429 research outputs found

    Semantic validation in spatio-temporal schema integration

    Get PDF
    This thesis proposes to address the well-know database integration problem with a new method that combines functionality from database conceptual modeling techniques with functionality from logic-based reasoners. We elaborate on a hybrid - modeling+validation - integration approach for spatio-temporal information integration on the schema level. The modeling part of our methodology is supported by the spatio-temporal conceptual model MADS, whereas the validation part of the integration process is delegated to the description logics validation services. We therefore adhere to the principle that, rather than extending either formalism to try to cover all desirable functionality, a hybrid system, where the database component and the logic component would cooperate, each one performing the tasks for which it is best suited, is a viable solution for semantically rich information management. First, we develop a MADS-based flexible integration approach where the integrated schema designer has several viable ways to construct a final integrated schema. For different related schema elements we provide the designer with four general policies and with a set of structural solutions or structural patterns within each policy. To always guarantee an integrated solution, we provide for a preservation policy with multi-representation structural pattern. To state the inter-schema mappings, we elaborate on a correspondence language with explicit spatial and temporal operators. Thus, our correspondence language has three facets: structural, spatial, and temporal, allowing to relate the thematic representation as well as the spatial and temporal features. With the inter-schema mappings, the designer can state correspondences between related populations, and define the conditions that rule the matching at the instance level. These matching rules can then be used in query rewriting procedures or to match the instances within the data integration process. We associate a set of putative structural patterns to each type of population correspondence, providing a designer with a patterns' selection for flexible integrated schema construction. Second, we enhance our integration method by employing validation services of the description logic formalism. It is not guaranteed that the designer can state all the inter-schema mappings manually, and that they are all correct. We add the validation phase to ensure validity and completeness of the inter-schema mappings set. Inter-schema mappings cannot be validated autonomously, i.e., they are validated against the data model and the schemas they link. Thus, to implement our validation approach, we translate the data model, the source schemas and the inter-schema mappings into a description logic formalism, preserving the spatial and temporal semantics of the MADS data model. Thus, our modeling approach in description logic insures that the model designer will correctly define spatial and temporal schema elements and inter-schema mappings. The added value of the complete translation (i.e., including the data model and the source schemas) is that we validate not only the inter-schema mappings, but also the compliance of the source schemas to the data model, and infer implicit relationships within them. As the result of the validation procedure, the schema designer obtains the complete and valid set of inter-schema mappings and a set of valid (flexible) schematic patterns to apply to construct an integrated schema that meets application requirements. To further our work, we model a framework in which a schema designer is able to follow our integration method and realize the schema integration task in an assisted way. We design two models, UML and SEAM models, of a system that provides for integration functionalities. The models describe a framework where several tools are employed together, each involved in the service it is best suited for. We define the functionalities and the cooperation between the composing elements of the framework and detail the logics of the integration process in an UML activity diagram and in a SEAM operation model

    The DIGMAP geo-temporal web gazetteer service

    Get PDF
    This paper presents the DIGMAP geo-temporal Web gazetteer service, a system providing access to names of places, historical periods, and associated geo-temporal information. Within the DIGMAP project, this gazetteer serves as the unified repository of geographic and temporal information, assisting in the recognition and disambiguation of geo-temporal expressions over text, as well as in resource searching and indexing. We describe the data integration methodology, the handling of temporal information and some of the applications that use the gazetteer. Initial evaluation results show that the proposed system can adequately support several tasks related to geo-temporal information extraction and retrieval

    A multi-level metadata approach for a public sector information data infrastructure

    Get PDF
    This paper describes an approach for representing and handling metadata about Public Sector Information data sets in a large scale data infrastructure as designed within ENGAGE, a project of the FP7 Research Infrastructures programme. A multi-level approach is adopted, allowing management of metadata at various levels of expressive power, and thus enabling different use cases and requirements to be served through a single platform. CERIF is being investigated as a common conceptual model to ensure information integra- tion from diverse sources without loss of meaning and furthermore as the basis for the generation of Linked Open Data. Through detailed mappings from common metadata schemata used for PSI it is shown that CERIF is a data model suitable for representing rich contextual metadata for the domain of governmental datasets

    GI Systems for public health with an ontology based approach

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Health is an indispensable attribute of human life. In modern age, utilizing technologies for health is one of the emergent concepts in several applied fields. Computer science, (geographic) information systems are some of the interdisciplinary fields which motivates this thesis. Inspiring idea of the study is originated from a rhetorical disease DbHd: Database Hugging Disorder, defined by Hans Rosling at World Bank Open Data speech in May 2010. The cure of this disease can be offered as linked open data, which contains ontologies for health science, diseases, genes, drugs, GEO species etc. LOD-Linked Open Data provides the systematic application of information by publishing and connecting structured data on the Web. In the context of this study we aimed to reduce boundaries between semantic web and geo web. For this reason a use case data is studied from Valencia CSISP- Research Center of Public Health in which the mortality rates for particular diseases are represented spatio-temporally. Use case data is divided into three conceptual domains (health, spatial, statistical), enhanced with semantic relations and descriptions by following Linked Data Principles. Finally in order to convey complex health-related information, we offer an infrastructure integrating geo web and semantic web. Based on the established outcome, user access methods are introduced and future researches/studies are outlined

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe CudrÂŽe-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De TrÂŽeWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications

    Contextualized and personalized location-based services

    Get PDF
    Advances in the technologies of smart mobile devices and tiny sensors together with the increase in the number of web resources open up a plethora of new mobile information services where people can acquire and disseminate information at any place and any time. Location-based services (LBS) are characterized by providing users with useful and local information, i.e. information that belongs to a particular domain of interest to the user and can be of use while the user remains in a particular area. In addition, LBS need to take into account the interactions and dependencies between services, user and context for the information filtering and delivery in order to fulfill the needs and constraints of mobile users. We argue that consequently it brings up a series of technical challenges in terms of data semantics and infrastructure, context-awareness and personalization, as well as query formulation and answering etc. They can not be simply extended from existing traditional data management strategies. Instead, they need a new solution. Firstly, we propose a semantic LBS infrastructure on the basis of the modularized ontologies approach. We elaborate a core ontology which is mainly composed of three modules describing the services, users and contexts. The core ontology aims at presenting an abstract view (a model) of all information in LBS. In contrast, data describing the instances (of services user and actual contextual data) are stored in three independent data stores, called the service profiles, user profiles and context profiles. These data are semantically aligned with the concepts in the core ontology through a set of mappings. This approach enables the distributed data sources to be maintained in a autonomous manner, which is well adapted to the high dynamics and mobility of the data sources. Secondly, we separately address the function, features, and our modelling approach of the three major players, i.e. service, context and user in LBS. Then, we define a set of constructs to represent their interactions and inter-dependencies and illustrate how these semantic constructs can contribute to personalized and contextualized query processing. Service classes are organized in a taxonomy, which distinguishes the services by their business functions. This concept hierarchy helps to analyze and reformulate the users' queries. We introduce three new kinds of relationships in the service module to enhance the semantics of interactions and dependencies between services. We identify five key components of contexts in LBS and regard them as a semantic contextual basis for LBS. Component contexts are related together by specific composition relationships that can describe spatio-temporal constraints. A user profile contains personal information about a given user and possibly a set of self-defined rules, which offer hints on what the user likes or dislikes, and what could attract him or her. In the core ontology clustering users with common features can help the cooperative query answering. Each of the three modules of the core ontology is an ontology in itself. They are inter-related by relationships that link concepts belonging to two different modules. The LBS fully benefits from the modularized structure of the core ontology. It allows restricting the search space, as well as facilitating the maintenance of each module. Finally, we studied the query reformulation and processing issues in LBS. How to make the query interface tangible and provide rapid and relevant answers are typical concerns in all information services. Our query format not only fully obeys the "simple, tangible and effective" golden-rules of user-interface design, but also satisfies the needs of domain-independent interface and emphasizes the importance of spatio-temporal constraints in LBS. With pre-defined spatio-temporal operators, users can easily specify in their queries the spatio-temporal availability they need for the services they are looking for. This allows eliminating most of irrelevant answers that are usually generated by keyword-based approaches. Constraints in the various dimensions (what, when, where and what-else) can be expressed by a conjunctive query, and then be smoothly translated to RDF-patterns. We illustrate our query answering strategy by using the SPARQL syntax, and explain how the relaxation can be done with rules specified in the query relaxation profile
    • 

    corecore