
Ontologies : A contribution to the DL/DB
debate.

Nadine Cullot1, Christine Parent3, Stefano Spaccapietra2, and Christelle
Vangenot2

1 LE2I Laboratory, University of Burgundy,
BP 47870, 21078 Dijon Cedex, France
nadine.cullot@u-bourgogne.fr,

2 Database Laboratory, Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland

stefano.spaccapietra@epfl.ch,christelle.vangenot@epfl.ch
3 University of Lausanne, CH-1015 Lausanne, Switzerland

christine.parent@unil.ch

Abstract. The move to global economy has emphasized the need for
intelligent information sharing, and turned ontologies into a kernel is-
sue for the next generation of semantic information services. The push
towards an effective use of ontologies as a means to achieve semantic in-
teroperability is, in our opinion, shifting the focus from purely taxonomic
ontologies to more descriptive ontologies. These would namely provide
agreed descriptions of the data structures representing the complex or-
ganization of objects and links of interest within the targeted domain.
This paper analyzes the requirements for such descriptive ontologies,
and contrasts the requirements to the functionality provided by some
current representative approaches that have been proposed for ontology
management. Selected approaches originate from research in artificial in-
telligence, knowledge representation and database conceptual modeling.
The paper concludes that extending rich semantic data models with sup-
port for reasoning is an interesting alternative to extending description
logics with data management functionality.

1 Introduction

Information sharing, rather than information processing, is what characterizes
information technology in the 21st century. Consequently, ontologies gain in-
creasing attention, as they appear as the most promising solution to enable
information sharing both at a semantic level and in a machine-processable way.
Ontologies by definition provide an encoded representation of a shared under-
standing of terms and concepts in a given domain, as agreed by a community of
people. But ontologies are not all alike. At least three orthogonal criteria may
be used to differentiate among them.

Ontology Focus. Wordnet (http://www.cogsci.princeton.edu/ wn/) is the most
well-known representative of first-generation ontologies that basically provide

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147924532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

definitions of terms and are intended to be used as sophisticated thesauri. Their
structure shows terms organized into a subsumption hierarchy (each term con-
veying the definition of a more specialized concept than its parent term), and
linked by other relationships to express synonymy, composition, etc.... This kind
of ontology, usually referred to as taxonomic ontologies, is useful in information-
sharing infrastructures to provide a reference vocabulary for aligning names
denoting data in different data sets. Other ontologies reach beyond terminol-
ogy, defining conceptualizations that include the representation of properties
of concepts and their interrelationships. These ”descriptive” ontologies resem-
ble database schemas, showing concepts interconnected by a variety of semantic
associations to achieve a semantically rich representation of the intended do-
main. An example (out of the many existing ones) is ImMunoGeneTics, an in-
ternational medical ontology (http://imgt.cines.fr). These ontologies are useful
in information sharing to align existing data structures (not just terms) into
an integrated description of the corresponding domain, or, in a top-down per-
spective, to provide patterns for the definition of new, specialized ontologies or
database schemas.

Ontology Scope. The term scope here refers to the intended use of the on-
tology. Ontologies may be designed and used for purely explanatory purposes,
i.e., as a service to enable the understanding of some domain. Such ontologies
usually come without associated instances, as these are at a level of detail whose
representation is most often not relevant. Ontologies may also serve as a means
to actually support some data management services. Such ontologies have as-
sociated instances, stored in either a database or a semi-structured data set in
e.g. a web server. In the latter case, the ontology plays the role of a database
schema in guiding access to the data in the web server. In the former case, the
ontology may either be used just to assist in the design of the database schema
by providing background semantic information, or as an operational component
in the information management architecture, providing access functionality that
is additional to those typically provided by a DBMS. A characteristic exam-
ple of additional functionality is the management of incomplete data. The split
between explanation (non instantiated) and management (instantiated) ontolo-
gies is orthogonal to the split between taxonomic and descriptive ontologies. A
taxonomic ontology serves a data management goal if it contains, for instance,
references to databases where the user may find data corresponding to a given
term or concept, thus facilitating information retrieval. Descriptive ontologies
defined by some standardization body for a given application domain are ex-
planatory. They hold generic abstractions of a domain, not aiming at managing
a specific database. However, descriptive ontologies, looking very much alike a
database schema, are natural candidates for being used for data management.

Ontology Context. Ontologies traditionally convey a single, monolithic con-
ceptualization, supposedly stating the truth, i.e., how the described domain
should be understood. But many different conceptualizations may exist for the
same real word, each one defining a view shared by some user community. Con-
textual ontologies have been proposed to support alternative views of the world.

3

They provide definitions and descriptions that are context-dependent, thus sup-
porting use from inhomogeneous user communities. The advantage of a con-
textual ontology, versus the alternative to have independent ontologies (or a
hierarchy of ontologies), is that in a contextual ontology it is very easy to sup-
port navigation among contexts, i.e. dynamically moving from one context to
another. Another advantage is to have a multi-context vision of the world avail-
able as a single consistent whole. This is particularly important when updating
ontologies is considered and update propagation from one context to another is
desirable.

While the traditional use of ontologies is more on the taxonomic and ex-
planatory side, there is a tangible push to move towards descriptive, and even
management-oriented ontologies, in order to use them as a key component in
data integration frameworks. In such frameworks ontologies do not refer any-
more to arbitrary, abstract perceptions of the real world. They describe some
defined subset of the real world that is actually represented in the stored data.
The increase in similarity between ontologies and database schemas [1] arises
a legitimate question about the appropriateness and effectiveness of using a
conceptual modeling approach (that has proven to be the best to elaborate a
semantically rich description of the data in a database) to describe the conceptu-
alization that is the subject of an ontology. In other terms, could the conceptual
modeling know-how provide an interesting alternative to traditional description
logic (DL) based approaches? This debate is still open. Some strong propos-
als from the database [2] and knowledge representation communities [3] already
challenge the corpus of work more directly framed in the context of description
logic and its reasoning capabilities (DAML+OIL [4]). The purpose of this paper
is to contribute to the debate a detailed analysis of requirements for the descrip-
tion and use of what we believe will become the leading ontology framework,
i.e. descriptive and, in the longer term, management ontologies. The paper also
analyzes differences and complementarities between proposed approaches to on-
tology description and use. We conclude that enhancing conceptual models with
reasoning support may be the best way to make ontologies operational in data
integration frameworks.

The next section briefly introduces selected related work and representative
proposals for ontology management. It also introduces the conceptual model we
propose. Its facilities are illustrated using a simplified example (borrowed from
[2]) of a scientific conference ontology. The same example is used throughout
the paper. Section 3 discusses ontology requirements, focusing on differences
with traditional database requirements. The highlighted issues are detailed in
the sequel of the paper. Section 4 focuses on the comparison of the data models.
Section 5 deals with how instances are handled. Section 6 analyzes constraint
specification and consistency checking. Query languages are discussed in section
7. Some additional features for ontologies are described in section 8, before the
concluding remarks.

4

2 Related work

Interactions between the ontology and conceptual modeling domains is a topic
of rapidly growing interest for both communities, as witnessed by looking, for
instance, at the number of ontology-oriented contributions at the last ER con-
ference on Conceptual Modeling. The present workshop on Semantic Web and
Databases is another clear sign of interest into these interrelationships.

A well-worth-reading starting point when targeting a comparison of models
for ontologies is the paper by D. McGuinness [5], which provides interesting
insights into a historical perspective of description logic developments, explaining
how emerging applications such as those on the web have motivated the use of
description logics.

A. Borgida and R.J. Brachman [6] adopt a conceptual modeling perspective
to discuss ontology modeling issues, looking in particular at object-based as-
pects and DL. They highlight some weaknesses of DL in representing structured
values, some kinds of constraints, and some forms of ”inheritance” (for material-
ization) and meta-information for conceptual modeling. Conversely, they identify
strengths of DL as its specific features to specify primitive and defined concepts,
necessary and sufficient conditions, and its reasoning tools. We pursue the same
comparative analysis by addressing more specifically ontology requirements and
complementing the comparison of the database conceptual models and descrip-
tion logic approaches for modeling with two other issues: Instances handling and
querying.

The comparative analysis of Entity Relationship (ER) models and DL pro-
posed in [7] develops the transformation of ER schemas into knowledge bases.
The chosen description logic, DLR [8], is a generalization of description logic
for n-ary relations. The authors argue that the semantics of ER models can be
captured by DLR. They also address querying issues, showing that DL queries
can only return subsets of existing objects, while database queries may also cre-
ate new objects. Desirable extensions of standard DL queries are discussed. Our
work also focuses on the comparison of conceptual models and DL. We comple-
ment their analysis by adopting the reverse viewpoint: We aim at identifying
desirable extensions of conceptual models to better address ontological issues.
We actually follow the path lead by R. Meersman [1], who argues that methods
and techniques originally developed for database conceptual modeling and large
databases management could be relevant for ontologies.

His DOGMA project is one of those we explicitly discuss in this paper. Indeed,
to substantiate our analysis on trends in ontology management, we have looked
in detail at proposals that we felt were good representatives of the alternative
approaches from the research communities in artificial intelligence, knowledge
representation, and databases.

Artificial Intelligence Approach and Reasoning. Description logics and their
associated inference techniques have been extensively used as formal theories on
which several ontology languages have been defined. We have chosen RACER
[9] to represent this research area, because it has a wide range of applicability
as it includes instance management facilities. RACER is a description logic rea-

5

soning system based on the SHIQ logic [10], [11]. RACER separates the formal
description of the ontology schema (denoted as the TBox) from the description
of individuals (in the ABox). RACER modeling constructs include:

– Concepts. They are atomic types defined by their names. Logical expressions
may be attached to them, thus allowing designers to define 4: a) subsump-
tion hierarchies, e.g. (implies Author Person), b) constraints associated to a
concept, e.g. (implies Author (at-least 1 Writes)), c) stand-alone constraints,
e.g. (disjoint Person Committee Review Paper Topic), and d) a new concept,
using a logical assertion, e.g. (equivalent PCAuthor (and Author Reviewer)).
Concepts defined by a logical assertion are called ”defined concepts”, as op-
posed to the other ones called ”primitive concepts”.

– Roles. They define binary relationships between a domain concept and a
range concept, e.g., roles (Writes: domain Author :range Paper). Roles played
by a concept can be qualified using quantified restrictions (some, all) and
numeric restrictions (at-most, at-least, exactly). Roles may be transitive,
symmetric, and functional. They can have an inverse as well as super-roles.

– Domain of values. Integer and real named domains of values can be defined.
But attributes, i.e. binary links from a concept to a domain of values, cannot
be defined within the schema. Attribute values are dynamically defined and
associated to instances of concepts. Lastly, RACER allows users to define in
an intentional way, i.e. by a logical expression, characteristics of instances.
For example, one can state that paper p100 has been written by exactly one
author: (instance p100 (and Paper (exactly 1 WrittenBy))).

Artificial Intelligence Approach and Knowledge Representation. We chose
KAON [3] as a representative proposal transferring a knowledge representation
know-how into the ontology domain. KAON is an ontology and semantic web
framework allowing the design and management of ontologies. It includes an
ontology modeling language based on RDF(S) with some proprietary extension
and a conceptual query language. KAON supports modularization through the
recursive definition of sub-models. Each sub-model has (similarly to RACER)
two components:

– An ontology structure, holding definitions of concepts, oriented binary re-
lationships between concepts, and attributes. Relationships may be sym-
metric, transitive and have an inverse. Minimum and maximum cardinality
constraints for relationships and attributes may be specified. Concepts and
relationships can be arranged in two distinct generalization hierarchies.

– An instance pool, holding concepts and relationship instances and attribute
values. Specific to KAON is the possibility to have spanning objects, i.e. a
real world entity being represented both as a concept and as an instance.

Database Approach. DOGMA [2] is an ontology engineering framework based
on the ORM (Object-Role-Modeling) conceptual model[12]. ORM is a binary
relationship data model. DOGMA splits the ontology into two parts:
4 Examples refer to the Conference ontology illustrated in Figures 2 and 3 in RACER

(and in Figure 1 in MADS).

6

– The ontology base, holding the data structure. Its definitions may be con-
textualized using a context name.

– A set of ontological commitments. A commitment is a set of integrity con-
straints (e.g., definition of identifiers, cardinalities) that govern the ontology
for its use in a specific application. The idea is that the ontology base holds
generic knowledge about a domain, while its association to a commitment
set specializes the ontology for a given application within the domain.

Our approach to ontology modeling also belongs to the database inspired
track. While DOGMA (as description logics and KAON) organizes the world
as a collection of object tokens associated to properties and interrelated by bi-
nary relationships, we favor a more synthetic view, as supported by complex
object data models (e.g., UML, extended ER models, semantic models). MADS
[13] is such a data modeling framework. MADS is a spatio-temporal conceptual
model that handles complex objects (i.e., objects with a multi-level attribute
structure, where an attribute can be composed of other attributes), n-ary rela-
tionships with attributes, generalization hierarchies, multi-instantiation, as well
as spatial, temporal and contextual features (context is materialized by stamping
definitions, values and instances to express for which context they are relevant
[14]. Both object and relationship types are first class constructs. MADS has as-
sociated data manipulation languages. The MADS framework includes a visual
schema editor, a visual query editor and the associated mappings onto existing
DBMS. It provides users with an integrated environment where they can work
at the conceptual level for both designing and querying the database. Figure 1
uses traditional ER diagrammatic techniques to show a MADS data structure
(without space, time, and contextual features) for our running example about
activities and contributors of a scientific conference.

3 Ontology Requirements

This section holds introductory discussions of the four major components of an
ontology management approach: How the conceptualization is described, how
associated instances are managed, how reasoning is performed, and how data is
queried. The discussion points at similarities and differences between ontology
requirements and requirements for traditional databases. Sections 4 to 7 look in
more detail into each issue.

Data Modeling. As we believe future ontologies will be descriptive rather than
purely taxononmic, we assume the conceptualization includes the definition of
relevant data structures. For instance, Figure 1 can be interpreted as illustrating
an ontology data structure for management of conference reviews. Representing
the knowledge that ”papers are assigned to reviewers” as a data structure show-
ing a relationship type linking the two complex object types defining papers
and reviewers, is semantically richer than embedding the same semantics in the
separate definition of three terms (paper, reviewer, assignment) in a taxonomic
ontology. On the contrary, binary data models à la DOGMA, KAON, and de-
scription logics may provide a good solution for taxonomic ontologies: Concepts

7

Committee

Review

Topic

Paper

Person

Chairs

HasTopic

WritesAssigmentHasReviewed

Member

AuthorReviewer

name

firstnames 1: n list

address

email

firstline
city
zipcode
country

role

Cname

title

SubTopic

Reviewer
name

item score

marks comment
date received

1:3

1:n

0:n

0:n

1:1

0:5
0:n

0:n
HasSubTopic

0:n

IsSubTopic
0:n

0:n list

1:n0:100:10

0:5 1:n list

p#
title

date_received

Tname

cover

Object type Relationship type Generalisation /
Specialization

Attribute
CName

Fig. 1. MADS schema for the scientific conference ontology.

may represent terms and binary links may represent the classic taxonomic re-
lationships, e.g., synonym, homonym, hyponym, holonym. Defining a semantic
data structure is also an extremely efficient support for visualizing in an intel-
ligent and intuitive way how the domain of interest is articulated into its many
concepts. The capability to visualize the structure of a domain has always been
one of the best selling arguments for conceptual models and their acceptance
by users. It also has been concerns of knowledge representation systems [15]. Of
course, this argument is irrelevant if the ontology is automatically built using
some emergent semantic technique, or if the ontology is explored by agents only.

Aiming at expressiveness of concepts for the representation and definition of
data structures, powerful conceptual data models naturally appear as the best
candidate. They have been purposely and carefully developed to enable building
representations that are as rich and as close as possible to human perception.
They have proven to be quite successful with users. The same benefits can be
expected in using them to build ontologies. A number of researchers [16], [17],
[1] have already argued in favor of ”highly intuitive” ontology models with a
”frame-like look and feel” or ”database schema” alike. We support this view-
point. Nevertheless, ontologies may require even higher expressiveness than con-
ceptual models, as, beyond modeling, they aim at supporting reasoning on the
description of the domain of interest. As will be shown hereinafter, this requires
extending current conceptual data models with some additional features.

Instance Handling. Instances always exist in a database (except during the
design phase), the main purpose of a DBMS being to provide efficient services
for storing and handling the instances. As seen in section 1, instances do not

8

necessarily exist in an ontology. While in a database framework there is a clear
separation between the schema (metadata) and the instances (data), and the
schema definition is completed before instances are created, this separation is
not always enforced in ontological frameworks, where instances may be created
anytime. The database approach is normative, in the sense that the database
schema defines how the world is, and instances are accepted only if they fully
comply with the definitions and constraints stated in the schema. The ontology
approach is only partly normative, as it accepts instances as long as they do not
explicitly contradict the knowledge already in the ontology, without requiring
that all expected data being present. When an inference mechanism finds that
an instance should hold a characteristic that is not present, the ontology assumes
that the instance does hold it. In other words, databases work with a closed-world
assumption, while ontology systems apply an open-world assumption.

Reasoning. The ontology world seems to follow a collaborative approach,
where the conceptualization at hand may continuously evolve through updates
from a community of users, without a normative policy or sequence ruling the
process. For example, the specification of a concept (e.g., the Paper object type
in the conference example) may be changed anytime, irrespectively of the fact
that the ontology holds instances of the concept. In the ontology approach, the
specification of a concept defines the condition that its instances must verify. At
any time instances are classified in concepts according to these specifications. If
the specification of the concept or the characteristics of the instance are modified
the classification of the instance is automatically updated. This flexibility is
enabled by the existence of powerful reasoning mechanisms. An even higher
flexibility is provided in ontology approaches that support so-called spanning
objects [18] i.e. objects that are both at the instance and at the type level (these
objects are both source and target of instance-of links). For example in [18], an
Ape may be an instance of the Species type and a type for ape objects. Although
theoretically possible by introducing a meta-schema level, spanning objects are
not supported by database technology, which for pragmatic reasons limits its
interest to the two basic levels, schema and data.

Queries. Querying in databases is used to retrieve data. Queries are expressed
on the schema, which is supposed to be known to users that want to formulate a
query. Ontology users are more prone to start their search for data by wondering
about what information is actually held by the system. These users (or agents)
will first query the ontology schema, to identify what relevant information exists,
and then proceed to query the data to extract the desired information from the
underlying databases.

4 Data Modeling

In the previous section, we have argued that, due to strong similarity between
descriptive ontologies and database schemas, conceptual data models are good
candidates for ontology modeling. In this section we analyze differences between
constructs in conceptual models and in current ontology proposals.

9

Object Structure. Ontology models, as we have seen, adopt a binary (also
termed functional) approach. Objects are mere tokens (i.e., objects with only
an identity and no value) that gain their semantics through binary relationships
with other objects or value domains. The known disadvantage of the approach is
that a real world entity is scattered into its most elementary pieces and the vision
of the thing as a whole is lost. Conceptual models, like MADS, that support
complex (NF2like) object structures can represent each real world entity as a
single object. This greatly reduces the complexity of the schema. Figures 1, 2 and
3 show that, even for an over-simplified example, the difference in readability
is important. The MADS diagram in Figure 1 only needs 7 object types, while
the equivalent DL diagram needs 27 objects types. The latter also doubles the
number of relationship types if its inverse roles have to be represented. The gain
in semantic expressiveness induced by complex objects is worth the additional
challenge in implementation.

Object Identity. There is a general agreement that object instances should
have a unique object identity. Originally, object identity is system defined and
not visible to users. Some ontology approaches (including KAON and RACER)
leave it up to users to define the identity of each object. In our opinion, this
policy hardly scales up to the very large sets of instances that may be expected
in future ontologies.

Generalization Hierarchy. Is-a links, with population inclusion semantics and
property inheritance, and generalization hierarchies (or lattices) are standard
constructs in both ontology languages (where the term subsumption is often
preferred to the term is-a) and conceptual models. Notice that rules for gener-
alization hierarchies in conceptual models may differ significantly from object-
oriented models rules. MADS, for instance, allows an object instance to dynami-
cally gain (or loose) membership in (or from) other classes. MADS also supports
multi-instantiation, i.e. a real world entity can be represented by several instances
belonging to different classes. For example, a person can be both an author and
a reviewer. A generalization hierarchy may similarly be defined on relationship
types. DL models follow a similar approach. However, they have different de-
fault assumptions. In KAON and DL models (e.g. RACER), by default any two
concepts may contain common instances. In conceptual models, like MADS, by
default two object (or relationship) classes with no common ancestor in the gen-
eralization hierarchy (but the root) are disjoint. With the permissive approach
of DL, non-careful users may unwillingly create unwanted multi-instantiations
that are automatically deduced by the inference engine from their assertions.

Defined constructs, views and derivations. The main goal of ontologies, sup-
porting precise definitions of concepts in relation to other concepts, is fulfilled
by the possibility to define concepts using an intentional formula. For example,
based on the Conference ontology, one may want to define new concepts such as
PCPaper (to represent papers submitted by at least one member of a commit-
tee), ChairPerson (persons chairing a committee), and SwissAuthor (authors
from Switzerland). In DL these defined concepts are managed exactly in the

10

Reviewer

Review

Topic

HasTopic 0: n

Writes 1: n

Assigns 0:10
HasReviewed 0: 10

Committee

Person IsChairedb y 1:3

Member

IsMember 0: n

Chairs 0: n

IsPerson 1: 1
IsMemberCommittee 1:1

HasMembers 1: n

Role

HasMemberRole
1:1

IsMemberRoleof
1:1

IsReviewedBy 1:1

IsAssignedTo 0:5

IsWrittenBy 1: n

Concerns 1:1

IsConcernedBy 0:5

IsTopicOf 0: n

IsSubTopic 0: n HasSubTopic 0: n

CommitteeName

HasCommitteeName 1:1

IsCommitteeNameof 1:1

ReviewDate

IsReviewDateof 1:1

HasReviewDate 1: 1

HasTopicName 1:1

IsTopicNameof 1:1

TopicName

Paper

Author

1

2

IsAddressCountryOf 1:1

Address

1

Person

HasPersonName 1:1

IsPersonNameo1 :1

PersonName

IsLocatedAt 1:1Locates1 :1

HasPersonFName 1: n

IsPersonFNameof
1:1

PersonFName Number

HasAddressFLine 1:1

IsAddressFLineOf 1:1 AddressFLine

HasAddressCity 1:1

IsAddressCityOf1 :1

AddressCity

HasAddressZipCode
1:1

IsAddressZipCodeOf 1:1

AddressZipCode

HasAddressCountry 1:1

AddressCountry

3

4

Concept Role Attribute (Concrete Domain Concepts)

AttributeName

Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 2. Scientific Conference Ontology Snapshot with DL formalism (Part1)

11

same way as the other concepts (the primitive ones), which means, among other
things, that they belong to the same generalization hierarchy.

Databases, interested in redundancy-free schemas and data, are not prone
to support defined constructs. Nevertheless, some DBMS provide a somehow
similar functionality through views and derived constructs. Views are relations
(or object classes) defined by a query. Their goal is to provide users with an-
other presentation of a subset of the database in order to make user querying
easier. Views do not belong to the database schema. They form an external
level that acts as an interface for the users. In terms of supporting derivation
mechanisms, some conceptual models allow designers to associate to an object
class (or relationship class or attribute) an expression that automatically gen-
erates the instances of the class (or the values of the attribute). The designer
also explicitly defines the structure of the derived class and its position in the
generalization hierarchy. Only the identities of the instances (the values, in case
of an attribute) are automatically inferred. An example of a derived construct is
a cluster of is-a links defined by a classifying attribute whose value determines
which sub-class each instance belongs to. Another example is MADS support of
derived topological relationships. For instance, a derived inclusion relationship
On may be defined to link two spatial objects classes Parcel and House: Each
time the geometry of a house is inside the geometry of a parcel, the system
automatically generates an instance of the On relationship that links the house
and the parcel.

Let us compare these three mechanisms using the following criteria:

– Which modeling constructs can be defined, derived or can be a view? Descrip-
tion logics support defined concepts and roles. Both relational and object-
oriented DBMS support views for their main construct only: tables or object
classes. MADS supports derived spatial and temporal relationships and de-
rived attributes. Defined object classes could be implemented by queries
whose resulting type would be added to the database schema. Description
logics, RACER, and KAON also support some kind of derived relationships:
Instances of transitive, symmetric, and inverse roles are automatically in-
ferred. DOGMA supports symmetric cyclic relationships.

– What is the status of the defined, derived construct, or view? In DL there is
no difference between defined and primitive concepts except their definition.
In databases the specificity of a derived construct is that it cannot be in-
stantiated directly by users. View is a special construct that does not belong
to the set of constructs of the data model.

– How powerful is the defining formula, derivation expression, or the query
defining a view? As the data model of DL is based upon token objects,
DL formulas have to define identities only, while in databases derivation ex-
pressions and queries for views have to define identities with the associated
structured values. Another difference is that DL formulas define only sets
of existing instances, while queries can be either object preserving (defin-
ing new representations for existing objects) or object generating (creating
new objects with new oids). Examples of such queries for the Conference

12

ontology are, respectively: PCPaper, the set of papers written by at least
a member of a committee, and the new relationship class ReviewerAuthor
that links each author to each of his/her reviewers. Borgida [19] showed that
DL formulas have a limited power compared to databases query languages.
They are equivalent to first order logic with 3 variables. For instance, it is
easy to write a query that finds the papers that have been assigned to one of
their authors (an error of assignment), while in DL it is impossible to write
the equivalent formula. As for derivation expressions, they vary according
to the data model. Often they are predefined and therefore are expressions
with limited power.

In conclusion, one could roughly say that conceptual models are better at de-
signing primitive concepts because they can describe more complex structures,
closer to the real world, and because they support appealing visual diagrams
and design tools. 5 They also support derived constructs whose instances can
be automatically inferred. But, contrarily to models based on DL, they do not
support defined constructs that designers can define by a logical formula without
knowing where they will fit in the generalization hierarchy or even knowing the
generalization hierarchy.

5 Instance Handling

Ontologies may include instances, as databases routinely do, as part of their
domain of interest. To realistically manage large sets of instances, storage and
transaction management mechanisms that support security, concurrency, relia-
bility, query optimization, and scalability are needed. As this is exactly what
a DBMS provides, DOGMA, KAON, and MADS delegate such services to an
underlying DBMS. KAON, for example, stores ontology instances in a relational
database [18]. DOGMA, KAON, and MADS are built as a layer in between
users and the DBMS, providing an ontological or conceptual modeling perspec-
tive on the data. RACER, instead, uses a proprietary file system, which limits
portability and does not provide all of the above services. Instance manage-
ment includes manipulation facilities such as insertion, deletion and updating.
They should be accessible both via some user-oriented assertional language (à
la SQL, for example) and via some API providing one instance at a time access.
Both types of DML are fully supported by a DBMS. RACER provides only el-
ementary facilities. Attribute values as treated as objects, which requires three
operations to define a value for a simple attribute of an instance: (1) creation
of an object-value, (2) assigning the value to the object-value, and (3) linking
this object-value to the instance. DOGMA, KAON, and MADS offer (or plan to
offer) a conceptual DML that corresponds to the data modeling paradigm they
5 In order to achieve readibility and understandability by users, visual diagrams pur-

posely limit their expressive power to a subset of the concepts in the conceptual
model. They are complemented with textual specifications that complete the de-
scription of the schema.

13

use. Users can, as in RACER, load and manipulate instances that obey the rules
of the ontology, without having to consider the representation format used to
store instances.

Ontologies, however, need additional manipulation facilities. DBMS users
are expected to know the schema and issue manipulation requests that conform
to the schema and the associated constraints. For example, to insert a new
instance users have to explicitly specify its type and to provide its value and links.
Moreover the value and links have to obey the format and constraints defined for
this type. Description logics assume users (humans or agents) may be only partly
(if at all) aware of the schema (concepts and role definitions). A DL schema hence
acts like a set of sufficient conditions that define the membership of the instances
to concepts (or roles). Therefore, DL systems allow users to insert a new instance
giving only an intensional definition (i.e., a logical formula) characterizing the
target concept. The reasoner then computes the concepts the instance belongs to.
Finding the most specific concepts an individual belongs to is called realization.
For example, RACER supports the definition of an instance by specifying its
properties instance Mary (some Writes Paper) and realization allows finding its
most specific concepts. The system will deduce that the instance Mary is an
instance of Author. Realization may be much more complex than in this very
simple example.

Database systems are not meant to provide such looseness in instance ma-
nipulation. As already stated, they are normative. They follow the closed world
assumption, stating that only information that is present in the database (or
derivable by explicitly defined derivation rules) is valid. Consequently, they do
not need sophisticated reasoners to infer additional information. DL systems nat-
urally adhere to the open world assumption, which assumes that present data
is just the explicitly known subset of the valid data, and more valid data may
be inferred by sophisticated reasoning. Thus, if an assertion implies a deduced
fact that is consistent with all known assertions and instances, then the fact is
assumed to be true even if it is not present in the instance set. Otherwise stated,
an insertion in DL is always treated as the insertion of incomplete information.
For example, a database will accept the insertion of the above instance Mary in
Author only if it comes with the insertion of (at least) one instance of the Writes
relationship involving Mary. RACER accepts the insertion of the single Mary
instance, deducing that the paper written by Mary is presently unknown (see
[20], for more on this discussion). In addition, Recognition is performed when an
already existing instance of a concept acquires (or loses) a characteristics and
therefore gets (or loses) a new instantiation in another concept. For example,
on the insertion of a new role instance linking a Person instance p to a Paper
instance, RACER infers that p is also an instance of Author.

6 Constraints

In the database world, constraints significantly enrich data description. They
state rules that apply in the real world of interest (e.g., one paper has at least

14

one author) and rules that define the conditions for real world phenomena to
be or not to be of interest for the intended application (e.g., a committee is not
registered in the database before at least one of its members is registered in the
database). Constraints, as other schema definition statements, are understood
in the DB world as normative specifications. They entail consistency-checking
mechanisms, to verify that instances in the database satisfy all constraints. DL
languages are also able to express rules similar to database constraints (e.g.,
min-max cardinalities). However, only some of them actually constrain the in-
stances in the A-Box. For example, a maximum cardinality specification acts as
a constraint as an attempt to create more instances than allowed would result in
an inconsistency that is detected and rejected. On the other hand, a minimum
cardinality specification only acts as a descriptive feature, as a DL system would
accept, e.g., the creation of a paper without an author, simply assuming that the
information in the instance base (the A-Box) is temporarily incomplete. We be-
lieve that the possibility to define normative constraints, as in the DB approach,
is a desirable feature also for ontologies.

There are such a variety of constraints that data models almost necessarily
only include part of them in their constructs. Implicit model constraints rule the
use of modeling constructs and are built-in in the data model, i.e. they act as
syntactic constraints that are automatically enforced by the data management
interface. For instance, in RACER a role definition has to specify a domain and
a range; in conceptual data models a relationship type is only allowed to link
object types, and a relationship instance is not allowed to have pending roles; in
both DL and DB models cycles of is-a links are forbidden. Explicit definition of
constraints is used to describe the semantics of the domain/ontology. According
to the approach, they come in two different ways. 1) Embedded constraints are
expressed using dedicated constructs in the data model. Examples include car-
dinality and identifier specifications (e.g., the NOT NULL and PRIMARY KEY
clauses in relational DBMS), set constraints on groups of roles or is-a links (e.g.,
disjunction, inclusion, cover, partition), and simple integrity constraints (e.g.,
using the CHECK clause in relational DBMS). 2) Integrity constraints are those
that are not directly supported by clauses in the model itself, and thus have
to be explicitly expressed using a complementary technique, such as a generic
declarative language (e.g., first order logic), a generic programming language
(e.g. stored procedures or methods), or triggers. As DL axioms can define a
large range of embedded constraints, DL approaches do not resort to additional
mechanisms for integrity constraints definition. On the contrary, DB approaches
rely on such mechanisms. DL also differs from DB approaches in that DL al-
lows associating a constraint to an instance, while DB considers constraints as
meta-information and always associates them to types (thus constraining un-
der the same rule all instances of the type). In terms of expressiveness of the
language to define constraints, first order logic (FOL) is the closest to full expres-
sive power using a declarative approach. DL languages usually support a more
limited expressive power. For instance, RACER cannot express key constraint
involving multiple attributes and ad hoc constraints such as ”an author cannot

15

review his/her papers”. More expressive DL such as DLR supports this kind of
constraints.

A meta-question about constraints and ontologies is whether constraints
should be included in ontologies at all. Most frequently, constraints are inter-
twined in the T-Box with the data description statements. Meersman and his
group [2] take the opposite view that all constraints should be separated from
data description and defined in a commitment layer. The supporting argument
is that constraints are application specific, while the ontology should be applica-
tion independent. We agree that having a commitment layer is the appropriate
way to handle application-specific semantics. Nevertheless, there are in our opin-
ion constraints that belong to the ontological world, i.e. that form an essential
component in the description of the semantics of things. For instance, the fact
that in a conference management ontology a review of a paper should never be
assigned to one of the authors of the paper is a constraint that is unanimously
agreed upon. It is a constraint that is tightly linked to the semantics of a re-
view (defined as a critical appreciation of a work by a person not involved in
the work). On the contrary, whether a conference committee has one or more
chairpersons varies from one conference to the other. The ontology could state
a 1:N cardinality (to make sure a committee has at least a chair), leaving to the
commitment layer to refine the cardinality to 1:2 or 1:3 or whatever else fits the
conference specific requirements.

Checking the consistency of the set of constraints and checking the consis-
tency between the constraints and the schema are tasks that can be performed
automatically by the reasoners available in description logics. Constraints are
expressed in the same formalism as the other description clauses; hence they
are naturally involved in the inferring. The same functionality is not provided
by current database technology, where applicable reasoning techniques cannot
grasp the semantics hidden in the external language expressions used to define
integrity constraints.

Checking the consistency of schema specifications is also an issue where DL
and databases take different approaches. In databases, it is not possible to val-
idate a schema that does not obey model constraints. As there is no defined
construct, there is no need for sophisticated reasoning in checking the consis-
tency of the schema. Reasoners are necessary in DL to check the consistency
of primitive, defined concepts, and other axioms. They define a valid schema
as a schema such that it is possible to find one instance of the ontology that
has at least one instance in each one of its concepts. While database users can
never actually use an invalid schema, in RACER, for example, users can request
a consistency check anytime and they can continue working on an inconsistent
schema.

7 Ontology Querying

Like databases, ontologies are queried by different categories of users, with dif-
ferent needs:

16

– Ontology administrators, whose role (like DBAs, database administrators)
is to design and maintain the ontology schema and monitor its evolution.
While a DBA is seen as a central authority, ontology creation and evolution
is often seen as a more cooperative activity, distributing the task among
many people. Hence schema querying is likely to be a more intensively used
functionality, with the schema continuously and incrementally growing with
many defined concepts.

– End-users, who will face a large and complex schema that they may not know
well. They also will query the schema to know what is in the ontology. They
may also write mixed queries to access both the schema and the instances.
For example, a user of a geographic ontology describing the various states of
a country may ask for all information (list of properties with their description
and value) about rivers and synonyms of rivers. Therefore, both the schema
and the instance base should be accessible through the same query language,
possibly within the same query.

– Application developers, who need to gain access to the ontology and its
services via an API.

Requirements for instantiated descriptive ontologies include the usual ser-
vices supported by DBMS, namely a generic assertional query language with
associated tools for automatic query optimization. The expressive power, and
its optimization possibilities, of the language are bound to the characteristics of
the associated ontology model. For instance, queries in a language for a binary
model, like those of KAON and RACER, will return types or instances of the
elementary constructs of the model: concepts and binary relationships. On the
other hand, queries on semantic models with structured objects, like MADS, will
return structured instances, i.e. more informative and more condensed results.
Therefore, for descriptive ontologies frameworks, where understanding the data
structure may be a challenge, semantic query languages returning structured
objects are likely to perform better than languages for binary models.

Another requirement is that the same query language should support query-
ing both the schema and the instances in the same way. Models that host the
description and the instances of the ontology within the same structure automat-
ically fulfill this requirement as it is possible in RACER or KAON. For models
that clearly separate the schema from the instances, like database models do, a
solution is to store the schema as instances of a meta-schema described with the
same model as the ontology. Such a solution is currently provided by relational
DBMS that support a data dictionary made up of a set of predefined tables that
describe the tables of the application schema.

Several functionalities should be provided for schema querying. Exploration
of the schema is the first one. When the schema contains concepts defined by
logical formulas, reasoning comes as the second one.

Schema exploration. The query language should allow getting all information
existing in the schema. Examples of such queries could be:

Give the characteristics of a relationship (transitive, symmetric, inverse)
Give the relationships going from (or to) a concept.

17

Queries of this type can be formulated in the RACER language using the
elementary predefined functions that are provided for navigation inside the
schema: describe-concept, describe-role, reflexive?, symmetric?, transitive?, fea-
ture?, role-inverse, role-domain, role-range. KAON also provides similar func-
tions, such as Properties From, Properties To, Domain Concept, Range Concept,
SubConcepts, SuperConcepts.

In MADS, this can be done by defining the schema of the meta-model of
MADS, and querying this meta-base with one of the generic languages of MADS
(visual or textual algebraic). However, for humans a much simpler way to explore
the schema is to visualize and browse it using the MADS schema editor.

Reasoning on the schema. Users of ontologies that contain non-primitive con-
cepts defined by logical formulas need a schema query language with new func-
tions for helping them in their understanding of the defined concepts. Typical
functions of this type are (here by concept we mean any kind of concept, be it
primitive or defined):

Are two concepts equivalent or disjoint? Does a concept (or relationship)
subsume another one? Classify the whole set of concepts. What are the super-
or sub-concepts (at any level) of a concept?

These functions require an inference engine for their evaluation. This justifies
the choice of formal models, such as DL, that have powerful tools to classify
concepts using the subsumption mechanism.

Instances querying. Databases and DL offer complementary functionality
for instance querying. Databases systems usually provide powerful assertional
query languages complemented with efficient query optimization tools. These
languages, like the ones of MADS, support object preserving as well as object
generating queries. They also allow users to define new structures for existing
objects by pruning existing properties or computing new, derived properties.
On the other hand, DL systems support a set of simple functions for accessing
instances and derived facts computed by their inference engines, like the closure
(resp. inverse, symmetry) of the transitive (resp. inverse, symmetric) relation-
ships. Moreover DL systems, like RACER, that allow users to associate logical
formulas to instances, provide a new reasoning function: ”To which most specific
concepts does this instance belong?”

8 Additional Requirements

Up to now we have only discussed traditional requirements as addressed by cur-
rent ontology frameworks. This section highlights some additional features that
we believe will in the short term gain importance for the full development of
ontologies. The first and most evident additional feature is the possibility to
associate temporal specifications to the concepts and roles of an ontology. The
semantics of terms and concepts evolves in time, new terms and new concepts
appear while other become obsolete. It is therefore important that each item
in an ontology be qualified using a temporal specification that says when the
definition of this item is valid. How to define and implement such lifecycle spec-

18

ifications for concepts and roles, as well as time-varying attributes, has been
thoroughly investigated by the temporal database community. Results should
simply be taken over to ontologies. Similar considerations may apply to spa-
tial specifications, well-known in the world of geographical information systems
(GIS). They may describe, for instance, the geographical coverage of a given
term (e.g. ”char” to denote a car holds in Quebec but not in Paris). Moreover,
research in data visualization has shown that ontologies may be displayed as a
concept space, where spatial concepts such as distance, neighborhood, inclusion,
or orientation may fully apply. Spatial information supports storing the position
and topology of concepts in such abstract spaces. Spatial information will also
play an important role for ontologies where geographical aspects are part of the
domain of discourse. To support its description, concepts and techniques may be
borrowed from GIS research. Finally, as we have importance as the actual use
of ontologies becomes practically relevant. The need for context information is
recognized in the ontology literature, but the current status shows limited results
and significant advances may still be foreseen in this domain. How to define a
context, how to analyze interrelationships between contexts, how to character-
ize constraints on contexts, are examples of open research issues. RACER and
KAON currently support none of these additional features. Some extensions of
DL have been proposed for spatial and temporal modeling [21],[22]. DOGMA in-
cludes context information. MADS supports space, time, and context description
and manipulation.

9 Conclusion

Ontologies are promised to a brilliant future. As a consequence, usability criteria
will assess their success. In our opinion, this means that focus will be on more
informative ontologies, showing, in addition to terms and concepts of a domain,
how domain data are semantically structured and interrelated. We termed these
ontologies descriptive, as opposed to first-generation taxonomic ontologies. The
paper investigated requirements for the design and management of descriptive
ontologies, and contrasted the requirements with the functionality currently pro-
vided by database conceptual models. Proper identification of the requirements
has been supported by an analysis of some recent representative proposals for
ontology systems (namely, RACER, KAON, and DOGMA). The rationale for
this work is the close resemblance between requirements for database design
and those for ontology design. We attempted to highlight similarities as well as
significant differences in the approaches. Most differences appear to be linked
to the current state of art in both domains. These ones may disappear thanks
to further research. However, important differences (such as closed versus open
world assumptions) are inherently due to the different goals of ontology and
database services. Ontologies are meant to describe and explain the world, while
databases are meant to describe that part of the world whose representation
has to be managed for some application purpose. Overcoming differences is a
meaningful way to benefit one domain with results from the other domain. Pre-

19

vious work has investigated how to extend description logics to provide more
data semantic services, or how to map description logic specifications into con-
ceptual model specification, and vice versa. Our aim has been to identify the
enhancement that conceptual models would need to make them fit the require-
ments of ontologies. Briefly stated, the necessary enhancements have obviously
to do with supporting reasoning. A major addition is the support of intentionally
defined concepts à la DL. This somehow resembles view definition and queries
in databases, but views are not part of the database schema and queries raise
a number of open issues (e.g., how to place the query object type in the gen-
eralization hierarchy in order to explicit the semantic relationship between the
new type and the existing types). A minor addition is the explicit definition of
the specialization criterion in is-a clusters, so that the system can compute the
appropriate sub-class for an object whose value changes or is first created. More
additions that we feel important to match coming requirements are provision
for spatio-temporal data modeling and context management. We have currently
defined and implemented a conceptual data model, MADS, that supports ad-
vanced data structure, time, space, and context modeling requirements, as well
as query placement to some extent. As a further step towards ontologies, we are
extending the model to support imprecise information, where incompleteness is
seen as a form of imprecision. This is intended to allow building ontology ser-
vices above the conceptual services currently provided by prototypes developed
within the MurMur IST project [23].

References

1. Meersman, R.: Ontologies and Databases: More than a Fleeting Resemblance. In:
OES/SEO Workshop Rome. (2001)

2. Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Ap-
proach. In Meersman, R., Tari, Z., et al., eds.: CooPIS/DOA/ODBASE, Springer-
Verlag, LNCS 2519 (2002) 1238–1254

3. KAON: KAON - The Karlsruhe Ontology and Semantic Web Tool Suite (2003)
http://kaon.semanticweb.org/.

4. Horrocks, I.: DAML+OIL: A reason-able Web Ontology Language. In Jensen, C.,
et al., eds.: EDBT 2002, Springer-Verlag, LNCS 2287 (2002) 2–13

5. McGuinness, D.: Description Logics Emerge from Ivory Towers. In: Proceedings
of the International Workshop on Description Logics, Stanford, CA (2001)

6. Borgida, A., Brachman, R.J.: Conceptual Modelling with Description Logics. In
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
Description Logic Handbook, Cambridge University Press (2002) 349–372

7. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Databases. In Baader,
F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description
Logic Handbook, Cambridge University Press (2002) 462–484

8. Calvanese, D., Giacomo, G.: Expressive Description Logics. In Baader, F., Cal-
vanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic
Handbook, Cambridge University Press (2002) 178–218

9. Haarslev, V., Möller, R.: RACER System Description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: Proceedings of International Joint Conference on Automated
Reasoning (IJCAR’2001), Springer-Verlag (2001) 701–705

20

2

Review

HasReviewMark 1: n

IsReviewMarkOf 1:1

ReviewMarks

HasReviewComment 0: n
IsReviewCommentOf 1:1

 IsMarkItemO f 1: 1

HasMarkItem 1: 1

MarkItem ItemScore
ReviewCommentsNumber

Author AuthorTitle

HasAuthorTitle 1:1

IsAuthorTitleOf 1:1

3

Paper

4

 Number

PaperTitle
HasPaperTitle 1:1

IsPaperTitleOf 1:1

PaperReferenceHasPaperRef 1:1

IsPaperRefOf 1:1

PaperDate

HasPaperDate 1:1

IsPaperDateOf 1:1

Concept Role Attribute (Concrete Domain Concepts)

AttributeName

Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 3. Scientific Conference Ontology Snapshot with DL formalism (Part2)

21

10. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with Individuals for the Description
Logic SHIQ. In MacAllester, D., ed.: Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17). LNAI 1831, Springer-Verlag (2000) 482–496

11. Horrocks, I., Sattler, U.: Optimised Reasoning for SHIQ. In: Proc. of the 15th
European Conference on Artificial Intelligence (ECAI’2002). (2002) 277–281

12. Halpin, T.: Information Modelling and Relational Database Design. (2001)
13. Spaccapietra, S., Parent, C., Zimanyi, E.: Spatio-Temporal Conceptual Models:

Data Structures + Space + Time. In: 7th ACM Symposium on Advances in
Geographic Information Systems (ACM GIS’99). (1999) 26–33

14. Spaccapietra, S., Parent, C., Vangenot, C.: From Multiscale to Multirepresenta-
tion. In Choueiry, B., Walsh, T., eds.: Proceedings 4th International Symposium,
SARA-2000, Horseshoes Bay, Texas, USA, Springer-Verlag, LNAI 1864 (2000)

15. OKBC: OKBC - Generic Knowledge Base Editor (1998)
http://www.ai.sri.com/ gkb/.

16. Fensel, D., Hendler, J., Liebermann, H., Wahlster, W.: Spinning the semantic web,
The MIT Press, Cambridge, Massachusetts (2003)

17. Klein, M., Broekstra, J., Fensel, D., van Harmelen, F., Horrocks, I.: Ontologies and
schema languages on the Web. In D. Fensel, J. Hendler, H.L., Wahlster, W., eds.:
Spinning the Semantic Web, The MIT Press, Cambridge, Massachusetts (2003)

18. Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for
Semantic-Driven Enterprise Applications. In Meersman, R., Tari, Z., et al., eds.:
CooPIS/DOA/ODBASE, Springer-Verlag, LNCS 2519 (2002) 1082–1099

19. Borgida, A.: On the relative expressive power of Description Logics and Predicate
Calculus. In: Artificial Intelligence 82. (1996) 353–367

20. Baader, F., Nutt., W.: Basic Description Logics. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic Handbook,
Cambridge University Press (2002) 43–95

21. Haarslev, V., Lutz, C., Möller, R.: Foundations of Spatioterminological Reason-
ing with Description Logics. In A.G. Cohn, L.K. Schubert, S., ed.: Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR’98). (1998) 112–123

22. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
In: Annals of Mathematics and Artificial Intelligence (AMAI), Vol. 30 No. 1-4,
Kluwer Academic (2001)

23. MurMur: MurMur Consortium - MurMur Project: Multi-representations
and Multiple resolution in geographic databases (2002) Final Report.
http://lbdwww.epfl.ch/e/MurMur.

