [89]. I used 100K

depth images because of RF’s memory constraints. Table 2.1 shows that ConvNet achieves

a very high accuracy with minimal memory requirement.

Deep Matrix Completion: The matrix completion algorithm runs 6 times: once for the 3

global rotation angles and 5 times for estimating the 15 joint angle parameters associated

with the fingers. An iterative approach as the one in [91] is inefficient. Instead I evaluate

the unknown parameters in a single shot by assuming a low rank matrix. I discuss the

details of my nearest neighbor retrieval to create a pool of activation features followed by

the matrix completion method below.

Extracting pool of activation features: My deep matrix completion method takes spatio-

temporal nearest neighbors as input. Acquiring temporal nearest neighbors are trivial as

they are simply the activation features from the previous frames. However, brute force near-

est neighbor evaluation from say the 200K global activation vectors introduces a computa-

tional bottleneck unsuitable for realtime application. My solution to alleviate this problem

is to use the top classes predicted by the softmax function in CNN to first reduce the search

space. I then use highly efficient product quantization based nearest neighbor approxima-

tion [167] with 8 subquantizers to retrieve the desired number of nearest neighbors. Details



128

Table 2.2.

Overall architecture of my convolutional network. (Conv: convolutional layer,
Pmax: max pooling layer, ReLU: rectified linear units layer, Smax: softmax
layer).

Layers # Kernels Filter size Stride Pad

1 Conv 16 5×5×1 1 2

2 Pmax 2 0

3 ReLU

4 Conv 32 5×5×16 1 2

5 ReLU

6 Pmax 2 0

7 Conv 32 5×5×32 1 2

8 ReLU

9 Pmax 2 0

10 Conv 64 5×5×32 1 2

11 ReLU

12 Pmax 2 0

13 Conv 128 4×4×64 1 0

14 ReLU

15 Conv 32 1×1×128 1 0

16 ReLU

17 Conv 144 1×1×32 1 0

18 Smax

of product quantization are skipped for brevity. In practice, I found retrieving a higher

fraction of approximate nearest neighbors by product quantization and then selecting the

desired number of nearest neighbors using brute force search from this reduced subset to

be more robust than direct retrieval.
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Figure 2.31. The low dimensional activation features are learned from the
sixth convolutional layer. I use these activation features in a collaborative
spatio-temporal fashion to estimate pose parameters using efficient nearest
neighbor search and my novel DMC model.

The DMC model: Let n be number of spatial nearest neighbors, D1 ∈ R
n×r be the r

dimensional activation vectors and P1 ∈ R
n×m be the m desired joint angle parameters

being estimated of the n neighbors. In addition, let vector d2 ∈ R
1×r be the r dimensional

activation feature output from ConvNet. Let vector p2 ∈ R
1×m be the unknown parameters.

M =

⎡
⎣ D1 P1

d2 p2

⎤
⎦ (2.154)

My task is to estimate p2 given the other 3 block matrices. Assuming a low rank structure

of matrix M this reduces ro solving:

p2 = d2(D1)
−1P1, (2.155)

The proof of the above result is detailed next.
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I present a mathematical derivation of the DMC model which estimates the unknown

pose vector p2 ∈ R
1×m from the activation feature matrix D = [D1;d2] and the param-

eter matrix P1. I first search n spatially nearest hand poses to the input hand from my

database, and then their activation features and annotated parameters are respectively fed

into the matrix D and P. Additionally, t numbers of previous frames are taken as temporal

neighbors to fill the corresponding matrices. Next, I kernelize the feature matrix D in the

form of radial basis function (RBF):

K (D,D) = exp

(
−‖DTD‖2

2σ2

)
, (2.156)

where σ denotes a variance of the dataset (σ=200). The auxiliary knowledge about neigh-

bors (i.e, kernelized similarity matrix K) directly corresponds to joint parameters P, and

thus the estimation problem can be simplified. Now I suppose that p2 is a submatrix of the

matrix X.

X =

⎡
⎣ K1 P1

k2 p2

⎤
⎦ (2.157)

where K1 ∈ R
(n+t)×r, k2 ∈ R

1×r, and P1 ∈ R
(n+t)×m.

Property 4 Suppose that the matrix X of rank k is partitioned as in Equation (2.157) and

the matrix p2 also has rank k. Then

p2 = k2(K1)
+P1, (2.158)

where + denotes the Moore-Penrose pseudo-inverse.

Proof The proof of Equation (2.158) is very similar to that of Lemma 1 in [168]. The

matrix X follows an SVD of rank k, thus X = UΣV ′ where Σ = diag(σ1, σ2, ..., σk),

U ∈ R
(n+t+1)×k, and V ∈ R

(r+m)×k. Assume U1 ∈ R
(n+t)×k and U2 ∈ R

1×k, subsequently

V1 ∈ R
r×k and V2 ∈ R

m×k. Then, I can rewrite K1 = U1ΣV
′
1 ,P1 = U1ΣV

′
2 ,k2 = U2ΣV

′
1 ,
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and p2 = U2ΣV
′
2 . Let K1 = LR, where L = U1S and R = SV ′

1 for S =
√
Σ. From

MacDuffee’s theorem,

K1
+ = R+L+

= R′(RR′)−1(L′L)−1L′

= V1S(SV
′
1V1S)

−1(SU ′
1U1S)

−1SU ′
1

= V1(V
′
1V1)

−1Σ−1(U ′
1U1)

−1U ′
1

(2.159)

Consequently, K2(K1)
+P1 is

K2(K1)
+P1 = (U2ΣV

′
1)V 1(V ′

1V1)
−1Σ−1

(U ′
1U1)

−1U ′
1U1ΣV

′
2

= U2ΣV
′
2

= p2.

(2.160)

In practice, I observed that kernelizing the feature matrix and regularizing it by adding

a small constant, c to the diagonal, in the spirit of ridge regression makes the output more

robust. This parameter c is set to 0.001 in all my experiments. I use the RBF kernel with

sigma equal to the variance of the dataset (σ = 200). Therefore, the solution is given by:

p2 = k2 (K1 + cI)−1 P1, (2.161)

A straightforward extension beyond including just the spatial neighbors is to also in-

clude t temporal neighbors from previous frames. This reduces jitter and improves the final

quality of my solution. I use 60 nearest neighbors and 16 temporal neighbors for the global

parameter estimation. For the 15 local angles, I use 24 nearest neighbors and 4 temporal

neighbors.

2.4 Feedback Loops in Systems

Collaborative filtering is a popular technique to infer users’ preferences on new content

based on the collective information of all users preferences. Recommender systems then
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use this information to make personalized content suggestions to users. When users accept

these recommendations it creates a feedback loop in the recommendation system, and these

loops iteratively influence the collaborative filtering algorithm’s predictions over time. In

this dissertation, I investigate whether it is possible to identify items affected by these feed-

back loops. I state sufficient assumptions to deconvolve the feedback loops while keeping

the inverse solution tractable. I furthermore develop a metric to unravel the recommender

system’s influence on the entire user-item rating matrix. I use this metric on synthetic and

real-world datasets to (1) identify the extent to which the recommender system affects the

final rating matrix, (2) rank frequently recommended items, and (3) distinguish whether a

user’s rated item was recommended or an intrinsic preference. My results indicate that it

is possible to recover the ratings matrix of intrinsic user preferences segregated from items

recommended to the user by the recommender system using only a single snapshot of the

ratings matrix without any temporal information.

2.4.1 Types of feedback

User feedback is commonplace in most recommender systems based on collaborative

filtering. User feedback in collaborative filtering systems is categorized as either explicit

feedback which includes input by users regarding their interest in products [169], or im-

plicit feedback such as purchase and browsing history, search patterns, etc. [170]. There

has been a considerable amount of work on incorporating the information from these two

types of user feedback mechanisms in collaborative filtering algorithms in order to improve

and personalize recommendations [171, 172]. Both types of feedback affect the item-item

or user-user similarities used in the collaborative filtering algorithm for predicting future

recommendations [173]. In this work I do not focus on improving collaborative filtering

algorithms for recommender system by studying user feedback, but instead, my thrust is to

recover the each user’s intrinsic preference of an item by separating the rating bias intro-

duced by the recommender system due to feedback.
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Another line of work based on user feedback in recommender systems is related to

understanding the exploration and exploitation tradeoff [174] associated with the training

feedback loop in collaborative filtering algorithms. Solutions to this dilemma are com-

monly used to maximize clicks or advertising revenue [175]. This line of research evaluates

‘what-if’ scenarios such as evaluating the performance of alternative collaborative filtering

models to the one used for data collection or, adapting the algorithm based on user-click

feedbacks to maximize a notion of reward. Popular approaches towards this end include the

multi-armed bandit setting [176,177] in reinforcement learning and counterfactual learning

systems [178]. In contrast to these methods which find out actions or recommendations in

order to maximize payoff in an alternate model or dynamically evolving scenarios, I tackle

the problem of recovering the true ratings matrix if feedback loops were absent.

My mechanism to deconvolve feedback effects in recommender systems is similar in

spirit to deconvolution algorithms introduced in the network science literature which aim

to separate direct effects from indirect dependencies in biological networks [179, 180].

Indeed, my approach can be viewed as a generalization of their methods for general rect-

angular matrices. I now provide my model for a recommender system and describe an

algorithm to deconvolve the feedback loops.

2.4.2 Deconvolving feedback loops

In this section, I first state equations for a simplified recommender system with feed-

back loops and then derive an implicit relationship between the true rating matrix and

the observed rating matrix. I state the assumptions under which the true rating matrix

is recoverable (or deconvolvable) from the observed matrix, and provide an algorithm to

deconvolve the observed matrix using the singular value decomposition (SVD).

A model recommender system: Consider a ratings matrix R of dimension m × n where

m is the number of users and n is the number of items being rated. Users are denoted by

subscript u, and items are denoted by subscript i, i.e., Ru,i denotes user u’s rating for item

i. As stated in (1.3), the observed rating matrix is a convolution of the true user ratings and
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Figure 2.32. Figure A: A ratings matrix with recommender induced ratings
and true ratings; Figure B: Feedback loop in recommender system wherein
the observed ratings is a function of the true ratings and ratings induced by a
recommender system.

ratings as a consequence of the recommender system. My objective is to decouple Rtrue

from Rrecom given the matrix Robs. Although this problem seems intractable, I list a series

of assumptions under which a closed form solution of Rtrue is deconvolvable from Robs

alone.

Assumption 1: The feedback in the recommender occurs through the iterative process

involving the observed ratings and an item-item similarity matrix S:

Robs = Rtrue +H � (RobsS). (2.162)

Recall that � indicates Hadamard, or entrywise product, given as: (H � R)u,i =

Hu,i ·Ru,i. This assumption is justified because in many collaborative filtering techniques,

Rrecom is a function of the observed ratings Robs. The matrix H is an indicator matrix over

a set of items where the user followed the recommendation and agreed with it. This matrix

is essentially completely unknown and is essentially unknowable without direct human

interviews.
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The model recommender system Equation (2.162) then iteratively updates Robs based

on commonly rated items by users. This key idea is illustrated in Figure 2.32. The recursion

progressively fills all missing entries in matrix Robs starting from Rtrue. Mathematically, I

get

Robs = Rtrue +H(1) �
((

Rtrue +H(2) � (RobsS)
)
S
)

= Rtrue +H(1) �RtrueS

+H(1) � (H(2) � (RtrueS))S + · · ·

(2.163)

Thus, I see that Robs is an implicit function of Rtrue and S.

Assumption 2: I approximate the Hadamard product with a probability parameter α ∈
(0, 1].

I briefly justify this assumption. Note that Robs becomes denser with every iteration,

and hence the higher order Hadamard products in the series fill fewer missing terms. In

my simplified system, I model the selection matrix H and it’s Hadamard problem in expec-

tation and replace the successive matrices H with independent Bernoulli random matrices

with probability α. Taking the expectation allows me to replace the matrix H with the

probability parameter α itself. The effect, however, is similar. Higher powers of α produce

successively less of an impact, just as in the true model. This function is instead carried out

by α in the reformulated equation, wherein higher powers of α tend to 0 and progressively

have lesser effect on the summand:

Robs = Rtrue + αRtrueS + α2RtrueS
2 + α3RtrueS

3 + · · ·
= Rtrue(I + αS + α2S2 + α3S3 + · · · )

(2.164)

It is now possible to recover Rtrue by inverting the matrix (I + αS + α2S2 + α3S3 + · · · ),
but S is apriori unknown. Thus, my next assumption.

Assumption 3: The item-item similarity used in the recommender system is induced by

Rtrue.

Although it is ideal to represent S as a dynamic function of Robs, the temporal depen-

dency of S on Robs makes the problem more intricate. Instead, I represent S in terms of

Rtrue, which decouples the interaction effects between the recommender system and users

by only considering the direct relationships in the similarity calculation.
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I am now faced with the task of constructing a valid similarity metric using Rtrue. To-

wards this end, I make my final assumption. Assumption 4: The user mean R̄u in the

observed and true matrix are roughly equal: R̄
(obs)
u ≈ R̄

(true)
u . The Euclidean item norms

‖Ri‖ are also roughly equal: ‖R(obs)
i ‖ ≈ ‖R(true)

i ‖.

These assumptions are justified because ultimately I are interested in relative prefer-

ences of items for a user and unbiased relative ratings of items by users. These can be

achieved by centering users and the normalizing item ratings, respectively, in the true and

observed ratings matrices. The induced similarity metric then becomes:

S(i, j) =

∑
u∈U(Ru,i − R̄u)(Ru,j − R̄u)√∑

u∈U(Ru,i − R̄u)2
√∑

u∈U(Ru,j − R̄u)2
(2.165)

This metric is known as the adjusted cosine similarity, and preferred over traditional

cosine similarity because it mitigates the effect of rating schemes over users [181]. Using

the relations:

R̃u,i = Ru,i − R̄u; and (2.166)

R̂u,i =
R̃u,i

‖R̃i‖
=

Ru,i − R̄u√∑
u∈U(Ru,i − R̄u)2

(2.167)

the governing expression of my simplified recommender (2.164) becomes

R̂obs = R̂true(I + αR̂
T

trueR̂true + α2(R̂
T

trueR̂true)
2

+ α3(R̂
T

trueR̂true)
3 + · · · )

(2.168)

I see that the centering and normalizing both sides of the equation results in R̂obs being

explicitly represented in terms of R̂true and α. I discuss the mechanism of solving this

equation in my main theorem.

The algorithm for deconvolving feedback loops

Theorem 2.4.1 Assuming the recommender system follows (2.168) and the singular value

decomposition of the observed rating matrix is, R̂obs = UΣobsV
T , the deconvolved matrix

Rtrue of true ratings is given as UΣtrueV
T , where the Σtrue is a diagonal matrix with

elements:

σtrue
i =

−1

2ασobs
i

+

√
1

4α2(σobs
i )2

+
1

α
(2.169)



137

Figure 2.33. (a) to (e): My procedure for scoring ratings based on the
deconvolved scores with true initial ratings in cyan and ratings due to recom-
mender in red. (a) The observed and deconvolved ratings. (b) The RANSAC
fit to extract straight line passing through data points for each item. (c) Rota-
tion and translation of data points using fitted line such that the scatter plot is
approximately parallel to y-axis and recommender effects are distinguishable
along x-axis. (d) Scaling of data points used for subsequent score assignment.
(e) Score assignment using the vertex of the hyperbola with slope θ = 1 that
passes through the data point.

where α is between 0 and 1.

Proof Both U ,V are orthogonal matrices of dimension m ×m, and n × n, respectively

and Σtrue is a non-negative diagonal matrix of singular values. Then, the eigenvalue de-

composition of S is given as:

S = R̂
T
R̂

= (UΣtrueV
T )TUΣtrueV

T

= V Σ2
trueV

T .

(2.170)

By applying the Taylor series summation in Equation (2.168), I have:

R̂obs = R̂true(I − αS)−1. (2.171)

Note that this is valid if α(σtrue)2i < 1 for all i in order for the series to converge. Below, I

show that this holds for the choice of σtrue in the theorem. In spectral form, I then have

(I − αS)−1 = V (I − αΣ2
true)

−1V T . (2.172)
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Hence,

R̂obs = UΣtrueV
TV (I − αΣ2

true)
−1V T

= UΣtrue(I − αΣ2
true)

−1V T .
(2.173)

Let the singular value decomposition of the observed rating matrix R̂obs be

R̂obs = UΣobsV
T (2.174)

Using the Equations (2.173) and (2.174) I find

Σobs = Σtrue(I − αΣ2
true)

−1 i.e. (2.175)

σobs
i =

σtrue
i

1− α(σtrue
i )2

∀i. (2.176)

Solving the quadratic in σtrue
i in terms of σobs

i , and considering only the positive value, I get:

σtrue
i =

−1

2ασobs
i

+

√
1

4α2(σobs
i )2

+
1

α
(2.177)

What remains to show is that this choice of σtrue
i satisfies the convergence assumption

above. This can be inferred through the following inequalities:√
1

4α2(σobs
i )2

+
1

α
<

√
1

α
+

√
1

4α2(σobs
i )2√

1

4α2(σobs
i )2

+
1

α
<

√
1

α
+

1

2ασobs
i

−1

2ασobs
i

+

√
1

4α2(σobs
i )2

+
1

α
<

√
1

α

σtrue
i <

√
1

α

α(σtrue
i )2 < 1

(2.178)

In practical applications, the feedback loops are deconvolved by taking a truncated-

SVD (low rank approximation) instead of the complete decomposition. In this process,

I naturally concede accuracy for performance. I consider the matrix of singular values

Σ̃obs to only contain the k largest singular values (the other singular values are replaced

by zero). The algorithm is simple and easy to compute as it just involves a singular value

decomposition of the ratings matrix.
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3. APPLICATIONS AND RESULTS

In this chapter I discuss the applications of my theoretical framework of physical laws to

networks, shapes and images in the order they were introduced.

3.1 Random Walk Based Results on Shapes and Images

The use of multiscale kernels is discussed for shape analysis, and results of the diffusion

modulus criterion are shown on standard benchmarks.

3.1.1 Application of multiscale kernels to shape analysis

The multiscale kernels consolidate popular metrics under a single framework and I

discuss possible applications.

Multiscale Kernel: In the last chapter, I stressed that the intuition driving the formula-

tion was that of using the rate of change instead of the probability values, and hence, is

fundamentally different from the heat kernel. However, the resulting kernel is functionally

equivalent to heat kernel, i.e., exponential with parameter n (instead of t) with logarithmic

weighting of eigenvalues (λ−n = e−n lnλ with λ > 0). My first observation is that as I

average over entire time, the resulting kernel possesses robust multiscale characteristics.

Second, the logarithmic weighting of eigenvalues (instead of linear in heat kernel) makes

the multiscale kernel discriminative at all scales, unlike the heat kernel which converges to

a uniform distribution. To see this, logarithm of eigenvalues in the interval (0, 1) are neg-

ative, hence contribute exponentially to the Green’s function and for very large scales, i.e,

as n → ∞, the sum will be dominated by the normalized Fielder vector and second eigen-

value. Specifically, the multiscale kernel embedding will tend to
√
volnλ

−n/2
2 ΦT

2D
−1/2 in

the limit . Inspired by the remarkable informative property of the heat kernel and these

observations, I define the dual Green’s Mean Signature (GMS) of vertex u to be |( Gn
uu∑

v Gn
vv
)|
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(a) Color plot of difference of GMSn (b) Color plot of difference of GMSα

(c) Green’s over n (d) Green’s over β (e) Heat Kernel (HKS) (f) Wave Kernel (WKS)

Figure 3.1. Green’s Mean Signature difference (GMSn and GMSα) be-
tween finger and other points on David model (top) based on entire range of
parameters. In color plot red indicates similar and cyan indicates dissimilar,
α = 1 for GMSn and n = 2 for GMSα. (a)-(d) represent the 4 signatures
for 6 anchor points. Signatures for 2 fingers and 2 feet are indistinguishable
because of symmetry for all signatures. Note GMSn and GMSα are discrim-
inative at all scales (unlike HKS) and multiscale (unlike WKS).

and |( Gα
uu∑

v Gα
vv
)|, and name them GMSn and GMSα, to indicate the multiscale nature over

moment and influence parameter respectively. The α parameter used in my multiscale

kernels has a direct semblance with the parameter t used to derive multiscale biharmonic

kernels. Note the parameter α (hence β) performs a frequency shift of the eigenvalues,

and hence, indirectly enforces partial support of the eigenfunctions. Interestingly, the wave

kernel signature (WKS) [13] can be linked to random walks, specifically maximal entropy

random walks (MERW) [182]. The transition matrix (MΨ) for MERW is given by

MΨ(u, v) =
M̄(u,v)Φ̄0v

λ̄0Φ̄0u

where M̄ = DM = D − Lc and λ̄, Φ̄ are associated eigenvalues and eigenvectors re-

spectively. The unique stationary distribution is (Φ̄0i)
2 and can be interpreted as the prob-
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ability of finding a particle in the ground state of the operator (−M̄ ) with wave function

Φ̄0i [183]. The particular choice of log-normal energy distribution in WKS is derived from

a perturbation-theoretical analysis. GMSn emphasizes on global features and has higher

‘specificity (detect false negative errors)’ while GMSα suppresses large-scale features and

has higher ‘sensitivity (detect false positive errors)’, similar to HKS and WKS respec-

tively, as argued in [184]. Having shown the interrelationship to HKS, WKS and multiscale

biharmonic kernels, I now discuss computation and compare my signatures. As mentioned

earlier, I find the 300 smallest eigenvalues and associated eigenvectors of L, or alternatively

solve for the generalized eigenvalue problem LcΦ = DλΦ. Using the formulae in the pre-

vious sections, I calculate the GMSn or GMSα as required by fixing the range of n to

[0, �log(1/λ2)] and range of β to [0, ϑλ300] where �, ϑ are scale tuning parameters with 100

linear increments over the range. 1/λ2 is the mixing time of a random walk and as GMSn

kernels are logarithmically weighted over eigenvalues, hence transforming the logarithmic

time scaling in heat kernel to linear scaling over n, I empirically take the logarithm of the

mixing time. Figure 3.1 shows the comparison between GMSn,GMSα,HKS,WKS for

David model and I confirm the theoretical claim that the set of GMS signatures are discrim-

inative at all scales unlike the HKS, which decay to equilibrium distribution. Also, the �, ϑ

parameters provide a multiscale setting which is not possible with WKS. Figure 3.1 shows

matching between the node on finger marked by red sphere and the rest of the shape, by

calculating the L2-norm of the difference between point signatures. It is represented using

color plot, with similarity decreasing as color changes from red to cyan and � = 1, ϑ = 1.

I observe that the GMSn provides a global understanding of the shape while the GMSα

provides a local understanding hence matching the fingers. These characteristics are fur-

ther exemplified using dragon model in Figure 3.10 where I show multiscale matching by

varying the parameters � and ϑ. The specificity of GMSn in matching the legs and local

sensitivity of GMSα in identifying protrusions, can be coherently combined in a learning

framework to construct optimal signatures, using the approach in [184], which I leave to

future work.
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(a) GMSn for α = 1, � = 0.1 (b) GMSn for α = 1, � = 1 (c) GMSα for t2, ϑ = 0.1

(d) GMSα for t2, ϑ = 1 (e) HKS (f) WKS

Figure 3.2. Signature similarity to point marked on front feet with blue sphere
in (a) with difference increasing as color ranges from red to cyan to blue. (a)-
(b) GMSn signature for two values of �. (c)-(d) GMSα signature for two
values of ϑ. Increasing � produces global signature while increasing ϑ pro-
duces local signature. (e) HKS and (c); (f) WKS and (a) have similar color
plots.

Multiscale Distance: The 0th moment operator is I − π1T and corresponding distance is

vol( 1
du

+ 1
dv
). This can be understood as vol

du
is the distance from any node on the graph

to vertex u, because the expected value for a random walker would depend only on the

degree (scaled area) of the destination vertex and by symmetry. I only recover local con-

nectivity, thus naturally at the lowest scale in my set of multiscale kernels. The commute

time distance is the expected time for a random walker to travel from one vertex to another

and back, i.e., it is the first moment. The commute distance derived in [18] is precisely

the multiscale distance for n = 1 and α = 1. Considering n = 2 and α = 1, the dis-

tance metric is equivalent to biharmonic distance [14] upto a constant scaling factor. The

biharmonic distance is thus the second moment of the rate of heat diffusion which I discern

to be more intuitive, i.e., it weights diffusion rate between 2 nodes by t2 and hence is a

more global metric relative to the commute time distance. The diffusion distance between

2 nodes separated by time t is defined as (DDiff
uv )2 =

∑
i≥1

e−tλ̃i
(
Φ̃i(u) − Φ̃i(v)

)2
. These
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multiscale distances can be viewed as performing a Mellin transform on e−tΛ (Λ is a con-

stant for given mesh). It replaces the exponential over t weighting scheme by zeta function

(ζ(n) =
∑

λi 	=0 λ
−n
i ) which is exponential over moment n and infers scale akin to time.

Such an approach has been applied to the trace of the heat kernel to successfully extract

graph characteristics [185]. Briefly, I mention that the geodesic distance for a graph is the

shortest distance between 2 points and translates into finding the smallest t for which ptuv

is non-zero. Hence it is connected to the floor function of the multiscale kernel distances.

Thus, these kernels can be viewed as generalization of existing distance metrics and with

additional parameter β, opens up a host of possibilities. I introduce scale sensitive variant

of Shepard interpolation [186] demonstrated in [14]. The Shepard interpolant with zeroth

order precision for point u on the mesh is defined as f(u) =
∑

i wi(u)fi∑
i wi(u)

where I choose wi(u)

to be scale sensitive weights proportional to 1/Dαn
uvi

. Figure 3.3 shows the interpolant on

the mesh along with value (ς) at fixed anchor point (red sphere) for different β values at

11 anchor points and 2 multiscale kernels (n = 2, 4). The β values for bottom, middle

and top anchor points (blue sphere) indicated by triple in parentheses [bottom, middle, top]

are constants multiplied with λ2 and fix the scale sensitive weights wi. The values fi at

anchor points are set at -1,0,1 for bottom, middle and top anchor points respectively. I

see that changing the weighting scheme, allows the anchor points to increase or decrease

dominance over the function values at other points on the mesh surface. A large value of

β will only allow local influence as shown in Plot 3.3b, while reversing the set of weights

as shown in Plots 3.3c,3.3e have very different effects on the value at the red anchor point.

Changing n from 2 to 4 in Plots 3.3d,3.3f, affects the magnitude at the red anchor point.

Multiscale Embedding: The first moment embedding is equivalent to the GPS embedding

upto scaling Υ [17]. I discuss some insights of these embeddings useful for shape segmen-

tation. Figure 3.4 shows the segmentation of the ant model using naive kmeans for different

moments. The 0th moment embedding or the eigenvectors without eigenvalue scaling cor-

rectly segments the head, torso and abdomen of the ant model. However, increasing the

moment results in skewed segmentations. As kmeans minimizes distortion, central regions

which have highest affinity to other regions tend to be clustered together (the nth embed-
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Figure 3.3. Scale Sensitive Function Interpolation: Function values ς for point
marked with red sphere with 4 bottom, 3 middle and 4 top row anchor (blue)
points set at -1, 0, +1 respectively for varying n and β (hence α) weighting. ς
can vary from negative to positive value based on β weighting and magnitude
can be tuned using n.

ding preserves the nth distance moment). Indeed, larger values of k are required as input

to kmeans at higher scales, to identify salient segments and the torso region suffers from

oversegmentation. Consequently, the 0th embedding of the kernel is best suited for seg-

mentation, but it provides little information as a distance metric. As a second example, I

illustrate the advantage of using scaled G2-distributions for calculating the shape similar-

ity and subsequent MDS projection by varying β in Equation (2.41) as introduced in [17].

Figure 3.5 displays the MDS projection for 11 different shapes which include 11 isometric

models of Victoria and Michael for two values of β; β1 = 0 which corresponds to using

G2-distributions (n = 1) and G2α-distributions for β2 = 100λ2. I see that β2 is able to

better discriminate between the models: dog, wolf, Michael and Victoria, and is also able to

separate the 11 isometric models of Victoria (blue spheres) and Michael (red spheres) into

two tight clusters, unlike the MDS projection using the original G2 distribution (β1). This

is because β acts as a ‘scale-shift’ parameter and the embedding with β2 is more localized,

and hence, neglects contribution from distant (possibly noisy) nodes. I can create a family

of distributions similar to G2 by varying n in Equation (2.41) and these distributions can

have interesting yet intuitive implications based on the application.
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(a) K = 3, n =

0, β = 0

(b) K = 11, n =

0, β = 0

(c) K = 3, n =

1, β = 0

(d) K = 12, n =

1, β = 0

(e) K = 3, n =

4, β = 0

(f) K = 14, n =

4, β = 0

Figure 3.4. Sensitivity of multiscale embeddings to shape segmentation:
Increasing moment from n = 0 (a)-(b) to n = 1 (c)-(d) to n = 4 (e)-(f), leads
to oversegmentation of torso region into 1,2 and 4 segments for n = 0, 1, 4
respectively, while ensuring all 6 legs and 2 antennas are segmented. K is
input to kmeans and β = 0.

Figure 3.5. Scale sensitive G2-distributions: Classical MDS projection for
shape similarity by summing L2 distances between 36 G2α-distribution his-
tograms with 50 dimensions for 11 shape models (see [17] for details) (b)
β2 = 100λ2 is more discriminative between shapes relative to (a) β1 = 0.

3.1.2 Results on image segmentation using diffusion modulus

I demonstrate the efficacy of my criterion developed in the last chapter on the BSDS

and MSRC object recognition database1. For oversegmenting the image, the parameters

for mean shift algorithm are fixed to (hs, hr, P ) = (8, 4, 25) where hs, hr are the scale

and resolution parameters and P controls the minimum number of pixels in a region. Ta-

1http://research/microsoft.com/en-us/projects/objectclassrecognition
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Table 3.1.

Quantitative comparison to 10 other methods on BSDS. Top 3 results for each
criterion highlighted in bold.

Methods/Score PRI VoI GCE BDE

NCut [67] 0.7242 2.9061 0.2232 17.15

MNCut [70] 0.7559 2.4701 0.1925 15.10

MShift [68] 0.7958 1.9725 0.1888 14.41

FH [69] 0.7139 3.3949 0.1746 16.67

JSEG [187] 0.7756 2.3217 0.1989 14.40

NTP [188] 0.7521 2.4954 0.2373 16.30

Saliency [189] 0.7758 1.8165 0.1768 16.24

UCM [66] 0.85 1.47 N/A N/A

FAC [78] 0.8146 1.8545 0.1809 12.21

SAS [72] 0.8319 1.6849 0.1779 11.21

DM 0.8006 1.8742 0.2125 14.80

DM(WB) 0.8262 1.8045 0.1679 13.63

DM(MS) 0.8322 1.6181 0.1757 13.45

ble 3.1 lists the qualitative evaluation of my algorithm, compared to 10 other conventional

methods on BSDS, which contains 300 images belonging to different categories. I use

four standard measures for evaluation: Probabilistic Rand Index (PRI) which counts con-

sistent pixel pairs between ground truth and segmented image; Variation of Information

(VoI), which measures the information shared between two segmentations; Global con-

sistency error (GCE), which measures the similarity between segmentations in terms of

refinement; and Boundary displacement error, which measures the extent of boundary dis-

placement. Large PRI or small Voi, GCE, BDE values are preferred. The top 3 results are

highlighted for each measure. I use 3 variants of my algorithm: Diffusion modulus, DM,
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Figure 3.6. Left: Dependence of PRI (blue), VoI (green), GCE (orange)
and BDE (red) on number of eigenvectors for DM. Center: Dependence of 4
measures on percentage of eigenvectors for DM(ML). Right: Bar chart of op-
timal resolution parameter n on BSDS (Top) and running time for full spectral
decomposition (red) and Louvain (blue) over number of regions (Bottom).

Multi-scale diffusion modulus, DM(MS), and over weighted boundary pixels, DM(WB).

DM, DM(MS) are obtained by setting the resolution n in Algorithm 1. I choose 100 eigen-

vectors for DM and 10% eigenvectors (10% of N ) for DM(ML). The dependence on the

number or % of eigenvectors is displayed in Figure 3.42. PRI value remains almost con-

stant after 40 eigenvectors but 100 eigenvectors achieve better GCE and BDE values. Using

10% of the eigenvectors for DM(ML) achieves a tradeoff between the different measures.

For DM(WB) I discretize n in the domain [10−2, 1] with logarithmic spacing and optimally

threshold the weighted pixel values. The top right plot in 3.42 plots a bar chart of the op-

timal n values for the BSDS. I observe that n = 0.1 has the highest frequency and n = 1

or the commute time kernel leads to ‘undersegmentation’ for most images. Hence, the

commute-time or biharmonic kernel are not suitable for image segmentation, and conse-
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Figure 3.7. Left to Right: Visual comparison of original image and best seg-
mentations using MNCut, FAC and DM(MS) on BSDS.

quently, are used conjunctly with other measures to impose partitions. The seeded image

segmentation method in [110] is not effective for unsupervised image segmentation as it
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Figure 3.8. Left to Right: Visual comparison of original image, MNCut, FAC
and DM(MS) on MSRC for same number of final segments.
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considers the resistance matrix, tied to the commute kernel. My introduction of the critical

exponent n in Dn resolves these problems.

The values in the table above are the average scores over the entire database. DM per-

forms better than Ncut and MNCut on all but GCE measure. The best PRI and VOI values

are that of UCM followed by DM(MS). DM(MS) uses only the spectral decomposition

and does not benefit from parameter tuning on training images, unlike UCM. Combining

DM(MS) with the mPb kernels will naturally result in better segments and is left for future

work. The higher BDE values compared to SAS and FAC are reasonable because DM uses

only one over-segmentation, whereas SAS and FAC use several over-segmentations to de-

rive the final partition. Overall, it is ranks in top 3 for all measures. The superior results

of DM(MS) relative to DM can be attributed to the additional information gained from the

over-segmentation, and relative to DM(WB) can be attributed to the discretization error

of n. However, DM(WB) achieves an overwhelming GCE value as it systematically in-

corporates segmentations over different resolutions to output salient weighted boundaries.

Computing 100 eigenvectors for the sparse DM matrix takes ≈ 28 seconds and Louvain

optimization takes < 1 second on a 3.40 GHz CPU and 8GB RAM desktop. Figure 3.42

shows the time for computing the full spectral decomposition and the subsequent opti-

mization using Louvain for different sizes of oversegmentation. For ≈ 1000 segments, full

spectral decomposition takes ≈ 1second, and Louvain takes ≈ 0.2second using MATLAB.

The total computation time, including meanshift and graph construction is < 4 seconds for

given n. The computation time for weighted boundary pixel evaluation is on average ≈ 32

seconds for BSDS. Figures 3.7 and 3.8 visually compares the segmentations for a few im-

ages in BSDS and MSRC. Compared to MNCut and FAC, DM(MS) produces good-quality

segments and respects object boundaries.

3.2 Gauss’s Law for Finding Community Boundaries

I validate my approach using twenty networks of varying size and topology spanning

diverse scientific domains. Of these, ten have known ground truth community assignments.
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Figure 3.9. Performance of community detection methods on real-world
networks. A: Performance on ten networks with known community assignment
measured with the omega index of identified communities against ground truth.
B: Composite performance based on metadata on ten networks with unknown
community assignment. The tables below list the number of nodes, N , and the
average node degree, 〈k〉 for each network.

On these networks, my Laplacian modularity optimization (see Methods) produces the

most accurate communities (Figure 3.29 A) as measured in terms of the widely used omega

index [190] for 9 of the 10 networks when compared against five prominent community

detection methods: modularity optimization [49, 121], Infomap [48], OSLOM [136], link

communities [41] and clique percolation [40]. For the networks with unknown community

assignment, I follow the approach in [41] to derive a composite performance metric for

each method from the metadata. The composite performance metric is a normalized sum

of four measures: community quality, overlap quality, community coverage and overlap

coverage. In Figure 3.29 B, I see that Laplacian modularity framework is the overall leader
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for all networks, and the performance is especially striking for biological networks which

are expected to be incomplete.

In addition, my stability curve offers a natural way to interpret relevant hierarchical

communities in the network. English words have associations at many different levels and

my methods identifies four levels (Figure 3.10 A). For example words associated with alco-

holism and soft drinks appear as separate communities in the third level and the alcoholism

subcommunity is semantically subdivided in the fourth level. The stability curve of the

air transportation networks identifies partitions that correspond well to my natural concep-

tion of a community, i.e., the first level roughly identifies the large geopolitical regions of

North America, South American, the Europe-Africa-Middle East, and the Asia-Pacific re-

gion, the second level identifies finer regions including Europe (alone) and Australia, and

the third level subdivides continents into small country-sized regions (Figure 3.10 D) while

maintaining spatial proximity of overlapping communities.

3.2.1 Results on network datasets with known community assignment

In this section I first describe the metric used to evaluate the quality of partitions, fol-

lowed by brief description of each network along with the associated partition obtained by

my method.

Omega Index: The omega index ω is an extension of the adjusted Rand index to overlap-

ping communities [190]. It is defined as:

ω(Ci, Cj) =
ωu(Ci, Cj)− ωe(Ci, Cj)

1− ωe(Ci, Cj)
. (3.1)

where Ci, Cj are the partitions to be compared, ωu(Ci, Cj) is the fraction of node pairs

occurring together in same number of communities in Ci and Cj , and ωe(Ci, Cj) is the

expected value of this fraction. Intuitively, ωu(Ci, Cj) is the observed agreement between

the partitions Ci and Cj , whereas ωe(Ci, Cj) is the expected agreement of the partitions.

The omega index is then observed agreement adjusted by expected agreement divided by

the maximum possible agreement, i.e., 1 adjusted by expected agreement.
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Figure 3.10. Hierarchical communities using Laplacian modularity. A: Hi-
erarchy in word association network. The stability curve (left) indicates that
the network should be hierarchically organized into 25 and 66 communities.
I also show the 164 and 217 communities information for deeper hierarchy.
The subgraph shown is a community of the 25-way partition (first level). The
dotted enclosed regions correspond to stable subcommunities in the 66-way
partition (second level). The colors correspond to stable subcommunities in
the 164-way partition (third level). Further subdivision of the red subcommu-
nity in the 217-way partition is shown separately to the left (fourth level). B:
Hierarchical structure of air transportation network, divided into 28, 76 and
133 communities from left to right as identified by the stability curve identifies
geopolitically significant regions at various size-scales.

Karate club: The karate club network has served as a proving ground for many community

detection algorithms. The network was constructed by Wayne Zachary and consists of ties

between 34 members of a karate club at a US university in the 1970s [191]. The club
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Figure 3.11. Diffusion based Laplacian modularity applied to karate net-
work. A: Identified communities in the karate network B: Stability curve for
the karate network.

split up into two groups following disputes among the members over the price of karate

lessons. My community detection algorithm splits the network into 4 communities, the

same as modularity optimization (Figure 3.11). It is interesting to note that the 2-way

partition obtained in the long time limit is identical to the original community assignment

by Zachary. Hence, it may be useful to analyze partitions beyond tend in certain cases, for

example if the number of partitions is known apriori.

Football: The football network compiled by M. Girvan and M. Newman contains the set

of American football games played by Division IA colleges during regular season in Fall

2000 [37]. The ground truth community assignment is according to the conference each

team belongs to. There are in total 12 conferences: Atlantic Coast, Big East,Big Ten,

Big Twelve, Conference USA, Independents, Mid-American, Mountain West, Pacific Ten,

Southeastern, Sun Belt and Western Athletic. My community detection algorithm correctly

partitions the network into 12 groups. In Figure 3.12 I see that nine of the twelve confer-

ences are correctly identified without any misclassifications. The 3 other conferences with

partial misclassifications also reveal interesting features about the network. For example,

the group of Independents comprising of 5 universities is not a conference, but institutions

not affiliated with NCAA. I see that institutions in Independents all are classified in another

conference, presumably with the conference it has the closest affiliation with. Louisiana
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Figure 3.12. Diffusion based Laplacian modularity applied to football net-
work. A: Each circular layout of nodes corresponds to one ground truth com-
munity in the football network. The communities identified by my method are
color coded B: Stability curve for the football network.

Tech University shifted from the Sun Belt conference to Western Athletic conference in

2001. Consequently, node 59 corresponding to Louisiana Tech University in the western

athletic conference is misclassified to be in the sun belt conference by my method.

Polbooks: The political books network compiled by Valdis Krebs represents co-purchased

political books sold by Amazon.com around the time of the 2004 presidential election.

The ground truth community assignment corresponds to the political philosophy advocated

by the book as either conservative, neutral or liberal. In Figure 3.13 I see that my methods

identifies two groups and classifies books in the ground truth neutral community to be either

right-leaning or left-leaning based on the network topology. It is also interesting to note

that the node 59 (Rise of the Vulcans) and node 78 (Bush at War) are written by journalists

associated with the left-leaning Washington Post. The two nodes are misclassified to be

liberal by my method, although the ground truth assignment is conservative. I also show

the 3-way partition identified by the stability curve. The identified communities correspond

well to conservative and liberal political books. I further investigate the assignment of
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Figure 3.13. Diffusion based Laplacian modularity applied to political books
network. A:The three communities in the ground truth are separated by the two
black lines. They correspond to conservative, neutral and liberal communities
from left to right. The plot in top shows the two communities identified by my
method. The nodes are colored red and blue. The plot in the bottom shows
the 3-way partition identified by the stability curve. The nodes are colored red,
green and blue. B: Stability curve for the polbooks network.

neutral political books by my method. The liberal books classified as neutral (nodes 77 and

29) as well as the neutral political books classified as liberal (nodes 65,66,68,69,86) are

all identified as overlapping nodes with membership to liberal and neutral communities at

ε = 0. This validates the relevance of the 3-way overlapping community structure identified

by my method.

Polblogs: The political blogs network compiled by Lada Adamic and Natalie Glance rep-

resents the political blogosphere around the time of the 2004 presidential election [192].

Nodes are classified to be liberal or conservative. My method achieves the highest omega

index among all community detection methods. The stability curve in shown in Figure

3.17.

Dolphin: The dolphin social network compiled by D. Lusseau represents frequent associa-

tions between 62 dolphins in a community living off Doubtful Sound, New Zealand [193].
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Figure 3.14. Diffusion based Laplacian modularity applied to dolphin net-
work. A: The two communities in the ground truth are separated by the black
line. The two communities identified by my method are colored red and blue
B: Stability curve for the dolphins network.

Figure 3.15. Diffusion based Laplacian modularity applied to strike network.
A: The black lines separate the network into its constituent ground truth com-
munities. The communities identified by my method are color coded. B: The
overlapping communities identified by my method at ε = 0.5 B: Stability curve
for the strike network.

The ground truth community assignment into 2 groups is primarily based on the gender

of the dolphins. My community detection method correctly identifies 2 clusters, correctly

classifying all but 2 dolphins. The misclassified dolphins PL and SN89, structurally share

more number of links with the identified group than with the other group, and hence, the

identified communities correspond to a sound partition (3.14).
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Figure 3.16. Diffusion based Laplacian modularity applied to highschool net-
work. A: Each circular layout of nodes corresponds to one ground truth com-
munity in the highschool network. The communities identified by my method
are color coded B: Stability curve for the highschool network.

Strike: The strike network represents the communication structure among employees in a

wood processing facility during a strike [194]. The network displays fairly stringent de-

marcations between groups defined on age and language. The 3 ground truth communities

correspond to English-speaking young employees, English-speaking old employees and

finally Spanish-speaking young employees. My community detection method correctly

identifies the communities and misclassifies one node (Figure 3.15). Node 15 (Ozzie) is

the father of node 14 (Karl), which explains the misclassification. Interestingly, node 15

is identified as an overlapping node, indicating it shares membership with the group of old

English-speaking employees and the father of a young English-speaking employee (node

14).

Highschool: The highschool network, compiled by the National Longitudinal Study of

Adolescent Health, represents self-reporting of friendship between students from grades 7

to 12 [195]. The ground truth community assignment corresponds to the students’ grade,

with the expectation that students belonging to the same grade form stronger associations

than those belonging to different grades. In Figure 3.16 I see that my community detection
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Figure 3.17. Diffusion based Laplacian modularity applied to contact-1 net-
work. A: Each circular layout of nodes corresponds to one ground truth com-
munity in the contact1 network. The communities identified by my method are
color coded B: The communities identified by my method corresponding to the
stable 10-way partition C: Stability curve for the contact1 network D: Stability
curve for the polblogs network.

method identifies 7 communities contrary to the 6 ground truth communities. Most nodes

agree with the ground truth assignment in 5 of the 7 identified communities. However,

the sixth ground truth community is split into 2 groups (colored pink and green) in my

identified 7-way partition. Upon further investigating this community, it is revealed that it

possesses hierarchical organization of friendship and the pink and green nodes correspond

well with the group of white and black students, respectively. Hence, my community de-

tection method is revealing of the community structure and the hierarchy present in the

network.

Contact-1 and Contact-2: The two networks represent the face-to-face proximity between

students and teachers in a primary school for 2 days [196]. Although, the original network

is weighted, I analyze the unweighted version of the network. As in the highschool net-

work, the ground truth communities correspond to the class and grade of the students along

with a separate community for teachers. There are a total of 11 communities in the net-

work, 10 communities of students and 1 of teachers. Figures 3.17 and 3.18 display the 8 and

9 communities identified by my automated method for contact-1 and contact-2 networks
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Figure 3.18. Diffusion based Laplacian modularity applied to contact-2 net-
work. A: Each circular layout of nodes corresponds to one ground truth com-
munity in the contact2 network. The communities identified by my method are
color coded B: The communities identified by my method corresponding to the
stable 10-way partition C: Stability curve for the contact2 network D: Stability
curve for the citation network.

respectively. Observe that the 3A, 3B and 5A,5B communities are merged in contact-1

network suggesting hierarchical organization of the students at the same grade level but

different divisions. The 10-way partition emerges as one of the stable partitions in the sta-

bility curve and the identified communities are color coded in Figure 3.17 B. All but 1 of

the 226 students are correctly classified and the community of teachers is split by the class

it teaches. Similarly, the 3A, 3B communities are merged in contact-2 network indicating

hierarchy. Again, the 10-way partition emerges as one of the stable partitions in the stabil-

ity curve and the identified communities are color coded in Figure 3.18 B. All of the 228

students are correctly classified and the 10 teachers are assigned to the class it teaches.

Citation: The citation network comprises of computer science research papers categorized

in 7 groups: neural networks, rule learning, reinforcement learning, theory, probabilistic

methods, case based and genetic algorithms. The stability curve for this dataset is displayed

in Figure 3.18 D.
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3.2.2 Results on network datasets with unknown community assignment

In this section I first describe the four measures used to evaluate the quality of commu-

nities output by different community detection algorithms. Next, I briefly describe each of

the 10 networks and the associated metadata used to evaluate the quality measures.

Measures: I follow the approach in [41] to derive a composite performance metric for the

communities identified in the network. The composite performance metric consists of 4

measures: 2 quality measures that assess the relevance of the discovered memberships and

2 coverage measures that quantify the quantity of information extracted. These measures

are mathematically formalized as follows:

Community Quality: Community quality is evaluated using the network metadata under the

assumption that nodes belonging to the same community are similar and hence, share more

metadata than nodes belonging to different communities. This is quantified as:

Enrichment =
〈μ(i, j)〉δ(i,j)
〈μ(i, j)〉	(i,j) . (3.2)

where μ(i, j) is metadata-based similarity between nodes i and j, 〈μ(i, j)〉 is the mean

similarity and the subscripts δ(i, j), �(i, j) indicate the average calculated over all node

pairs belonging to the same community or different community respectively. Unlike [41]

where the enrichment is calculated over the baseline similarity between all node pairs, I

calculate the ratio of the average intra-community and inter-community similarity, which I

discern to more discriminative. High intra-community similarity and low inter-community

similarity lead to favourable values of enrichment.

Overlap Quality: To assess the quality of overlap output by a method, I calculate the mu-

tual information between the number of memberships identified by the method and the

overlap metadata of the network. Unlike [41], homeless nodes are assigned to an inde-

pendent community, and hence, have one membership (to itself). This avoids artificially

increasing the mutual information due to homeless nodes which do not convey any overlap

information, and consequently, methods identifying non-overlapping communities always

have 0 overlap quality. Note that in the absence of any overlap metadata for a node, I take

the number of associated memberships to be trivially 1. In 2 of the 10 networks, I use the
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average split-betweenness of overlapping nodes as a proxy for community quality instead

of mutual information.

Community Coverage: Community coverage is the fraction of nodes which belong to non-

trivial communities, i.e., of size 3 or higher. Community coverage hints at the quantity of

useful membership information output by the community detection method.

Overlap Coverage: Overlap coverage measures the average membership of nodes belong-

ing to non-trivial communities. Note that the community coverage and overlap coverage

are identical for non-overlapping community methods.

The composite performance metric is derived by first normalizing all four measures

by the corresponding best performing method, and next summing the four measures. A

method which outputs the best community in terms of all 4 measures has composite perfor-

mance value 4. The 4 measures are visually represented as a stacked bar chart, as in [41].

Biological networks: I analyzed the protein-protein interaction (PPI) network of Saccha-

romyces cerevisiae, Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster.

I use the Gene Ontology (GO) terms as metadata to assess the quality of communities. The

quality measures are first evaluated using GO annotations for biological process, molecular

function and cellular components. The overall quality is simply taken as the average of

these three quality measures.

Construction The PPI network of Saccharomyces cerevisiae is constructed using the yeast

two-hybrid (Y2H) dataset published in [197]. The PPI network of Homo sapiens is con-

structed using the high quality Y2H interactions determined in [198]. The PPI network of

Caenorhabditis elegans is constructed from the dataset released in [199]. Finally, the PPI

network of Drosophila melanogaster is taken from [200]. I use the largest component of

each network.

Community quality Three separate directed acyclic graphs are constructed using the con-

trolled vocabulary for biological process, molecular function and cellular components.

The functional similarity between all pairs of proteins is then calculated from the directed

acyclic graph using Lin’s information theoretic definition [201]. I use the implementation
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Figure 3.19. A: Stability curve for Saccharomyces cerevisiae network B: Vari-
ation of composite performance as a function of the stable communities iden-
tified by the stability curve over time shown as an area chart. The red cor-
responds to community quality, yellow to overlap quality, green to community
coverage and blue to overlap coverage. The number of communities in the par-
titions with high persistence is shown above the composite performance index
curve. The number of communities in the partition used for evaluation in the
main manuscript is highlighted in bold. Communities with higher composite
performance index than the one used for evaluation are identified.

provided with [202] . The corresponding enrichment values are calculated using Equation

(3.2) and the overall quality is taken as the average of these enrichment values.

Overlap quality Overlap quality is calculated for biological process, molecular function

and cellular components to be the mutual information between the number of associated

GO terms and number of memberships. The net overlap quality is taken to be the average

of the three individual overlap qualities.

Facebook network: I analyzed the Facebook network of students in an American univer-

sity graduating in the same year. Communities were evaluated using biographic informa-

tion such as college major/minor, highschool they attended and dorms they reside in.

Construction The full Facebook network of Michigan university published in [203] con-

sists of friendship links between students and faculty. Only the students stating biographic

information in their profile are considered. I would expect students graduating in the same

year to form communities based on major/minor or residency. Hence, the friendship circles
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Figure 3.20. A: Stability curve for Homo sapiens network B: Variation of
composite performance as a function of the stable communities identified by
the stability curve over time shown as an area chart. The red corresponds
to community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

of the students graduating in the year 2008 are used in constructing the network. I use the

largest component of this network.

Community quality The metadata contains anonymized information regarding the students’

major/minor, the dorms they reside in and their highschool. I build a bipartite network

linking each student to its corresponding major/minor, dorm and highschool. The similarity

between students is inferred from the one-mode projection onto the students of this two-

mode bipartite network. The maximum similarity between two students is 3 if they share

the same major/minor, dorm and highschool. The one-mode projected matrix is used to

calculate the enrichment as per Equation (3.2).

Overlap quality The community quality partially reflects the overlap quality as a student

participates in multiple (possibly overlapping) communities corresponding to their ma-

jor/minor, dorm and highschool. However, additional factors like a student’s participa-

tion in hobby-clubs, college events or sports teams may contribute to forming friendship,

and hence, communities that overlap. I use the concept of split betweenness to evaluate
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Figure 3.21. A: Stability curve for Caenorhabditis elegans network B: Vari-
ation of composite performance as a function of the stable communities iden-
tified by the stability curve over time shown as an area chart. The red cor-
responds to community quality, yellow to overlap quality, green to community
coverage and blue to overlap coverage. The number of communities in the par-
titions with high persistence is shown above the composite performance index
curve. The number of communities in the partition used for evaluation in the
main manuscript is highlighted in bold. Communities with higher composite
performance index than the one used for evaluation are identified.

the quality of overlapping nodes due to extraneous information not available in the meta-

data. Unlike [204] where the split betweenness metric is used to determine overlap, I use

it to evaluate the quality of overlapping nodes. The network with overlapping nodes as

determined by the community finding algorithm is first transformed into a similar network

where all nodes and their linkages remain the same, but the nodes classified as overlapping.

An overlapping node with membership to o communities is replicated o times in the trans-

formed network such that each replicated node is a member to only one community, i.e., I

convert the network with overlapping communities into one with no overlap by replicating

overlapping nodes. The overlap quality is calculated to be the average edge betweenness

of new edges introduced in the transformed network with higher values favored, i.e., a high

value of average split betweenness hints at better overlap quality (see Figure 3.23).

Cosponsorship network: The cosponsorship network consists of legislative collaborations

between the United States House of Representatives for the 93rd to 108th Congresses [205].
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Figure 3.22. A: Stability curve for Drosophila melanogaster network B: Vari-
ation of composite performance as a function of the stable communities iden-
tified by the stability curve over time shown as an area chart. The red cor-
responds to community quality, yellow to overlap quality, green to community
coverage and blue to overlap coverage. The number of communities in the par-
titions with high persistence is shown above the composite performance index
curve. The number of communities in the partition used for evaluation in the
main manuscript is highlighted in bold. Communities with higher composite
performance index than the one used for evaluation are identified.

Figure 3.23. Left network shows the communities identified by an algorithm
with overlapping nodes colored red. Right network displays the transformed
network used for overlap quality determination. The overlapping nodes are
replicated such that the replicated nodes belong to only one community, shown
in green. The overlap quality is the average edge betweenness of the edges
colored red.
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Figure 3.24. A: Stability curve for the facebook network B: Variation of com-
posite performance as a function of the stable communities identified by the
stability curve over time shown as an area chart. The red corresponds to
community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

Construction As in [41], I construct a bipartite network of house members and the bills they

(co)-sponsored. Projecting this network onto the representatives results in a very dense,

nearly complete graph for which methods like clique percolation with exponential running

time fail to provide any meaningful communities. To avoid this, I only consider bills that

contain 10 or less (co)-sponsors in building the bipartite network, and subsequently project

it onto the representatives. In order to capture the tightest working relationships I delete

links with weight less that 15, i.e., the final network has an edge between two house mem-

bers if they (co)-sponsor 15 or more bills that contain 10 or less (co)-sponsors total. The

giant connected component of this network consists of 560 nodes.

Community quality I follow the approach in [200] to evaluate community quality using the

common space score of house representatives. The common space score consists of two

values between -1 and 1, wherein the first dimension represents liberal/conservative bias

and the second dimension is related to civil-rights and social issues. The similarity μ(i, j)

between two house members is taken to be the Euclidean distance between the common
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Figure 3.25. A: Stability curve for the cosponsorship network B: Variation
of composite performance as a function of the stable communities identified
by the stability curve over time shown as an area chart. The red corresponds
to community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

space scores with smaller values denoting higher similarity. Hence, the overall enrichment

is taken to be:

Enrichment = 1− 〈μ(i, j)〉δ(i,j)
〈μ(i, j)〉	(i,j) (3.3)

Overlap quality The overlap quality is determined to be the mutual information between

number of community memberships and the number of elected terms of representatives

with the expectation that, representatives serving longer terms have (co)-sponsored more

bills, and hence, participate in many collaborations.

Word association: The word association dataset is compiled by University of South Florida

and University of Kansas [206]. It consists of three-quarters of a million free association

responses to 5019 stimulus words from more than 6000 participants.

Construction Although there are 5019 stimulus words, the set of total words including

responses has cardinality 10617. The edges represent discrete association of two words,

i.e., the first meaningfully related word that came to a participant’s mind in response to the
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Figure 3.26. A: Stability curve for the word association network B: Variation
of composite performance as a function of the stable communities identified
by the stability curve over time shown as an area chart. The red corresponds
to community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

presented word. I ignore the directionality and weights of the edges in the network, and

hence, the final network for evaluation is undirected and unweighted.

Community quality I use the WordNet database to extract all synsets (or senses) associated

with a word in the network. The Leacock-Chodorow similarity score [207] between two

words is calculated for all combination of associated synsets, based on the shortest path

distance that connects the synsets and the maximum depth of the taxonomy in which the

senses occur. The similarity between two words is then taken to be equal to the maximum

Leacock-Chodorow score from these combinations and further, Equation (3.2) is used to

calculate the overall enrichment.

Overlap quality The more synsets a word is associated with, greater the likelihood of it

participating in multiple communities. Hence, the overlap quality is determined to be the

mutual information between the number of synsets and the number of community mem-

berships for all words in the network.
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PRL: The network is created using the citation information of papers published in the

Physical Review Letters (PRL).

Construction The network is created using a subset of all papers published in the PRL.

I consider all papers published in Volume-96 to Volume-100 to be nodes and place an

undirected edge between two nodes, if any one cites the other. This network is disconnected

and I take the largest connected component for my evaluation.

Community quality Each paper is associated with a general category such as, ‘Atomic,

Molecular, and Optical Physics’, ‘Gravitation and Astrophysics’, etc. I define two papers

to be similar if they share a paper category, i.e., μ(i, j) = 1 if i and j share the same

category, 0 otherwise. Equation 3.2 is used to calculate the community quality.

Overlap quality I assume that a paper with many authors is more likely to have diverse

content, and hence, cited in multiple disciplines as compared to a paper with a single author.

I calculate the overlap quality to be the mutual information between the number of non-

trivial community memberships and number of authors of each paper in the network.

Air Transport: The air transport network represents flights connecting airports all over

the world.

Construction The network was created using the flights connectivity information between

different airports available at www.openflights.org. The nodes represent airports and an

edge between two nodes represents a flight connecting these two airports. I take the largest

connected component for network evaluation consisting of 3412 airports.

Community quality The international organization for standardization(ISO) has codes for

different regions in the world. I associate each airport to three features, its ISO-region, the

country it belongs to and the continent it resides in. The similarity between two airports

is taken to equal to the number of features it shares, i.e., has maximum similarity value 3

if it shares the region, country and continent; 2 if it shares country and continent; 1 if the

airports are in the same continent; and 0 otherwise. Equation 3.2 is used to calculate the

enrichment using the similarity values.

Overlap quality An airport is expected to overlap with different communities if there are

many connecting flights emerging from it. This in turn depends on the betweenness of the
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Figure 3.27. A: Stability curve for the citation network B: Variation of compos-
ite performance as a function of the stable communities identified by the stabil-
ity curve over time shown as an area chart. The red corresponds to community
quality, yellow to overlap quality, green to community coverage and blue to
overlap coverage. The number of communities in the partitions with high per-
sistence is shown above the composite performance index curve. The number
of communities in the partition used for evaluation in the main manuscript is
highlighted in bold. Communities with higher composite performance index
than the one used for evaluation are identified.

airport, i.e., how many shortest paths (connecting flights) pass through that node (airport).

Hence, I use the average split betweenness of overlapping airports as a measure of overlap

quality.

Co-purchasing: This network represents the co-purchasing of DVD titles at the site Ama-

zon.com, i.e., DVD’s that are purchased simultaneously by the same customer.

Construction The network is taken from www.snap.stanford.edu which contains metadata

information related to wide range of products like books, music CD’s etc. I consider the

information relevant to co-purchasing of DVD’s for my network construction. Associated

with each DVD, is a set of 5 or less similar co-purchased titles. I build a network using

this information, linking two nodes if they are co-purchased. The final strongly connected

network consists of 14436 DVD titles.

Community quality Each DVD is associated with a set of related categories. For eg., the

DVD ‘NASA’ is associated with space exploration, documentary, DVD titles starting with
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Figure 3.28. A: Stability curve for the air transportation network B: Variation
of composite performance as a function of the stable communities identified
by the stability curve over time shown as an area chart. The red corresponds
to community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

‘N’ etc. The similarity between two nodes is evaluated to be equal to the number of cate-

gories it shares. The enrichment is then calculated using Equation (3.2)

Overlap quality I calculate the mutual information between the number of product cate-

gories and the number of non-trivial community memberships for the products.

Overlap Landscape: For each of the 10 networks, I investigate the overlapping land-

scape over time, i.e., I evaluate the number of nodes against strength of overlap over

time. Figure 3.30 shows the overlapping landscape for each of the 10 networks and re-

veals characteristic patterns in the overlapping community landscape. I fit a curve to the

histogram of number of overlapping nodes against the overlap strength which lies be-

tween 0 and 1. I consider at 5 values of time as multiples of the relaxation time 1/λ2:

0.1log(1/λ2), 0.3log(1/λ2), 0.5log(1/λ2), 0.7log(1/λ2), 0.9log(1/λ2)). A common pat-

tern is that the peaks of the curve gradually shift over time to the left, i.e., at small time

most nodes overlap with high strength whereas at longer times, the overlap strength is nor-
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Figure 3.29. A: Stability curve for the copurchasing network B: Variation of
composite performance as a function of the stable communities identified by
the stability curve over time shown as an area chart. The red corresponds
to community quality, yellow to overlap quality, green to community coverage
and blue to overlap coverage. The number of communities in the partitions
with high persistence is shown above the composite performance index curve.
The number of communities in the partition used for evaluation in the main
manuscript is highlighted in bold. Communities with higher composite perfor-
mance index than the one used for evaluation are identified.

Figure 3.30. Overlapping landscape strength over time. Top(Left to Right):
S.Cerevisiae, H.sapiens, C.elegans, D.Melanogaster, Facebook networks. Bot-
tom(Left to Right): US congress, Word assoc., Citation, Air transport, Amazon
networks.

malized towards the average of 0.5. Interestingly, the protein interaction networks have

more overlaps at long time compared to small time, in contrast to other networks.
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Figure 3.31. Diffusion based Laplacian modularity applied to large networks.
Left: Performance on networks measured as generalized normalized mutual
information of identified communities against ground truth for the 3 large net-
works. Tested algorithms are discrete diffusion based Laplacian modularity
(DDLM) optimization corresponding to t = 1 for discrete random walks;
greedy modularity optimization and Infomap. Table below lists the number of
nodes, N, and the average node degree, 〈k〉 for each network. Diffusion based
Laplacian modularity optimization finds higher quality communities relative
to other methods. Right: Community size distribution follows a scale-free law
in the A: Amazon, B: DBLP, and C: Youtube networks.

3.2.3 Results on large networks and for other similarity measures

As a concluding remark, I demonstrate the Laplacian modularity framework for some

large networks and alternate definitions governing the connectivity potential, S.

Large networks: I investigate the Laplacian modularity on three large networks taken from

www.snap.stanford.edu which have corresponding ground truth community information. I

use transition matrix M as a measure of similarity instead of the heat kernel, for computa-

tional efficiency. This corresponds to the discrete time random walk for time, t = 1. I use

the generalized NMI metric to evaluate community quality against the ground truth [46].

The methods tested are greedy modularity optimization, Infomap, both scalable to large

networks, and finally DLM optimization at t = 1 for discrete random walks. The computa-

tional complexity of probability evaluation is O(cE), and hence, scalable to large networks

like the Youtube network which contains more than a million nodes. I see in Figure 3.31

that DLM optimization is the best performing method for the Amazon and DBLP networks,

while all three methods perform poorly on the Youtube network. I examine the statistics of
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community size distribution in these three networks in Figure 3.31B. The community size

distribution is heavy tailed for all networks, confirming the relevance of the communities

detected.

Figure 3.32. Laplacian modularity for alternate definitions of similarity. A:
Each circular layout of nodes corresponds to one ground truth community in
the football network. The communities identified by setting the similarity be-
tween two nodes to be equal to the number of common neighbors in the Lapla-
cian modularity quality function are color coded B: Each circular layout of
nodes corresponds to one ground truth community in the highschool network.
The communities identified by setting the similarity between two nodes to be
equal to Newman-Leicht similarity in the Laplacian modularity quality func-
tion are color coded.

Alternate definitions of connectivity potentials: I evaluate the community structure for

the football network by setting the connectivity potential between two nodes to be equal

to the number of common neighbors in the Laplacian modularity quality function. The

similarity values are efficiently evaluated by the matrix A2, i.e., the similarity between two

nodes is S(i, j) = A2(i, j) for i �= j and I set S(i, i) = 0∀i. Figure 3.32 A shows the com-

munity structure for this similarity metric. The corresponding community quality is slightly

inferior than the DLM and Infomap methods, and better than the other four community de-

tection methods. I also evaluate the community structure of the highschool network by

setting the connectivity potential between two nodes to be equal to the Newman-Leicht
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similarity for α = 0.85 [208]. Figure 3.32 B shows the community structure for this simi-

larity metric. The quality of the corresponding communities in terms of the omega index is

only slightly inferior than the communities identified by DLM, and better than the remain-

ing five community detection methods.

Multi-resolution Laplacian: In order to validate the generality of the DLM framework to

similarity measures beyond the heat kernel, I apply the multi-resolution Laplacian modular-

ity using two alternate measures of similarity. In the contact-1 network, I use the adjacency

matrix with self-loops, S = A+ I where I is the identity matrix and use the cosine similar-

ity measure between nodes in the contact-2 network. The stability curves corresponding to

these similarity measures is shown in Figure 3.33. The curves are constructed by varying

the Laplacian resolution parameter ω in L = D−ωA, i.e., the multi-resolution extension of

Laplacian modularity as discussed in Section 2.2.1. ω was continuously varied from 0 till

I obtain a partition wherein all nodes are assigned independent communities. The range of

ω for finding the most relevant partition was empirically set to be in the range [[ωint, ωfin]

where ωint is the value of ω for which I obtain a 2-way partition and ωfin is the value of

ω for which I obtain a N/3-way partition. N is the number of nodes in the network, and I

use N/3 because a community is composed of atleast 3 nodes. The relevance of a k=way

partition was set equal to the length of time window, i.e., equal to the difference of ωend

and ωstart where ωstart and ωend are the start and end values of the parameter ω over which

a given partition is optimal. Note that the scale is linear unlike the logarithmic time scale

in the heat kernel. This validates the efficacy of Laplacian modularity to detect multi-scale

communities using general similarity measures. A more thorough investigation using al-

ternate similarity measures, such as those used for link prediction, is suggested as future

work. The stability curve corresponding to S = I+A, identifies the 10-way partition to be

maximally persistent over the range of resolution parameter, ω, and has the highest com-

munity quality in terms of the normalized mutual information, better than all other methods

(including DLM). The 8-way partition as identified by the cosine similarity metric on the

contact-2 network has a higher community than all methods apart from DLM.
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Figure 3.33. Stability curves for multi-resolution Laplacian modularity. Left:
Stability curve for the contact1 network using S = I +A, i.e., considering the
adjacency matrix with self-loops as the node similarity matrix. Right: Stability
curve for the contact2 network using cosine similarity.

Similarity between nodes in a network is often intuitively resolved, whereas the as-

sociated community structure is non-trivial and difficult to anatomize. The power of the

Laplacian modularity framework lies in efficient resolution of community structure given

a metric of similarity, local or global, consistent with my notion of node-to-subgraph co-

hesion. I illustrate this framework using different metrics of similarity in order to uncover

communities. For a general node-to-node similarity matrix, S, I also demonstrate that the

multi-resolution Laplacian, Lω = D − ωA, in lieu of the standard Laplacian, L, facilitates

the identification of relevant communities. Although, I investigated the Laplacian modu-

larity for different metrics of connectivity, its full potential using system-specific similarity

metrics remains unexplored.

3.3 Deep Neural Networks Applications

I show application of deep neural networks for learning shapes using geometry images

and for real time hand tracking using deep matrix completion.
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Figure 3.34. Left to Right: Cumulative area distortion for mine, Lie advection
based method in [158], Penalty based method proposed in [157]. My method
has the sharpest peak and variance, 9.8e-8 compared to 5.2e-7 for [158] and
2.65e-7 for [157].

3.3.1 Results on deep learning geometry images

In this section I first compare my spherical parametrization scheme to some other ap-

proaches. Then I demonstrate the efficacy of my framework to learn 3D shapes using

geometry images on rigid as well as non-rigid shapes by comparing it with other methods.

Area distortion measure: I compare my authalic spherical parametrization scheme to

other area correcting methods. I adjudge the quality of the parametrization in terms of

the geometry image created from the corresponding spherical parameterizations on some

prototypical meshes. The methods compared to are the lie advection based method in [158],

and the penalty-term based method proposed in [157], both of which are iterative methods.

For fair comparison, the maximum number of iterations was fixed to 100 for all methods

along with suggested parameter settings. Figure 3.35 shows the comparison. I observe that

my method is the only method to consistently complete the shape while keeping extraneous

noise at a minimum. For example no method apart from mine is able to complete the

bunny’s ears or completely reveal all 5 fingers. This validates my approach in the context

of geometry image creation and authalic spherical parametrization in general. I propose to

use my method in applications requiring high throughput spherical parametrization such as

brain image processing in future work. Figure 3.34 shows area distortion as a histogram

over all triangles of 148 shapes in TOSCA database
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Figure 3.35. Comparison of authalic surface parametrization methods in
terms of shape reconstruction using geometry image. Left to Right: Origi-
nal mesh model, My authalic parametrization, Lie advection based method
in [158], Penalty based method proposed in [157].

Non-Rigid Shapes: I evaluated my approach for surface based intrinsic learning of shapes

on two datasets. I used 200 shapes from the McGill 3D shape benchmark consisting of

articulated as well as non-articulated shapes from 10 classes (20 in each class). To test

the robustness of my approach, I also evaluated my approach on the challenging SHREC-

11 [209] database of watertight meshes consisting of 20 shapes from 30 classes (600 in

total). For each of the 2 databases, I performed classification tasks on 2 splits: (1) 10

randomly chosen shapes from each class were used for training and 10 were test (2) 16

randomly chosen shapes were in the train set and the rest were test cases. Due to the small

size of the database, I kept my CNN relatively shallow (3 convolutional, 1 fully connected

layer and a classification layer) so as to limit the number of training parameters. In or-

der to achieve rotational invariance, 36 geometry images were created for each spherical

parametrization of a shape by (1) first fixing the intersections of the 3 coordinate axes with
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Figure 3.36. Precision recall curves for shape retrieval on non-rigid shapes.

the spherical domain as the center of the geometry image and then (2) incrementally rotat-

ing it by 60 degrees to cover a full circle. Images of size 56× 56 were padded as described

in Section 4.3 to produce a 64 × 64 image as input to the CNN. For features, I used HKS

sampled at 5 logarithmically sampled time scales to produce a 5 dimensional feature map.

Due to the small training sample, the CNN’s using only principal curvatures failed to con-

verge. Training using the HKS features converged after 30 epochs. I compare my approach

to 4 other methods: State-of-art ShapeGoogle (SG) [210], Zerkine moments (Zer) [211],

Light Field Descriptor (LFD) and 3DShapeNets [22] for classification and retrieval. A

class was assigned to each shape in my method by simply pooling predictions from the

softmax layer over the 36 views and then selecting the one with the highest overall score. I

trained a SVM classifier for SG, LFD and Zer methods.2 I see that my method significantly

outperforms all other methods on both splits for the 2 databases (Table 3.2) indicating that

my intrinsic representation was able to learn the intrinsic shape structure of each class. I

use the L2 distance to measure the similarity between all pairs of testing samples and re-

trieval accuracy was measured in terms of mean average precision (MAP) as standard in

literature. The penultimate 48-dimensional activation vector in the fully connected layer

was used for measuring the retrieval accuracy of my method. I perform best in all but one

dataset, i.e. 2nd to SG for SHREC2, inspite my feature vector being 1/50th the size of SG.

This highlights that my method can be used to output highly informative shape signatures.

2Note I do not report the scores for SG on Mcgill because the author provided implementation failed on

several shapes and produced spurious results
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Table 3.2.

Classification (top) and retrieval (bottom) accuracy of my method compared
to 4 other methods.

Database McGill1 Mcgill2 SHREC1 SHREC2

SG [210] NA NA 62.6 70.8

Zer [211] 63.0 57.5 43.3 50.8

LFD [212] 75 72.5 56.7 65.8

SN [22] 65.0 57.2 52.7 48.4

Ours 83.0 92.5 88.6 96.6

SG [210] NA NA 0.65 0.74

Zer [211] 0.64 0.69 0.47 0.64

LFD [212] 0.67 0.68 0.50 0.65

SN [22] 0.29 0.28 0.10 0.13

Ours 0.75 0.72 0.65 0.72

Rigid Shapes: I evaluate my approach for surface-based learning of 3D shape classifica-

tion on the two versions of the large scale Princeton ModelNet dataset: ModelNet40 and

ModelNet10 consisting of 40 and 10 classes respectively. I use the principal curvatures

and topological mask (intrinsic properties) along with a height field encoded as angle to the

positive z-axis. Additionally, each spherical parameterizations has 12 replicates shifted by

30 degrees along the z-axis incrementally. The size and structure of the geometry image

is the same as the ones used for non-rigid testing. Table 3.3 shows the results relative to 4

methods. I achieve the best accuracy on ModelNet40 dataset. This validates that intrinsic

curvatures suffice for holistic learning of 3D shapes. I wish to build upon this deep insight

in future work.
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Table 3.3.

Classification accuracies of my method on the ModelNet40 and ModelNet10
database compared to 3 other methods.

Methods/Score ModelNet40 ModelNet10

VoxNet 83.0 92.0

DeepPano 77.6 85.5

3DShapeNets 77.0 83.5

Ours 83.9 88.4

3.3.2 Results on real-time tracking using deep matrix completion

I along with my colleague Chiho Choi conducted comprehensive a evaluation with

state-of-the-art approaches as well as self-generated baselines on the synthetic and real

datasets to demonstrate the efficacy of my solution. I first describe the datasets and base-

lines.

Datasets: I split my evaluation into two stages. First, I use synthetic data to compare

my method to baselines. This comparison validates the rationale of my specific approach

against other choices. This data is generated using the same approach as described in

Section 3 to generate my database, albeit continuity constraints are enforced. Two synthetic

sequences are generated which are 2.5K frames long at standard rates (approximately 80

seconds each). The advantage of these synthetic sequences are that they are already labeled,

avoiding tedious ground-truth assignment.

Next, for fair comparison to other methods, I evaluate the performance of my method

on two publicly available datasets: Dexter1 [213] and NYU [28]. The Dexter1 dataset

consists of seven gestures (i.e., adbadd, flexex1, pinch, fingercount, tigergrasp, fingerwave,

and random) with high inter-gesture verifiability, however, mostly from frontal viewpoints.

Hence I use the NYU dataset for a more thorough evaluation of the method. As I shall
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shortly show, my method remarkably achieves state-of-art performance without fine-tuning

on their training dataset.

Although the authors are aware of other datasets like ICVL [84], MSRA14 [88], or

MSRA15 [85] in the literature, I do not use them for one or more of the following reasons:

(1) the depth pixels of the body are included with the hand depth map. Recall I use a

heuristic method for segregating the hand from the rest of the body and a wrist band under

more extreme conditions. I did not find a straightforward way to segregate the data without

incurring loss. (2) The hand poses are enforced using muscular labor, contrasting and

modeling additional constraints accounting unnatural hand poses is plan of future work.

Also note that I use the SoftKinetic’s DethSense DS325 for all my real demonstrations.

Baselines for method validation: There are three salient features of my approach which I

rigorously validate. First, a pool of activation features is better at estimating the hand pose

than a direct regressor. Second, my matrix completion approach is better than alternative

choices. Third, that a hierarchical approach is justified inspite of the computational over-

load it introduces. I naturally perform this validation by comparing to these three baselines:

(a) Conv-PQ which directly estimates the pose parameters to be the nearest neighbor (b)

JMFC which also performs a matrix update, although using computationally expensive it-

erations (c) Holistic which evaluates all parameters in an all-in-one approach using a single

activation feature. The validation is done in terms of standard error metrics popular to pose

estimation problems. They are: (a) the average joint angle error in degrees, (b) the average

joint distance error in millimeters, (c) the maximum allowed joint angle error in terms of a

threshold εA, and (d) the maximum allowed joint distance error in terms of a threshold εD.

Broadly speaking, the first two metrics evaluate performance at a local joint level whereas

the other measure global robustness of an approach. I employ the appropriate metric based

on the context of the evaluation. Although my angle based method is particularly effective

in minimizing joint angle errors, yet I choose joint distances as my error metric on public

datasets to demonstrate the overall robustness of my approach.

Comparison to Baselines: In this section, I quantitatively evaluate my method with respect

to the baselines on the synthetic datasets. Figure 3.37 shows that my method significantly
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Figure 3.37. Results of quantitative evaluation on the synthetic dataset.

Figure 3.38. The results of quantitative evaluation on the public dataset. Note
that the accuracies are directly estimated from corresponding figures (i.e., Fig-
ure 4 in [214] and Figure 3a in [90]).

Table 3.4.

The overall average error (mm) of the five fingertip positions on Dexter1. Mine
shows the lowest error rate compared to the state-of-the-art methods.

Methods [84] [213] [215] [214] [91] Ours

Error 42.4 31.8 24.1 19.6 25.27 16.35
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Table 3.5.

The overall average error (mm) of the joint positions on NYU. Note that 14
joint positions are used in [28] and [90], whereas I only use 12 joints (Ours-
12) or 5 fingertips (Ours-5).

Methods [28] [90] Ours-12 Ours-5

Error 21 20 11.39 14.25

Figure 3.39. Qualitative evaluations are conducted on two public datasets,
Dexter1 and NYU. The first row shows the input depth image, and correspond-
ing estimation is presented in the second row.

outperforms the three baselines both in terms of local as well overall global accuracy. The

performance markup over the Conv-PQ approach as seen in Figure 3.37 c indicates that a

ConvNet by itself would do a poor job of inferring a complex articulated structure such as

the hand. The performance improvement over Holistic in the zone of small angles is also

intuitive. It indicates that the global activation feature contains some latent information

about the local joint angles, but this information is better revealed by a hierarchical esti-

mation procedure. This is also validated in Figure 3.3.2 and 3.3.2 where I see a significant

performance improvement in terms of joint angles for finger portions that are frequently

occluded such as the middle finger. It is also noteworthy to note that the similarity of these

plots in terms of error ranges to plots on real hand sequences implicitly validate my data

creation process.
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Comparison with the state-of-the-arts: Having validated the rationale of my approach, I

now compare my method to other state-of-the-art approaches [28, 84, 90, 91, 213–215] on

the Dexter1 and NYU datasets.

Quantitative Analysis I measured the average distance error of five fingertips (in mm)

on the Dexter1 dataset to evaluate the overall robustness of my approach. Figure 3.3.2

shows the comparison of my approach to four other methods which include both discrimi-

native [84,91] as well as generative [213,215] methods. Not only does my method achieve

the lowest overall error rate (see Table 3.4), I also achieve the lowest individual error rates

for all but one gesture i.e. adbadd. This is because the particular gesture is especially hard

to model in terms of joint angle constraints.

I evaluated my approach directly on the 8.2K of test depth maps from the NYU dataset.

Figure 3.3.2 illustrates the maximum allowed error with respect to the distance threshold.

The fact that my method performs better that [90] over a long range indicates that the acti-

vation features I get from ConvNet are general purpose and can be used across domains and

sensor types 3. This is encouraging in the context of progressively fine-tuning ConvNets

with more information such as when new joint angle constraints or dynamic constraints

become available.

Qualitative Analysis I do a qualitative evaluation of my algorithm with the state-of-the-

art methods on some public datasets. The top row of Figure 3.39 shows cropped 64x64

depth images which are used as input to my system, and the second row shows corre-

sponding estimates with my DMC completion method (without temporal neighbors). All

estimated poses are kinematically valid and follow a natural sequence. For the sake of

completion, I also show some failure cases in the last two columns of Figure 3.39. In my

system this happens when some unnatural pose (driven by muscular force ) appears in front

of the camera or when the image is severely affected by noise or has missing parts.

3NYU dataset use PrimeSense to capture their data
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Figure 3.40. Results for a synthetic recommender system with controllable
effects. (Left to right): (a) ROC curves by varying data sparsity. (b) ROC
curves by varying the deconvolution parameter α (c) ROC curves by varying
feedback exponent of recommender system.

3.4 Feedback Loops Deconvolved in Recommender Systems

I tested my approach for deconvolving feedback loops in recommender systems for

synthetic datasets and designed a metric to identify the ratings most affected by the rec-

ommender. I then use the same automated technique to study real-world ratings data, and

I find that the metric is able to identify items influenced to a recommender system. I first

discuss my method to generate synthetic data simulating a real-world recommender system

and discuss my results on real data.

3.4.1 Deconvolving feedback loops in synthetic data

I use item response theory to generate a sparse true rating matrix Rtrue using a model

related to that in [216]. Let au be the center of user u’s rating scale, and bu be the rating

sensitivity of user u. Let ti be the intrinsic score of item i. I generate a user-item rating

matrix as:

Ru,i = L[au + buti + ηu,i] (3.4)

where L[ω] is the discrete levels function assigning a score in the range 1 to 5:

L[ω] = max(min(round(ω), 5), 1) (3.5)
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and ηu,i is a noise parameter. In my experiment, I draw au ∼ N(3, 1), bu ∼ N(0.5, 0.5),

tu ∼ N(0.1, 1), and ηu,i ∼ εN(0, 1), where N is a standard normal, and ε is a noise

parameter. I sample these ratings uniformly at random by specifying a desired level of

rating sparsity γ which serves as the input, Rtrue, to my recommender system. I then run

a cosine similarity based recommender system, progressively increasing the density of the

rating matrix. The unknown ratings are iteratively updated using the standard item-item

collaborative filtering technique [217] as:

Rk+1
u,i =

∑
j∈i(s

k
i,jR

k
u,j)∑

j∈i(|ski,j|)
(3.6)

where k is the iteration number and R0 = Rtrue, and the similarity measure at the kth

iteration is given as:

ski,j =

∑
u∈U Rk

u,iR
k
u,j√∑

u∈U (Rk
u,i)

2

√∑
u∈U (Rk

u,j)
2

(3.7)

After the kth iteration, each synthetic user accepts the top r recommendations with proba-

bility proportional to (Rk+1
u,i )e, where e is an exponent controlling the frequency of accep-

tance. I fix the number of iterative updates to be 10, r to be 10 and the resulting rating

matrix is Robs. I deconvolve Robs as per Algorithm 1 to output R̂true. Recall, R̂true is

user-centered and item-normalized. In the absence of any recommender effects Rrecom, the

expectation is that R̂true is perfectly correlated with R̂obs. The absence of a linear correla-

tion hints at factors extraneous to the user, i.e., the recommender. Thus, I plot R̂true (the

deconvolved ratings) against the R̂obs, and search for characteristic signals that exemplify

recommender effects (see Figure 2.33a and inset).

A metric to assess a recommender system: I develop an algorithm guided by the intu-

ition that deviation of ratings from a straight line suggest recommender effects (Algorithm

2). The procedure is visually elucidated in Figure 2.33. I consider fitting a line to the ob-

served and deconvolved ratings; however, my experiments indicate that least square fit of a

straight line in the presence of severe recommender effects is not robust. The outliers in my

formulation correspond to recommended items. Hence, I use random sample consensus or

the RANSAC method [218] to fit a straight line on a per item basis (Figure 2.33b). The
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Figure 3.41. (Left to Right): Increasing α deconvolves implicit feedback loops
to a greater extent and better discriminates recommender effects as illustrated
by the red points which show more pronounced deviation when α = 1.

pseudo code for RANSAC in Matlab is detailed in the appendix. All these straight lines

are translated and rotated so as to coincide with the y-axis as displayed in Figure 2.33c.

Observe that the data points corresponding to recommended ratings pop out as a bump

along the x-axis. Thus, the effect of the RANSAC and rotation is to place the ratings into

a precise location. Next, the ratings are scaled so as to make the maximum absolute values

of the rotated and translated R̆true, R̆obs, values to be equal (Figure 2.33d).

The scores I design are to measure “extent” into the x-axis. But I want to consider some

allowable vertical displacement. The final score I assign is given by fitting a hyperbola

through each rating viewed as a point: R̆true, R̆obs. A straight line of slope, θ = 1 passing

through the origin is fixed as an asymptote to all hyperbolas. The vertex of this hyperbola

serves as the score of the corresponding data point. The higher the value of the vertex of the

associated hyperbola to a data point, the more likely is the data point to be recommended

item. Using the relationship between slope of asymptote, and vertex of hyperbola, the score

s(R̆true, R̆obs) is given by:

s(R̆true, R̆obs) = real(

√
R̆

2

true − R̆
2

obs) (3.8)
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I set the slope of the asymptote, θ = 1, because the maximum magnitudes of R̆true, R̆obs

are equal (see Figure 2.33 d,e). Scores are zero if the point is inside the hyperbola with

vertex 0.

Identifying high recommender effects in the synthetic system:

I display the ROC curve of my algorithm to identify recommended products in my

synthetic simulation by varying the sparsity, γ in Rtrue (Figure 3.40a), varying α (Figure

3.40b), and varying exponent e (Figure 3.40c) for acceptance probability. The dimensions

of the rating matrix is fixed at [1000, 100] with 1000 users and 100 items. Decreasing

α as well as γ has adversarial effects on the ROC curve, and hence, AUC values, as is

natural. The fact that high values of α produce more discriminative deconvolution is clearly

illustrated in Figure 3.41. Additionally, Figure 3.42 shows that the calculated score varies

linearly with the true score as I change the recommender exponent, e, color coded in the

legend. Overall, my algorithm is remarkably successful in extracting recommended items

from Robs without any additional information. Also, I can score the overall impact of

the recommender system (see the upcoming section recommender system scores) and it

accurately tracks the true effect of the recommender system.

3.4.2 Deconvolving feedback in real data

In this subsection I validate my approach for deconvolving feedback loops on real-

world recommender systems. First, I demonstrate that the deconvolved ratings are able to

distinguish datasets that use a recommender system against those that do not. Second, I

specify a metric that reflects the extent of recommender system effects on the final ratings

matrix. Finally, I conclusively validate that the score returned by my algorithm is indicative

of the recommender effects on a per item basis. The α value for all my experiments is set

to 1.

Datasets: Table 3.6 lists all the datasets I use to validate my approach for deconvolving

recommender systems (from [219–221]). The columns detail name of the dataset, num-

ber of users, the number of items, the lower threshold for number of ratings per item (RPI)
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Table 3.6.

Datasets and parameters for evaluating deconvolved effects.

Dataset Users Items Min RPI Rating k in SVD Score

Jester-1 24.9K 100 1 615K 100 0.0487

Jester-2 50.6K 140 1 1.72M 140 0.0389

MovieLens-100K 943 603 50 83.2K 603 0.2834

MovieLens-1M 6.04K 2514 50 975K 2514 0.3033

MovieLens-10M 69.8K 7259 50 9.90M 1500 0.3821

BeerAdvocate 31.8K 9146 20 1.35M 1500 0.2223

RateBeer 28.0K 20129 20 2.40M 1500 0.1526

Fine Foods 130K 5015 20 329K 1500 0.1209

Wine Ratings 21.0K 8772 20 320K 1500 0.1601

Netflix 480K 16795 100 100M 1500 0.2661

Yahoo 1.94M 10740 50 109M 1000 0.5101

considered in the input ratings matrix and the number of singular vectors k (as many as pos-

sible based on the limits of computer memory), respectively. I briefly discuss the datasets

below.

Jester. I use two versions of the Jester-joke dataset, one collected between April 1999 -

May 2003 and the other between November 2006 - May 2009. These two datasets contain

ratings directly reported by the users without a recommender system interface.

MovieLens. MovieLens data sets were collected by the GroupLens Research Project

at the University of Minnesota. I use three versions of the data: MovieLens-100K con-

sisting of one hundred thousand ratings, MovieLens-1M consisting of one million ratings

and MovieLens-10M consisting of 10 million ratings. I gathered from the Movielens web-

site that Movielens-100K dataset was released on 4/1998, MovieLens 1M was released on

2/2003 and MovieLens 10M was released on 1/2009. Movielens 10M contains almost all

movies in the 100K and 1M dataset. This indicates that the data corresponds to different

snap-shots of the same data obtained at different times of the data collection process.

Beer, Wine, Food. The beer-rating websites BeerAdvocate and RateBeer allow users

to rate beers using a five-aspect rating system. They also include reviews of pubs. I also
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Figure 3.42. Score assessing the overall recommendation effects as I vary the
true effect.

consider the wine review website CellarTracker, as well as reviews from the Fine Foods.

Note that the rating datasets have a different scale (e.g. beers on RateBeer are rated out of

20, wines on CellarTracker are rated out of 100, etc.).

Netflix. Netflix provided a training data set of 100,480,507 ratings that 480,189 users

gave to 17,770 movies for the Netflix competition [220]. This dataset had the Cinematch

algorithm running on it.

Yahoo. This Yahoo! Music data represents a sample of (anonymized) Yahoo! users’

ratings of musical artists around March 2004. It contains 100 million ratings of 98,211

artists by 1,948,882 anonymous users.

Classification of ratings matrix: I display the density plot of observed (y-axis) vs. de-

convolved (x-axis) ratings for all datasets considered in out evaluation in Figure 3.44.

Higher density is indicated by darker shades in the scatter plot of observed and decon-

volved ratings. The two datasets that have no recommender system running on them are

Jester-1 and Jester-2 [221]. Figures 3.44 a,b display the density plot of observed vs. decon-
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volved ratings for the two datasets. The fact that this dataset did not use a recommender

system is evident from the density plot, wherein I see that the observed and deconvolved

ratings are linearly correlated. In contrast, the density plot of observed vs. deconvolved rat-

ings for the other datasets (Figure 3.44 c-k) show varying levels of dispersion, and indicate

that the observed and deconvolved ratings are not very correlated or that a recommender

system is operating on these datasets. It is the ratings that fall in the zones above and below

the straight line of linear correlation that suffer from recommender effects. I discuss these

recommender effects in terms of the recommender system score, subsequently.

Recommender system scores: The recommender system scores I displayed in Table

3.6 are based on the fraction of ratings with non-zero score (using the score metric Equa-

tion (3.8)). Recall that a zero score indicates that the data point lies outside the associated

hyperbola and does not suffer from recommender effect. Hence, the recommender sys-

tem score is indicative of the fraction of ratings affected by the recommender. Looking

back at Table 3.6, I see that the two Jester datasets have low recommender system scores

validating that the Jester dataset did not run a recommender system. Interestingly, the rec-

ommender system score progressively increases for the three versions of the MovieLens

datasets: MovieLens-100K consisting of hundred thousand ratings, MovieLens-1M con-

sisting of one million ratings and MovieLens-10M consisting of 10 million ratings. This is

expected as the recommender system effects would have progressively accrued over time

in these datasets. Note that Netflix is also lower than Movielens, indicating that Netflix’s

recommender likely correlated better with users’ true tastes. The recommender system

scores associated with alcohol datasets (RateBeer, BeerAdvocate and Wine Ratings) are

higher compared to the Fine Foods dataset. This is surprising. I conjecture that this effect

is due to common features that correlate with evaluations of alcohol such as the age of

wine or percentage of alcohol in beer. But this requires more investigation. Furthermore,

the Yahoo dataset outputs high recommender system scores with more than 50% of the

ratings affected by Yahoo’s recommender system. Music preference is intrinsically com-

plex because it possesses several intricate features beyond artist and genre classification

and musical tastes are known to be highly susceptible to influence [63]. Moreover, early
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online music systems surfaced many previously unknown artists. Thus, it is natural that

the dataset has a high recommender system score. I next discuss the salient features of my

approach with respect to the Netflix dataset.

Figure 3.43. (Left to right) (a) Deconvolved ranking as a bar chart for T.V.
shows. (b) Deconvolved ranking as a bar chart for Indian movies.

Ranking of items based on recommendation score: I associate a recommender sys-

tem rating to each item as my mean score of an item over all users. All items are ranked

in ascending order of recommender system score and I first look at items with low recom-

mender system scores. The Netflix dataset comprises of movies as well as television shows.

I expect that television shows are less likely to be affected by a recommender system be-

cause each season of a T.V. show requires longer time commitment, and they have their

own following. To validate this expectation, I first identify all T.V. shows in the ranked list

and compute the number of occurrences of a T.V. show in equally spaced bins of size 840.

Figure 3.43 shows a bar chart for the number of occurrences and I see that there are ≈ 90

T.V.shows in the first bin (or top 840 items as per the score). This is highest compared to all

bins and the number of occurrences progressively decrease as I move further down the list,

validating my expectation. Also unsurprisingly, the seasons of the popular sitcom Friends

comprised of 10 out of the top 20 T.V. seasons with lowest recommender system scores. It

is also expected that the Season 1 of a T.V. show is more likely to be recommended relative

to subsequent seasons. I identified the top 40 T.V shows with multiple (at least 2) seasons,

and observed that 31 of these have a higher recommender system score for Season 1 rel-

ative to Season 2. The 9 T.V. shows where the converse is true are mostly comedies like
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Coupling, That 70’s Show etc., for which the seasons can be viewed independently of each

other.

Next, I looked at items with high recommender system score. At the time the dataset

was released, Netflix operated exclusively in the U.S., and one plausible use is that immi-

grants might use Netflix’s recommender system to watch movies from their native country.

I specifically looked at Indian films in the ranked list to validate this expectation. Figure

3.43b shows a bar chart similar to the one plotted for T.V. shows and I observe an increas-

ing trend along the ranked list for the number of occurrences of Indian films. The movie

with lowest recommendation score is Lagaan, the only Indian movie to be nominated for

the Oscars in last 25 years. Another interesting observation is that the Primer, a low budget

movie known for its cult following has a low recommender system score and is ranked 46

among 16,795 movies, indicating that users were not recommended the film but watched it

out of self-interest.
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Figure 3.44. Density plot of deconvolved vs.observed ratings for (a)
Jester-1 (b) Jester-2 (c) Fine Foods (d) MovieLens-100K (e) MovieLens-1M
(f) MovieLens-10M (g) RateBeer (h) BeerAdvocate (i) Wine Ratings (j) Netflix
(k) Yahoo, respectively.
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4. SUMMARY

My contributions in this dissertation is the proposal of four physical or natural laws for

knowledge discovery in data. I discuss each of them separately.

4.1 Random Walks

My dissertation presents a general framework to construct multiscale kernels on dis-

crete meshes using random walks and in doing so presents a consolidated view of current

state of the art shape signatures, distance metrics and embeddings. It also offers an intu-

itive explanation not offered by current frameworks. These kernels possess all necessary

characteristics, hence immediately applicable for shape analysis including and not limited

to shape retrieval, robust segmentation, correspondence propagation and symmetry detec-

tion. The notion of dual multiscale kernels is to my knowledge the first and the experiments

show promising potential for GMS. One current limitation is regular triangulation of the

mesh as defined in [222], so as to ensure positive weights (Property 1). Future research

work can investigate continuous state space random walks, i.e., Brownian motion on Rie-

mannian manifolds and recover the same set of intuitive interpretations. Combining the

GMSn and GMSα signatures in a coherent way so as to construct optimal descriptors is

another line of work. Another line of research is to investigate different functional forms of

t instead of tn suited for different applications. My work serves as a gateway from Marko-

vian processes to discrete geometry and it is my belief that it only constitutes the tip of the

proverbial iceberg in realizing the full scope of such an integrated approach.

In the context of diffusion and random walks, I also propose the novel diffusion mod-

ulus criterion. The criterion underscores the paradigm of clustering using learnt pairwise

affinities. Affinity learning is motivated by the physical analogy of the heat diffusion pro-

cess and grouping is driven by flow conservation. Notably, the criterion generates the
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normalized cut partition and the modularity metric based on the resolution parameter n.

I empirically validated the benefit of the resolution parameter n for segmenting images

over the special cases of commute-time and biharmonic kernel. Future work will focus

on more diverse applications and automatically determine the optimal resolution. Overall,

the diffusion modulus provides an elegant integrated approach for affinity learning and the

perceptual grouping problem. It is my belief that the diffusion modulus provides a fresh

perspective to the original goal of the normalized cut to extract the ‘big picture’ of a scene.

4.2 Gauss’s Law

I have illustrated the Laplacian modularity under the paradigm of heat diffusion in or-

der to systematically uncover overlapping communities organized at relevant hierarchical

scales of a network. My framework extends to other notions of similarity that generate the

connectivity potentials and I investigate multi-resolution Laplacians, cosine similarity, and

adjacency. It can scale to networks with millions of nodes when the connectivity poten-

tial is sparse. The Laplacian modularity quality function is further extensible to networks

with directed, weighted and signed links, applicable to time-dependent multiplex or multi-

slice networks, and hence, capable of identifying community structure in a broad class of

networks.

My idea of identifying the community boundaries has its roots in the original Girvan-

Newman algorithm which iteratively removes boundary links based on edge between-

ness [37]. In comparison, optimizing the Laplacian modularity quality function reveals

the boundary links all at once. The power of the Laplacian modularity framework also lies

in efficient resolution of community structure given a metric of similarity, local or global,

consistent with my notion of node-to-subgraph cohesion. These ideas have a strong con-

nection to classical physics through the network analog of Gauss’s law. I believe that my

approach using Gauss’s law to identify community boundaries, in concert with system-

specific connectivity potentials, holds great promise in improving my understanding of the

modular nature of complex networks.
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4.3 Deep Neural Networks

I introduce geometry images for intrinsically learning 3D shape surfaces. My geome-

try images are constructed by combining area correcting flows, spherical parameterizations

and barycentric mapping. I show the potential of geometry images to encode intrinsic prop-

erties of shape surfaces and demonstrate its efficacy for understanding both non-rigid and

rigid shapes. Furthermore, my work serves as a general validation of surface based repre-

sentations for shape understanding. I believe that deep learning using geometry images can

potentially spark a closer communion between the 3D vision and geometry community.

I also present a novel framework for hand pose estimation using a deep convolutional

neural network. Instead of using a single activation feature, I use a pool of activation fea-

tures to synchronize and collectively estimate the hand configuration, all in real time. This

pool is derived by training a deep ConvNet with a large database of synthetic hand poses

and efficiently storing the activation feature corresponding to the penultimate fully con-

nected layer. Careful thought was placed so that this database is reflective of real data. At

runtime the pool of activation features in the spatial domain and temporal domain combine

together in a hierarchical way to robustly estimate the hand pose. The derived activation

features can be applied across domains and sensor types as demonstrated in my exper-

iments. Furthermore, my method achieves state of the art performance. Although my

approach is general, one limitation of my activation features is that the estimations are only

valid in the joint angle domain. Future work can focus on ways such that people working

in the joint angle or joint position domain can seamlessly fuse their models together to cre-

ate even deeper and more robust models. Another line of future work is to investigate the

deep matrix completion approach in a more general setting. The simplicity combined with

its efficiency makes is a promising alternative to standard regression techniques for a wide

array of machine learning tasks.
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4.4 Feedback Loops

I propose a mechanism to deconvolve feedback effects on recommender systems, sim-

ilar in spirit to the network deconvolution method to distinguish direct dependencies in

biological networks [179]. I do so by only considering a ratings matrix at a given instant

of time. My approach depends on a few reasonable assumptions that enables me to create

a tractable model of a recommender system. When I evaluate the resulting methods on

synthetic and real-world datasets, I find that I are able to assess the degree of influence that

a recommender system has had on those ratings. This analysis is also easy to compute and

just involves a singular value decomposition of the ratings matrix.

Future work can rigorously analyze the relationship between deconvolution on square

matrices and general matrices. Researchers can investigate each assumption to a greater de-

tail, and possibly relax some of the assumptions. Some derivatives of my method include

setting the parameters considered unknown in my current approach with known values

(such as S) if known a priori. Incorporating temporal information at different snapshots of

time while deconvolving the feedback loops is also an interesting line of future work. From

another viewpoint, my approach can serve as a supplement to the active learning commu-

nity to unbias the data and reveal additional insights regarding feedback loops considered

in this paper. Overall, I believe that deconvolving feedback loops opens new gateways for

understanding ratings and recommendations.
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5. RECOMMENDATIONS

My goal during my doctoral research was to delve deeper into physically motivated algo-

rithms for data mining and pattern recognition in graphs. I was able to couple machine

learning with physical laws to reveal patterns that govern communities and society at large.

As the underlying motivation of my methods stem from the physical world around us, the

resulting algorithms were simple to implement and easy to understand. Having gained

unique insights during the course of my PhD, I recommend these physical and geometric

constructs as possible avenues of future work in data mining.

• Poissons equation for network link prediction in analogy with Poisson surface recon-

struction and mesh processing.

• Quantum random walks for overlapping cluster detection, inspired by mixed quan-

tum states.

• Diffusion on dynamic networks to reveal patterns over time. Examine the connec-

tions between the time to equilibrium for a random walk and the temporal evolution

of a network

• Resistor-capacitor-inductor circuits for network analysis using Laplace transforms.

Extend known relationships between the Kirchhoff/resistance matrix and the Lapla-

cian to general electrical networks using concepts of circuit theory.

• Partial differential equations beyond the diffusion equation for understanding big

data. Use knowledge of fluid mechanics and thermodynamics in the domain of data

mining.

• Gauss law for networks by exploring more advanced concepts related to divergence,

gradient and Laplacian operators on networks.
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Over time, I am confident the above approaches to data mining will reveal new insights

from big data.
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Extracting the hierarchical organization of complex systems. Proceedings of the
National Academy of Sciences, 104(39):15224–15229, September 2007.

[44] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113+, August 2003.

[45] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceedings
of the National Academy of Sciences, 101(9):2658–2663, March 2004.

[46] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New Journal of Physics,
11(3):033015+, March 2009.

[47] Aaron Clauset. Finding local community structure in networks. Physical Review E,
72:026132, Aug 2005.

[48] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of Sci-
ences, 105(4):1118–1123, January 2008.

[49] M. E. J. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences, 103(23):8577–8582, June 2006.

[50] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community struc-
ture in networks. Physical Review E, 83:016107, Jan 2011.

[51] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási. Hierar-
chical organization of modularity in metabolic networks. Science (New York, N.Y.),
297(5586):1551–1555, August 2002.

[52] J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. Phys-
ical Review E, 74(1 Pt 2), July 2006.

[53] A Arenas, A Fernndez, and S Gmez. Analysis of the structure of complex networks
at different resolution levels. New Journal of Physics, 10(5):053039, 2008.
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My research aims to answer the most pressing problems of “Big Data” by combining

physical laws and machine learning. I have developed fast and reliable algorithms to un-

cover the underlying patterns in the data. The ‘secret sauce’ in these techniques is inspired

by physical laws and processes like heat flow, Gauss’s law and biological neural networks

applied to graphs. To test the robustness, I have implemented these techniques to a wide

variety of domains by representing data points and their pairwise relationships as a graph

structure without rebuilding them for each domain. These techniques provide superior re-

sults in general pattern recognition objectives such as to retrieve similar shapes to a query

from a large database of geometric mesh models, track and reconstruct 3D objects in real-

time, identify the hierarchical and overlapping organization of networks, and prevent false

positives in recommender systems.
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