1,380 research outputs found

    Experimentation as a service over semantically interoperable Internet of Things testbeds

    Get PDF
    Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major advances. Firstly, it leverages semantic web technologies to enable interoperability so that testbed agnostic access to the underlying facilities is allowed. Secondly, a set of tools ease both the experimentation workflow and the federation of other IoT deployments, independently of their domain of interest. Apart from the platform specification, the paper presents how this design has been actually instantiated into a cloud-based EaaS platform that has been used for supporting a wide variety of novel experiments targeting different research and innovation challenges. In this respect, the paper summarizes some of the experiences from these experiments and the key performance metrics that this instance of the platform has exhibited during the experimentation

    Federation of AAL & AHA systems through semantically interoperable framework

    Full text link
    [EN] Ambient Assisted Living (AAL) and Active and Healthy Ageing (AHA) immensely benefit from IoT application. The federation of IoT platforms can multiply the benefits obtained by the operation of those systems in an isolated way, as it enables important synergies (e.g., intelligent information sharing, system cooperation, service enhancement). This federation requires the enablement of interoperability between the IoT systems, which represents a major challenge, as systems typically follow very different standards, data formats, semantic models and manners of representing the information. We have provided a technical solution in the frame of ACTIVAGE, a project that aims to federate multiple heterogeneous IoT platforms and systems associated to clusters of AHA Smart Homes in 12 regions across Europe, with the goal to improve the AHA service provided and create the first European AHA ecosystem. Our technical solution allows the enablement of full semantic interoperability across heterogeneous platforms and it has been validated in a test scenario. It enables significant AHA service enhancement within the ACTIVAGE ecosystem, as native applications from one platform could be used indistinctly by all federated platforms. Our solution allows good scalability federating new platforms, with linear and relatively low effort.This research work has been partially funded by LSP H2020 ACTIVAGE project under Grant Agreement Nº 732679.González-Usach, R.; Julián, M.; Esteve Domingo, M.; Palau Salvador, CE. (2021). Federation of AAL & AHA systems through semantically interoperable framework. 1-6. https://doi.org/10.1109/ICCWorkshops50388.2021.94735031

    Towards an interoperability certification method for semantic federated experimental IoT testbeds

    Get PDF
    IoT deployments and then related experiments tend to be highly heterogeneous leading to fragmented and non-interoperable silo solutions. Yet there is a growing need to interconnect such experiments to create rich infrastructures that will underpin the next generation of cross sector IoT applications in particular as using massive number of data. While research have been carried out for IoT test beds and interoperability for some infrastructures less has been done on the data. In this paper, we present the first step of the FIESTA certification method for federated semantic IoT test bed, which provides stakeholders with the means of assessing the interoperability of a given IoT testbed and how it can be federated with other ones to create large facility for experimenter. Focus is given on data and semantic context of the test beds and how they can interoperate together for larger experiments with data

    A proof-of-concept for semantically interoperable federation of IoT experimentation facilities

    Get PDF
    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.This work is partially funded by the European projectzFederated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) from the European Union’s Horizon 2020 Programme with the Grant Agreement No. CNECT-ICT-643943. The authors would also like to thank the FIESTA-IoT consortium for the fruitful discussions

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture

    A semantic-enabled platform for realizing an interoperable Web of Things

    Get PDF
    Nowadays, the Internet of Things (IoT) ecosystem is experiencing a lack of interoperability across the multiple competing platforms that are available. Consequently, service providers can only access vertical data silos that imply high costs and jeopardize their solutions market potential. It is necessary to transform the current situation with competing non-interoperable IoT platforms into a common ecosystem enabling the emergence of cross-platform, cross-standard, and cross-domain IoT services and applications. This paper presents a platform that has been implemented for realizing this vision. It leverages semantic web technologies to address the two key challenges in expanding the IoT beyond product silos into web-scale open ecosystems: data interoperability and resources identification and discovery. The paper provides extensive description of the proposed solution and its implementation details. Regarding the implementation details, it is important to highlight that the platform described in this paper is currently supporting the federation of eleven IoT deployments (from heterogeneous application domains) with over 10,000 IoT devices overall which produce hundreds of thousands of observations per day.This work was partially funded by the European project Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) from the European Union’s Horizon 2020 Programme with the Grant Agreement No. CNECT-ICT-643943 and, in part, by the Spanish Government by means of the Project ADVICE “Dynamic Provisioning of Connectivity in High Density 5G Wireless Scenarios” under Grant TEC2015-71329-C2-1-R
    • …
    corecore