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Abstract. Are database concepts and techniques suitable for ontology design
and management? The question has been on the floor for some time already. It
gets a new emphasis today, thanks to the focus on ontologies and ontology
services due to the spread of web services as a new paradigm for information
management. This paper analyzes some of the arguments that are relevant to
the debate, in particular the question whether conceptual data models would
adequately support the design and use of ontologies. It concludes suggesting a
hybrid approach, combining databases and logic-based services.1

1.  Introduction

Nowadays, all major economic players have decentralized organizational structures,
with multiple autonomous units acting in parallel. New information systems have to
handle a variety of information sources, from proprietary ones to those available in
web services worldwide. Their complexity is best controlled using a network of
coordinated web services capable of grasping relevant information wherever it may
be and exchanging information with all potential partners. Data semantics is at the
heart of such multi-agent systems. Interacting agents in an open environment do not
necessarily share a common understanding of the world at hand, as used to be the case
in traditional enterprise information systems. For instance, in a single enterprise
environment, the concept of "employee" has a unique definition shared by every
application within the enterprise. In a multi-agent system, the interpretation of the
"employee" concept may vary based on whether or not specific types of personnel
(e.g., students in their summer jobs, trainees, visitors) have also to be considered as
employees. Another example is obviously provided by contextual information, such
as whether a sentence about trees refers to the vegetal or to the mathematical
structure. This is also a form of semantic disambiguation.
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Lack of common background calls for explicit guidance in understanding the
exact meaning of the data. XML-like formatting does not help much in this.
Ontologies increasingly appear as the solution to the problem. They are the most
sophisticated form of semantics repository. From a database perspective, they may be
intuitively understood as the most recent form of data dictionaries, i.e. a knowledge
repository whose purpose is to explain how concepts and terms relevant to a given
domain should be understood. Although ontology as a science comes from
philosophy, ontologies as computerized support for semantics have mainly been
developed by the artificial intelligence community. This community has focused on
developing reasoning mechanisms that would alleviate the task of enriching an
ontology by addition of new concepts. Typically, an ontological reasoner is expected
to be able to check the consistency of new concepts with already known ones and to
determine their most accurate placement within the (most often hierarchical) structure
of the ontology.

With ontologies becoming a necessary component of modern, interoperable
information systems, we are likely to see a proliferation of ontologies and a massive
growth in size and complexity of the set of concepts described in an ontology. We
foresee that their role will evolve from a repository of terms that denote concepts
(whose most well-known example is Wordnet) to a repository for complex
information, where the description of a concept includes a formal description of a
prototypical data structure (a design pattern) showing all the components of a
concept, the intra-relationships between these components, and the inter-relationships
between the concept and the other concepts in the ontology. These richer ontologies
will have to be easily understandable, and processable, by humans and by
computerized agents in search of semantics. Briefly stated, we expect significantly
increasing similarity between ontologies and current database schemas.

This raises the question whether database technology could be reused to provide
services for ontology design and management. The purpose of this paper is to develop
some arguments for such a discussion. The arguments we present here focus on
structural aspects, as we are interested in showing the benefits of using conceptual
data models for modeling ontologies. Other arguments (e.g., discussion of defined
versus derived objects, axioms, schema and instance querying, constraints) are also
surveyed. For a more detailed analysis of the latter the reader is referred to [3]. Our
idea is that database techniques could nicely complement logic-based techniques
(using formalisms such as description logics or F-Logic) and a common framework
could be built that would exploit the technique that best fits the task on hand.

The next section introduces an example that we use in Section 3 (after briefly
recalling the concepts of the underlying conceptual data model) to illustrate how a
conceptualization can be formulated using a conceptual data modeling formalism.
Section 4 discusses respective merits of using data modeling versus description logic
formalism. Section 5 concludes suggesting to combine both formalisms into a hybrid
system. We assume the reader is familiar with the features supported by ontological
formalisms (e.g., description logics).



2.  A Motivating Example

The example we show hereinafter has been first introduced by Boris Motik as part of
deliverable D1.1 of DIP, an European project aiming at developing semantic web
services. Let INT be a company that wants to provide a web service consisting in an
integrated tourism portal offering hotel information. INT does not itself own hotel
data. Instead, it simply integrates web services by various providers. Each provider
classifies its hotel data in a proprietary structure. Let us assume that there are two
providers of such information, TUI and Thomas Cook, TC for short. Figure 1 presents
the conceptualization that TUI uses to describe his offers. The drawing uses a simple
notation, based on an underlying binary data model, the kind of model many ontology
tools adhere to. Oval nodes (e.g. Hotel) denote conceptual entities. Nodes without a
surrounding oval (e.g. name) denote properties of the corresponding entities. Labeled
arcs between oval nodes denote a relationship between the conceptual entities. Non-
labeled arcs link a conceptual entity to its properties.
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TC uses a different conceptualization of his business domain (cf. Figure 2). For
example, geographical information is more fine-grained, as it represents the country,
region, and the area within the city where a certain hotel is situated. Room types are
split according to a different criterion. The rate structure is also different.

To create its portal, INT needs to bridge the semantic differences between the
information coming from TUI and from TC. First, INT must decide upon its own
conceptualization of the domain. It may either accept one of the existing
conceptualizations, or choose from existing domain standards, or develop its own
proprietary conceptualization. After choosing the conceptualization formalism and
creating its own conceptualization, INT has to describe how data in each source
relates to its own conceptualization. Conceptualization formalisms offer different
primitives for performing this task. Ontological work focuses mainly on logic-based
conceptualization formalisms, because their inference capabilities are commonly seen
as a key to solving this type of problem. For example, dependencies between the
conceptualization of INT and those of the sources can be expressed as logical axioms,
which, when executed, can be used to actually perform data integration. On the other
hand, conceptual modeling approaches most frequently use data manipulation
languages to express the mapping between a global integrated schema (here, the INT
conceptualization) and its corresponding source schemas. Alternatives for the
description of these mappings are well documented in the literature.

3.   Conceptual Modeling for Ontologies

As ontologies grow in size and in practical relevance, it is legitimate to question
whether database techniques could provide interesting support for ontology
management. On the one hand, database systems are known to offer scalable and
efficient management of huge amounts of structured data, which is what ontologies
may become in the near future. On the other hand, conceptual modeling approaches
(that have specifically been designed to support a semantically rich description of
structured data sets) could, at least to some extent, handle the description of the
conceptualization that is the subject of an ontology. Exploring this idea is definitely
worth a discussion. Arguments in favor of "highly intuitive" ontology models, with a
"frame-like look and feel" or "database schema" alike, have already been developed
in e.g. [8], [5] and [7]. Specific proposals include [6] and [3]. Mappings from
conceptual models to description logics have been proposed in e.g. [2] and [1].

The following brief description of conceptual modeling expressiveness is based
on work on extended entity-relationship (EER) models, which are most frequently
seen as offering the richest semantic expressiveness. In EER models and alike, data
structures are basically graphs of object types interconnected by relationship types.
Both object and relationship types may be characterized by associated properties
(attributes and methods). Attributes may be atomic (as in relational tables) or
composed of other attributes, thus allowing the definition of multilevel property trees
for object and relationship types. It is then possible, for instance, to represent a real
world entity as a single object in the database. Attribute cardinalities state whether an



attribute is optional or mandatory, and monovalued or multivalued (list, set, or bag).
Relationship types connect object types via roles. A relationship type may be defined
with 2 (for binary relationships) to n roles. When two or more roles connect to the
same object type, the relationship type is said to be cyclic. Relationship types may be
adorned with specific semantics, of which the most well known is aggregation
semantics (expressing that an object is a component of another object).

Object and relationship instances bear a system-defined, unique identity. Object
types and relationship types may be organized into generalization/specialization
lattices using is-a links. Inheritance, refinement, redefinition and overloading
mechanisms apply as proposed in traditional object-oriented data models. Some
advanced conceptual models, however, depart from object-oriented rules by adopting
a multi-instantiation paradigm, i.e. allowing the same real world entity to be
simultaneously represented by several instances in different classes that are not in a
sub-type/super-type relationship. Allowing multi-instantiation is necessary from the
modeling point of view, in particular to be able to properly describe situations such
as, for instance, a real world object being at the same time a hotel and a restaurant
(assuming Hotel and Restaurant are two object types) without forcing the definition of
a so-called intersection class, Hotel&Restaurant, sub-class of both Hotel and
Restaurant. Another facility from some conceptual model is classification dynamicity,
i.e. the possibility for an instance to move to another class (e.g., a guesthouse
becoming a hotel, a student becoming a faculty).

Good conceptual models come with formal definitions, rules to translate
conceptual specifications into logical level specifications, and implementations in
several marketed CASE tools and in research prototypes.

3.1   Conceptual Design for the Example Databases

The TUI conceptualization from Figure 1 can be easily reformulated in an EER
formalism by using the following very simple (but not very intelligent) rules:

- Ignore links labeled "instanceOf" and their source ellipsis (EER schemas do not
describe instances),

- Each ellipsis translates into an object type,
- Each link between ellipses translates into a binary relationship named after the

label associated to the link,
- Each label not in an ellipsis translates into a property (an attribute) of the object

type it is linked to.
Figure 3 shows the diagram for this EER schema.

However, such a schema definition, although syntactically correct, does not fully
use the power of conceptual models to organize the TUI conceptualization. Basically,
it does not use the facility to define complex attributes, which allows elaborating a
description of a real world entity as a single object type. Using this facility, and
assuming TUI wants to keep a catalogue of cities and countries, the conceptual
schema for the TUI conceptualization reduces to the one illustrated in Figure 4, with
Figure 5 showing the attributes of Hotel (indenting is used to visualize attribute
composition). The figures show cardinality constraints (on roles of relationship types
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Figure 3: Straight reformulation of the TUI conceptualization (Figure 1) using EER formalism

attributes), as these are traditionally included in an EER schema definition. In Figure
4 we have assumed that a country includes many cities and a city has many hotels,
while a hotel may only be located in one city (but some hotels are in no city) and a
city is located in only one country. Figure 5 assumes that a hotel may have many
facilities, may accept several credit cards, and offers many rates (at least one), a rate
possibly holding for different types of rooms (e.g. a hotel having the same rate for
single and double rooms).

CountryHotel City IsInLocatedIn(0:1) (1:n) (1:1) (0:n)

Figure 4: an EER diagram for a proper conceptual schema of the TUI conceptualization
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Figure 5: Hotel attributes in the TUI (left) and TC (right) conceptualizations



The same reasoning scheme may be applied to produce an EER schema for the
TC conceptualization shown in Figure 2. The structural difference is that the is-a links
to Accomodation in the TC structure will be mapped onto is-a links (rather than
relationship types) in the EER design. A possible schema diagram for the TC
conceptualization is shown in Figure 6. TC Hotel attributes are shown Figure 5.
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Figure 6: A possible EER design for the TC conceptualization

3.2   Integration

Bridging the semantic differences between the TUI and TC descriptions requires a
precise identification of how things modeled in one description correspond to things
modeled in the other description. Such mapping knowledge is expressed as
interschema corresponding assertions, which we show below in the format suggested
in [10] for the TUI and TC Hotel object types as described in Figure 5. For instance,
assuming the hotel concept has the same semantics in TUI and TC, and assuming
both providers may have offers for the same hotel, an assertion may be:

          TUI.Hotel   «  TC.Hotel
WCI   TUI.Hotel.name ≡ TC.Hotel.name
WCA TUI.Hotel.creditCards ≡ TC.Hotel.creditCards
WCA TUI.Hotel.facilities ⊇ TC.Hotel.(roomFacilities » hotelFacilities)
WCA TUI.Hotel.rates.amount ≠ TC.Hotel.rates.(standardAmount » reducedAmount)

The first line asserts that the Hotel object types in TUI and TC describe overlapping
sets of real world entities, i.e. the same hotel may be instantiated in both TUI and TC.
Beyond overlapping, other possible choices are equality, inclusion and disjointedness.
The second line (WCI stands for With Corresponding Identifiers) states that two
instances in TUI.Hotel and TC.Hotel represent the same real world hotel if the value
for the name attribute is the same in the two instances. This provides knowledge
about the mapping between instances of TUI and TC. This mapping enables gathering
all information about a real world thing that is available in two interrelated sources.
The following lines, introduced by the WCA (With Corresponding Attributes)
acronym, define corresponding attributes for the related types, i.e. attributes that at
least partially represent the same real world property, irrespectively of how it is coded
in the representation. The first WCA line states that for corresponding instances the



creditCards attributes hold identical information in both TUI and TC. The second
WCA line states that facilities in TUI include the facilities that in TC are split into
roomFacilities and hotelFacilities.  The third WCA line states that although the two
rates attributes hold the same semantics (i.e., they denote the cost for a room), the set
of values in TUI and TC are different (TUI and TC record different rates even for the
same hotel). Hence, to retrieve all the rates offered by a given hotel, both TUI and TC
have to be searched and the results have to be merged.  
Similar assertions hold for relationships types. An example is:

TUI.LocatedIN ≡ TC.LocatedIn.IsIn
which states that the TUI relationship, LocatedIn, is equivalent to the composition of
the two TC relationships, LocatedIn and IsIn. Both provide the same path between
Hotel and City.

From these assertions, the INT conceptualization may be built almost
automatically by an integration tool. "almost" refers here to the fact that many
alternative INT views may be elaborated from the same set of assertions, depending
on designers' preferences (e.g., one designer may prefer a more concise schema while
another designer may prefer a more exhaustive schema). The integration tool
generates also the mappings that relate the INT view to both sources, TUI and TC.
These mappings are used by the query execution tool that translates the user queries
expressed on the INT view into queries for the sources.

In a logic-based approach, the definition of the INT view is directly done by the
users. They have to define each concept and role of the INT view, through a logic
formula on the TUI and TC concepts and roles, as in the following examples.

INT:Hotel ≡ TUI:Hotel » TC:Hotel
INT:CreditCard ≡  TUI:CreditCard » TC:CreditCard
INT:accepts(Hotel, CreditCard) ⊇ TUI:accepts(Hotel, CreditCard)

The inference engine will automatically check if the INT description is consistent
with the TUI and TC descriptions. It will also automatically infer the answers to
queries on the INT view from the definitions of the INT view. Contrarily to the
database approach, no new integration tool has to be provided.

4  Discussion

This section briefly surveys advantages and disadvantages of using a conceptual
modeling and database approach, versus using a (description) logic approach, for the
description and management of ontologies.

4.1 Data modeling

EER conceptual models support direct modeling of rich data structures, leading to
representations that are close to how humans perceive things in the real world. EER
synthetic schemas are easily apprehended. Instead, most description logics rely on



simple binary data structures. This leads to an explosion in the number of concepts
that are needed, similar but worse than what happens in relational databases. A one-
page EER schema is likely to require several pages of description logics (DL) axioms
to describe the same representation. In addition, having only binary structures blurs
the distinction between what describes composite things (e.g., entities and links) and
what merely describes a property. The reader of a DL description has to perform a
reverse engineering process to reconstruct something that resembles her/his
perception of the real world that is described. EER conciseness is definitely an
advantage for humans. It is also an advantage for computer agents. Agents would also
have an easier task in exploring a conceptual schema showing a clear distinction
between objects and complex properties than in exploring a long list of DL axioms.
Finally, to visualize an ontology structure, EER diagrams are likely to be easier to
capture at a glance than the DL diagrams supported by recent DL editors.

In terms of supporting description of defined or derived concepts, the advantage
currently goes to DLs. DLs allow users to define new concepts by a logical formula as
complex as needed. The inference mechanisms automatically check the consistency
of the definitions, deduce where the new concepts are placed in the generalization
hierarchy, and infer their instances. Some conceptual models support a few derived
concepts (e.g., derived object types, derived classes, derived attributes), whose
instances and values can be automatically inferred. But they do not support concepts
that designers would define by a logical formula without knowing where they will fit
in the generalization hierarchy or even knowing the generalization hierarchy.
Moreover, a derived construct in a schema has different properties than a non-derived
construct (e.g., it cannot be instantiated), while defined concepts in DLs are treated as
base concepts. DLs also allow users to state axioms of type inclusion, equivalence,
and disjointedness involving complex terms. As DLs work with the open world
assumption (OWA), all the assertions (definitions of concepts and axioms) are used
by the logic reasoners for inferring new knowledge.

On the other hand, DBMS, which work with the closed world assumption
(CWA), enforce integrity constraints that avoid inappropriate data to enter the
database, where inappropriate means data that is not consistent with the current state
of the database, assuming this state is the whole universe of discourse. Conceptual
models have a number of predefined integrity constraints (e.g., cardinality constraints,
key constraints) that are easily described. However, to support a declarative
formulation of general integrity constraints, they have to resort to an associated logic
language (usually the FOL). On the other hand, in DLs it is very difficult to assert a
constraint on the known part of the world [4].

4.2 Data Manipulation

Instance creation is unconstrained in DL. Instances may be created without being
attached to a concept. The creation of a new instance may not conform to the rules
described by the axioms. In fact, the creation of an instance leads to one of three
cases: 1) the instance fully conforms to all existing assertions; 2) the instance
contradicts existing assertions, in which case the user is warned about the



contradiction; and 3) the instance neither fully conforms nor contradicts existing
assertions, in which case the DL reasoner infers that there is some missing knowledge
that, if known, would make the new instance conforming to the axioms. Indeed,
description logic systems naturally adhere to the OWA, which assumes that present
data is just the explicitly known subset of the valid data, and more valid data may be
inferred by reasoning. For instance, if axioms state that every hotel has a name, the
creation of a new hotel is accepted even if no name is attached to the new hotel.

On the contrary, databases follow the CWA, stating that only information that is
present in the database (or derivable by explicitly defined derivation rules) is valid. If
a fact is not in the database, the fact is considered false. As a consequence, the
creation of new instances has to obey all integrity constraints that apply to the
instance. For instance, if the schema prescribes that every hotel instance must hold a
value for the hotel name, the creation of a new hotel without specifying its name is
not accepted.

It is uneasy to evaluate which approach is better. In fact, each one is best suited
for the purpose it has been designed for. DL and its OWA fit well within an
environment where the ontology is incrementally defined, which corresponds to a
situation such that at each stage the current ontology only holds part of the world of
interest, hence there are many more specifications that are relevant but not yet entered
into the ontology. They also fit well with the idea that ontologies evolve as a result of
collaborative design, where many independent partners can contribute new
specifications to the ontology. The OWA also allows DLs to naturally support
incomplete information at the instance level. Inference mechanisms handle case
reasoning.

The database approach only offers a partial solution for managing incomplete
information, the NULL value, which has no clear semantics and is uneasy to handle.
On the other hand, the database approach and its CWA fit well in normative
environments, where the ontology has to interact with an information system which
assumes that the data it uses comes in a given format and is consistent with the
application rules that have been stated in the ontology. In database management,
satisfiability issues can be discarded and decidability issues do not arise.
Consequently, database systems simply do not need sophisticated reasoners to infer
additional information.

Another difference between DLs and databases is that databases rely on the
unique name assumption, which assumes that each instance has its own identity,
different from all others. In most DLs, unless explicitly stated by the user, nothing
prohibits two instances to be the same one. The logic reasoner may infer that two
instances, for example h1 and h2, describing two hotels are, in fact, the same one.

In terms of querying the ontology and its instances, databases and description
logics offer complementary functionality for instance querying. Database systems
usually provide powerful assertional query languages, complemented with efficient
query optimization tools. Description logic systems support a set of simple functions
for accessing instances that were directly inserted into the Abox (instance set) or are



inferred by the reasoning engine. Simply stated, the difference is that databases have
been purposely designed to store, manage, and query huge volumes of data instances,
while DL approaches have typically been targeted at sophisticated reasoning over a
relatively small volume of instances. Similarly, database systems can easily handle
value domains (the embedded ones as well as user-defined domains) while
description logics experience quite a difficulty in fully handling concrete domains
(each concrete domain calls for a careful extension of the reasoning capabilities).

4.4 Beyond Data Structures

Part of the semantics of the real world comes from where things are located in space
and time. Traditional modeling approaches (in DL as in conceptual modeling
approaches) ignore these components, assuming that the real world of interest is now
and here. On the contrary, there are a huge number of applications where spatio-
temporal information is essential. Considering our hotel example, spatial information
could be used to convey the actual geographical location of hotels, cities and
countries. This would enable queries such as "find hotels within 10 miles of a given
city". Similarly, room rates are a typical example of information that is valid only
within a given time period. In the current description, this is captured using the
attributes fromDate and toDate. However, this is a poor solution in the sense that only
the user is aware of the temporal semantics of these attributes. From the system
viewpoint, these are two "normal" attributes, with a Date domain. No temporal
reasoning and no temporal operators (in the sense developed by research in temporal
databases) will be deployed by the system on such data.

There has been quite an investment in the DL community to develop temporal
extensions of DL languages. There have been only few efforts to similarly develop
spatial extensions. Spatio-temporal DLs still are a research item for the future.

The picture is comparatively better in conceptual modeling, where several
proposals for spatio-temporal conceptual models exist today, and there is a pretty
good understanding of what are the required functionalities. Proposals exist to cover
spatio-temporal phenomena, such as e.g. mobile objects and trajectories [9][11], and
multi-representation (to support context-dependent information) [12]. Moreover,
Geographic Information Systems routinely and efficiently implement all the logical
level constructs needed for the description and management of geographic data,
including the two views of space: the discrete (or object-based) view and the
continuous (or field-based) view.

5 Conclusion

Conceptual modeling and the database approach provide better readability/
understandability of the content of an ontology, and more efficient management for
large ontologies and associated knowledge bases. DL approaches provide better
reasoning capabilities and new knowledge inference from explicitly defined



knowledge. We therefore suggest that, rather than extending either formalism to try to
cover all desirable functionality, a hybrid system, where the database component and
the logic component would cooperate, each one performing the tasks for which it is
best suited, might be the most promising solution for semantically rich information
management, in particular semantic web information services. It seems obvious to us
that, for instance, ontology description services should rely on conceptual data
models, while ontological consistency services and incomplete information handling
should be performed using description logics reasoners.
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